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Abstract—With recent advances in satellite microwave soil mois-
ture estimation, particularly the launch of the Soil Moisture and
Ocean Salinity satellite and the soil moisture active passive mission,
there is an increased demand for exploiting the potential of satellite
microwave soil moisture observations to improve the predictive ca-
pability of hydrologic and land surface models. This study presents
the implementation of the 1-D version of the ensemble Kalman
filter scheme to assimilate satellite soil moisture into Environment
Canada’s Standalone Modélisation Environmentale-Surface et Hy-
drologie (MESH) model that couples the Canadian land surface
scheme with a distributed hydrological model. This paper exam-
ines the performance of the established assimilation scheme by
conducting a series of synthetic assimilation experiments in which
the satellite soil moisture and the reference (“true”) solutions were
derived from the MESH model simulations. The synthetic analy-
ses have demonstrated the capability of the assimilation system,
given the synthetic satellite soil moisture and the intentionally de-
graded model estimates, to accurately approximate the “true” sur-
face layer and root-zone soil moisture solutions. The experiments
have also revealed the impacts of a series of factors (ensemble size,
vegetation cover, observing frequency, specification of observation,
and model input error parameters) upon the quality of the assimi-
lation estimates, which can provide an important guidance for the
practical application of the assimilation scheme.

Index Terms—Data assimilation, ensemble Kalman filter
(EnKF), Modélisation Environmentale-Surface et Hydrologie
(MESH), satellite soil moisture, synthetic experiment.

I. INTRODUCTION

OVER the past decades, the global water cycle has suf-
fered from increasing uncertainties introduced by climate

change, land use, and human activities, which in turn added
pressure on management of water resources. Soil moisture is
one of the most important parameters to characterize the water
cycle behavior and water resources availability. Soil moisture,
as a key state variable linking the land surface and the atmo-
sphere, can bring a significant component of memory into the
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soil-atmosphere system through an integration of precipitation
and evaporation processes over time scales of days to months.
The memory has an important influence on surface saturation,
precipitation, runoff, and forecasting of flooding events [1]—
[3]. As a reservoir for evapotranspiration, soil moisture also has
an important controlling on the partitioning of energy fluxes be-
tween latent and sensible forms at the land surface, which could
considerably modulate the large-scale atmospheric circulation
and temperature patterns during summers [4], [5].

Traditionally, soil moisture can be in situ measured using
a gravimetric method or ground-based sensors. In situ mea-
surements typically serve as the “ground truth,” but spatially
distributed soil moisture information, especially at regional,
continental, or global scales, is difficult to estimate from in situ
measurements, which are typically based upon sparse point
sources in practice. Satellite microwave remote sensing (e.g.,
[6]–[11]) holds the ability to provide large-scale monitoring
of surface soil moisture because microwave measurements
respond to changes in the surface soil’s dielectric properties,
which are strongly controlled by soil water content. However,
although satellite microwave soil moisture observations,
relative to ground-based point measurements, have better
geographical coverage and can contribute to many fields (e.g.,
[12]–[14]), satellite remote sensing cannot directly produce
spatiotemporally complete soil moisture estimates that are typi-
cally required in many practical applications (e.g., initialization
of weather and hydrological models) [15]. For a given location,
the revisiting time of a satellite sensor system is typically 1–3
days (separately for ascending and descending orbits) or much
longer depending upon the satellite sensor system and the
latitude. Additionally, satellite remote sensing cannot directly
measure soil water content below a surface layer. Therefore,
to produce spatiotemporally complete soil moisture estimates,
we need to spread satellite observed information to times and
locations that are not directly measured by satellite sensors.

On the other hand, land surface and hydrological model sim-
ulations, in particular, for physically based distributed models,
allow for the estimation and prediction of hydrologic conditions
at desired spatial and temporal scales. In practice, however, land
surface and hydrologic modeling is often difficult because we
have neither a perfect forecast model nor perfect meteorological
forcing data, i.e., the accuracy of state estimation suffers from
uncertainties in forcing fields and deficiencies in model physics
and/or parameters. To improve the model simulations, one may
constrain the model forecasted state in time with observations.
To what extent the model forecast will be modified given ob-
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servations is controlled by the model forecast and observation
error covariances. Meanwhile, the observed information can, by
means of consistency constraints based upon the time evolution
and physical properties of the system, spread to times and loca-
tions that are not directly observed. This is the basic concept of
data assimilation.

There has been an intensive global research effort to assimi-
late microwave remote–sensing soil moisture into land surface
or hydrological models over the past few decades [16]. The
studies have demonstrated the potential of remotely sensed soil
moisture, through data assimilation, to improve the predictive
capability of hydrologic and land surface models. However,
the relevant efforts have to date been focused upon assim-
ilation of remotely sensed soil moisture in catchment scale
[17]–[20], coarse scale [21], or lumped models [22], [23].
Here, we equip Environment Canada’s Standalone Modélisation
Environmentale-Surface et Hydrologie (MESH), which is a dis-
tributed land surface-hydrological model [24], with a satellite
soil moisture data assimilation scheme. The assimilation of
satellite soil moisture retrievals will be conducted at a grid scale
that is comparable to practical satellite product scales.

This paper examines the performance of the established as-
similation scheme for the MESH model by conducting a series
of synthetic assimilation experiments. The satellite soil moisture
data were derived from the forecast model MESH simulations,
and the reference (“true”) solutions are known. This allows in-
vestigation of the impacts of a series of factors (ensemble size,
vegetation cover, observing frequency, specification of obser-
vation, and model input error parameters) upon the quality of
the assimilation estimates, which can provide a basis for the
practical application of the assimilation scheme. This paper is
organized as follows. In Section II, the forecast model is intro-
duced. Section III describes the data assimilation scheme. The
synthetic experiment setup and results are presented in Section
IV, followed by a summary and discussion in Section V.

II. MODEL AND EXPERIMENTAL DOMAIN

Environment Canada’s standalone MESH is a land surface
and hydrological model in which the Canadian land surface
scheme (CLASS) is coupled with a hydrological routing model
WATFLOOD [24]. A primary innovation of MESH is that the
model uses a grouped response unit (GRU) approach [25] to re-
solve the heterogeneity in geophysical fields. A GRU is a group-
ing of subareas with similar soil and/or vegetation attributes. In
the version of MESH used in this study, each GRU corresponds
to one land cover class (other soil characteristics are assumed
to be same for the same GRU). Each model grid cell is repre-
sented by a limited number of distinct GRUs (tiles) weighted
by their respective cell fractions. It is acknowledged that the
current GRU scheme, which is based solely on land cover, is
still not sufficient to resolve the basin heterogeneity. To better
meet the requirements for many practical applications, other
physiographic features, such as soil type, erosion, topography,
and slope (e.g., [26]–[28]) also need to be taken into account
in the GRU definition, although this is outside the scope of this

Fig. 1. Great Lakes basin and its land cover. Note that each grid cell (1/6th of a
degree resolution) may consist of a maximum of seven land cover classes (crop,
grass, deciduous forest, coniferous forest, mixed forest, water, and impervious).
Only the dominant land over class is displayed for each grid here (a forest cover
represents the sum of the deciduous, coniferous, and mixed forest classes).
Water and impervious surfaces are not labeled since soil moisture estimates are
not evaluated for them.

study and may be considered in the future efforts to improve the
MESH model system.

The land model is run on each tile independently. The overall
fluxes and prognostic variables of a grid cell are obtained by
taking a weighted average of the results from tiles. The soil
column is partitioned into three layers (0–10, 10–35, and 35–
410 cm) to resolve water and temperature dynamics. In prac-
tice, satellite microwave sensors measure only the water con-
tent within the top few centimeters of soil, which approximately
matches with the model surface layer. The land surface scheme
considers only the vertical water movement between the soil
layers, which is governed by the 1-D Richard’s equation

∂θ/∂t = −∂K (θ) /∂z + ∂ (K (θ) (∂ψ (θ) /∂z)) /∂z (1)

where θ denotes the volumetric water content, t is the time, z is
the depth of soil,K(θ) is the hydraulic conductivity, andψ(θ) is
the pressure head (soil water suction). The lateral movement of
water between grids/tiles is not taken into account. The resulting
horizontal flows (overland flow, interflow, and base flow) within
grid cells are ultimately routed into the stream and river network
systems.

The experimental domain is the Great Lakes basin (see Fig. 1).
The MESH model has been applied to this basin before [24],
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[29]. The corresponding model configurations [24] and cali-
brated parameters [29] can be directly used in this study. Seven
GRU types are identified for this domain: crop, grass, deciduous
forest, coniferous forest, mixed forest, water, and impervious.
Each GRU class has a different model parameter set. The basin
is gridded at ten arcmins (∼15 km × 15 km) in the model sim-
ulations. Each model grid is a mosaic of the seven GRU classes
weighted by their cell fractions.

III. DATA ASSIMILATION SCHEME

In a data assimilation system, the observed information is in-
tegrated into the model framework by taking into account both
the model forecast and observation error characteristics. This al-
lows the model forecast and observation to be optimally merged,
while without violating the model physical constraints. Here,
we use the ensemble Kalman filter (EnKF) scheme to assimilate
satellite soil moisture into the MESH model. The EnKF method
is chosen because 1) as compared to the variational methods, the
EnKF is relatively easy to implement since an adjoint version (a
conjugate transpose of the tangent linear model) of the forecast
model is not required; 2) estimation of full error covariances is
not required, and the model and measurement error variances
are defined by the ensemble spreading (although the input error
parameters need to be specified or to be adaptively tuned); and
3) EnKF is an ensemble-based method, and, thus, can be easily
merged into the existing ensemble forecasting system in use
with Environment Canada.

The EnKF, which was first introduced by [30], uses a Monte–
Carlo approach to estimate the forecast and observation error
statistics. An ensemble of model states is used to approximate
the probability density of the model state. The ensemble spread
defines the forecast error variance and the ensemble mean is
considered as the best estimate (Gaussian assumption). Thus,
the error covariance equation (as used in the Kalman filer or the
extended Kalman filter) for the evolution of the model forecast
error information can be replaced by integrating the ensemble
of model states forward in time, expressed as

x−j, t = M
(
x+
j, t−1 , uj,t

)
(2)

where M denotes the forecast model operator, x+
j,t−1 repre-

sents a posterior (analysis) model state at measurement time
t − 1. x−(j,t)x

f
j is a priori (forecast) model state at measurement

time t. uj,t denotes the model uncertainties (perturbations to the
forcing data and deficiencies in model parameters/physics). The
subscript j is the ensemble member index, counting from 1 to
the size of the ensemble N. The observation is perturbed to gen-
erate an ensemble of perturbed observations with the ensemble
mean equal to the actual observation and the spreading of the
ensemble as the observation error variance, i.e.,

yj,t = ȳt + εj,t (3)

Rt = (N − 1)−1
N∑

j=1

εj,t ε
T
j, t (4)

where ȳt and yj,t represent the actual observation and the per-
turbed observation at time t, respectively. εj, t andRt denote the

observation error perturbation and the observation error covari-
ance, respectively. The superscript T denotes the vector trans-
pose. At measurement time t, each of the model forecast state
ensemble members x−j, t is updated to x+

j, t according to the
Kalman analysis equation, given by

x+
j, t = x−j, t + P−

t H
T
t (HtP

−
t H

T
t +Rt)−1(yj,t −Htx

−
j,t)

(5)
whereHt is the measurement operator. P−

t denotes the forecast
error covariance. In the EnKF, P−

t is only implicitly needed
through
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Ultimately, through conducting in turn the forecast step, as in
(2), and the update step, as in (5), the observational information
is sequentially accumulated into the model state. Considering
that the MESH model grid cells are modeled as independent
soil columns in the land scheme (see Section II), the 1D-EnKF
where the horizontal correlations between the model grids are
neglected and an observation influences only the model state at
the observation location is used here.

In this study, the model state vector x, which has a dimension
of 21 and is independent for each grid, is comprised of the volu-
metric water content from the seven GRUs (tiles) for the model’s
three soil layers. The observation yj is the perturbed satellite
retrievals of surface soil moisture, and the corresponding model
prediction Hx−j denotes the volumetric liquid water content (a
weighted sum of GRUs within the grid) in the model surface
layer. In the assimilation, the updating of the model soil mois-
ture estimates, as in (5), is applied only to the five vegetation
GRUs (i.e., crop, grass, deciduous forest, coniferous forest, and
mixed forest). The state updating is not considered for water and
impervious surface GRUs. A model grid cell, if the fraction of
water or impervious surface GRU exceeds 5%, is excluded from
the soil moisture evaluation and assimilation. The state updating
is conducted for all the three soil layers of MESH. However, to
be consistent with real application, we do not assess the model
and assimilation estimates of soil water content for the third
soil layer (i.e., from 35 cm below the surface to the water table)
since in situ soil moisture measurements at those depths are very
sparse in our study basin.
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TABLE I
LIST OF SYNTHETIC EXPERIMENTS

Key Description

A Control experiment; Ensemble size N = 12; Assimilation interval is 24 h
B1 Same as A, but with N = 6
B2 Same as A, but with N = 50
B3 Same as A, but with N = 100
C1 Same as A, but with assimilation interval of 12 h
C2 Same as A, but with assimilation interval of 72 h
D1 Same as A, except for a higher retrieval skill
D2 Same as A, except for a lower retrieval skill
E1–E25 Test the impact of the specified model and observation input error parameters

IV. EXPERIMENT SETUP AND RESULTS

The synthetic experiments are designed as follows. First, the
MESH model is integrated for one-year period (1 January to 31
December) using the meteorological forcings derived from the
Global Environmental Multiscale (GEM) model [31] forecasts
of year 2005. Each GRU class has its own model parameter
set, which was based upon a global calibration with streamflow
observations [29]. The model integration is spun up with the
GEM forcings of year 2004 (repeatedly for ten year). The simu-
lated soil moisture serves as the reference solution (“truth”). The
synthetic satellite soil moisture retrievals are generated, inde-
pendently for each model grid, by applying the random Gaussian
white noise (the error standard deviation is set to 0.08 m3 /m3)
to the true surface soil moisture sequence. Next, we perform an
open-loop model simulation (without data assimilation), which
intentionally deviates from the true integration. To this end, the
MESH model is integrated for one-year period again but with
the GEM forcings of year 2006 and using a different set of
model parameters, which are generated by adding random noise
with a standard deviation of 30% (of magnitude) to the model
parameters used in the true integration. Finally, the synthetic
soil moisture retrievals are assimilated into the open-loop inte-
gration, under different conditions, to examine the capability of
the assimilation system to recover the “true” soil moisture so-
lution. The assimilation experiments are listed in Table I. More
details on the experiments will be provided in the remainder of
this section.

This study examines the contribution of satellite soil mois-
ture, through data assimilation, upon the model soil moisture
estimates only. The effects of satellite soil moisture assimila-
tion on other model variables (streamflow, evapotranspiration,
surface heat fluxes, etc.) are outside the scope of this study since
estimates of those variables are sensitive to the input error pa-
rameters [32]. The period 2004–2006 was chosen because the
model parameter set (associated with physiography, vegetation,
and soil characteristics) was based upon a calibration to the
2004–2005 streamflow observations [29].

A. Control Experiment

Experiment A is a control case that uses the 1D-EnKF with
12 ensemble members. The EnKF method estimates the model
forecast errors based upon an ensemble of model integrations.

TABLE II
ERROR PARAMETERS FOR THE SELECTED FORCING INPUTS

AND MODEL VARIABLES

Perturbation
Methoda

Standard Deviation Temporal
Correlation

Cross
Correlationb

Forcing inputsc

Precipitation (P) M 0.5 1 day −0.8 with SW
0.5 with LW

Incoming
shortwave
radiation (SW)

M 0.2 1 day −0.8 with P
−0.5 with LW

Incoming
longwave
radiation (LW)

A 40 W m−2 1 day 0.5 with P −0.5
with SW

Volumetric
liquid water
First soil layer A 1.0E − 03 m3 m−3 1 day n/a
Second soil layer A 5.0E − 04 m3 m−3 1 day n/a
Third soil layer A 5.0E − 05 m3 m−3 1 day n/a

aPerturbation method: Multiplicative (M) or additive (A).
bThe cross-correlated perturbations in precipitation and radiation fields were generated
following [18] to represent an equilibrium state between them.
cError parameters for the selected forcing inputs are adapted from [18].

The cross-correlated forcing perturbation fields, which were
generated following [18], are applied to meteorological forcing
fields of precipitation and radiation (see Table II) to represent
random errors in these fields and an equilibrium state between
them. The random errors in the forcing data typically vary with
time and space and are difficult to completely quantify. The
perturbation values used here were mainly based upon order-
of-magnitude considerations (i.e., the mean error behavior for
GEM forecasts).

To account for the model uncertainties due to imperfect model
parameters, temporally correlated error perturbations are added
to the forecasted volumetric liquid water content (see Table II).
The specified model input error parameters are derived from
the filter calibration experiment (not shown). A true observation
error standard deviation of 0.08 m3 /m3 is used for the synthetic
retrievals (recall that the synthetic retrievals are generated by
adding the Gaussian white noise with standard deviation of
0.08 m3 /m3 to the true surface soil moisture). The assimilation
is performed at 24-h intervals (i.e., we assume the observing
frequency of once daily). The satellite retrieval-model discrep-
ancies in climatological mean and spatial scale are not present,
and, thus, not considered in our twin experiments.

Fig. 2 shows the open-loop model (without assimilation) and
the assimilation surface (0–10 cm) soil moisture estimates across
the study domain, in comparison with the “true” state. The as-
similation estimates show, relative to open loop, better over-
all agreement with the true fields in terms of the distribution
and magnitude of soil moisture across the study domain. This
demonstrates that the EnKF scheme installed for the MESH
model can be effective to improve the model surface soil mois-
ture estimates. The counterpart of Fig. 2 for root-zone (0–35 cm)
soil moisture is provided in Fig. 3. The root-zone soil moisture
estimates are also improved through the assimilation of the sur-
face soil moisture retrievals. The successful updating of root-
zone soil moisture indicates that through data assimilation, the
near-surface soil moisture information, which can be acquired
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Fig. 2. Daily averaged surface (top 10 cm) soil moisture estimates (m3m−3)
from (left) the open-loop model (middle), the assimilation, and (right) the true
state for (top to bottom) days 180, 185, 190, and 195, respectively.

Fig. 3. Similar to Fig. 2, but for root-zone (top 35 cm) soil moisture, which is
a depth-weighted average of soil moisture in the model’s top two layers (0–10
and 10–35 cm).

by satellite microwave remote sensing, can spread to deeper soil
layers that are not directly measured by satellite sensors. Note
that an efficient constraint of satellite retrievals on root-zone
soil moisture relies upon the model’s accurate description of
water movement in the soil column. In our twin experiment, the
model physics is satisfactorily represented since we used the
same model (but different model parameters) to generate the

Fig. 4. Scatterplot of soil moisture estimates for (left) the surface layer and
(right) root zone on (top to bottom) days 180, 185, 190, and 195, respectively:
(symbols in gray) open-loop model versus the reference solution (“truth”),
and (symbols in red) assimilation versus “truth.” The dashed line is the one-to-
one line.

“true” state and to assimilate soil moisture retrievals. In prac-
tice, it may be challenging to improve soil moisture estimates for
root zone due to a lack of perfect forecast models and complete
knowledge of the satellite observation errors.

The statistical analyses of the soil moisture spatial pattern
are presented in Figs. 4 and 5. For either the surface layer or
root-zone soil moisture estimates across the study domain, the
bias between the open-loop model and “truth” is typically larger
than that between the assimilation estimation and “truth.” The
soil moisture estimates from the assimilation, relative to the
open-loop estimates, exhibit a higher correlation with the truth,
especially in summer days.
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Fig. 5. Temporal variation of correlation in space of soil moisture estimates
from (gray symbols) the open-loop model and (red symbols) the assimilation
against “truth.” (top) the surface layer and (bottom) root zone.

In practice, in situ soil moisture measurements, which serve
as the “ground truth,” are typically based upon sparse point
sources. Point-scale measurements, due to the sampling er-
ror, are usually difficult to represent the areal average (satel-
lite or model estimates) in terms of the absolute magnitude of
soil moisture [33], [34]. In contrast, the temporal variability
of soil moisture observed by point measurements are spatially
representative [35]–[37]. On the other hand, in reality, due to the
satellite-model bias (systematic error), satellite retrievals usu-
ally need to be rescaled (locally) prior to data assimilation [38].
Since the absolute magnitude of satellite soil moisture is locally
changed the absolute values and the spatial pattern of the as-
similation estimation are meaningless. Instead, the assimilation
products are more meaningful in terms of the time variabil-
ity of soil moisture, which is consistent with the advantage of
point measurements. Hence, the time-series correlation R met-
ric, relative to the spatial analysis and the root-mean-square
error (RMSE), is more appropriate for a quantitative assessment
of the assimilation performance in practical applications.

To be consistent with real applications, here we focus upon
the soil moisture skill R metric, which is defined as the daily
time-series correlation of soil moisture estimates (satellite data,
open-loop model, or assimilation estimates) with the “true” soil
moisture solution. We compute the R values using data between
1 April and 30 September since for our study domain, in prac-
tice, the effects of snow cover and frozen soils are the weakest
on satellite soil moisture estimates during this period. We also
calculated the RMSE results (not presented here), which did not
change our general conclusions based on the R measure. This is
not surprising since the correlation R metric is as informative as
the RMSE metric [39].

Fig. 6 compares the skill R values from the open-loop and the
assimilation estimates for both surface and root-zone soil mois-
ture across the study domain. The Fisher Z transform method
[40], [41] is used to test the significance of the skill improve-
ment ΔR, defined as the skill for the assimilation product minus

Fig. 6. Soil moisture skill R from (left) the open-loop model and (middle) the
assimilation, and (right) the skill improvement ΔR (assimilation minus open
loop) for (top) the surface layer (0–10 cm) and (bottom) root zone (0–35 cm). ΔR
is displayed only when the open-loop R and the assimilation R are significantly
(5% level) different from each other.

the skill for the open-loop estimates (see Fig. 6, right). Overall,
either the open-loop model or the assimilation provides similar
spatial pattern of skill for surface (see Fig. 6, top) and root-
zone soil moisture (see Fig. 6, bottom). The open-loop model
(see Fig. 6, left) typically provides lower soil moisture skill R
at the grids dominated by crop cover (mean of 0.29 (0.16) for
surface (root zone)) than for forest-dominated grids (mean of
0.41(0.42) for surface (root zone)) (the vegetation cover distri-
bution is shown in Fig. 1). This is not surprising because the
seasonal variations in canopy, in terms of a growth index, are
treated differently between trees and crops in the MESH model.
For all vegetation types, the growth index is set to 1 for fully
leafed periods, to 0 for leafless periods, and to be linear dur-
ing the transition periods. For trees, the transition periods are
determined by the surface air temperature and the surface soil
temperature; while the transition periods of crops are specified
using certain days based upon their latitudes [42]. Through data
assimilation, almost all grids experience positive skill gains but
with different magnitudes. In general, the skill improvement
ΔR decreases with increased open-loop skill, coinciding with
the finding of [43]. The strong and statistically significant skill
improvements are typically observed for crop-dominated grids.

B. Impact of Ensemble Size

To perform the EnKF assimilation, the ensemble size N and
the radius of influence for the observations r need to be ap-
propriately configured. Throughout this study, r is zero since
the 1D-EnKF is used (i.e., for a given observation, the analysis
update (2) is only applied to state variables at the observation
location). In experiment A, an ensemble of 12 members are
used. To assess the impact of ensemble size, we repeat exper-
iment A with N = 6 (experiment B1), 50 (experiment B2),
and 100 (experiment B3), respectively. The mean soil moisture
skill results from these experiments are summarized in Fig. 7.
The soil moisture skill values from experiment B1 (N = 6) are
slightly reduced from those obtained in experiment A (N =
12). On the other hand, increasing N to 50 or 100 has smaller
(but opposite) effects. Such dependence on N is also consistent
with other studies [44], [45].
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Fig. 7. Averaged soil moisture skill R for the open-loop model and the as-
similation estimates from experiments A, B1, B2, and B3 (see Table I for key):
(left) Surface layer (top 10 cm) and (right) root zone (top 35 cm). The (area
averaged) R values are computed, respectively, for the crop-dominated grids, the
forest-dominated grids, and all model grids (except for water and impervious
surfaces) within the study domain. Error bars indicate 95% confidence intervals.

Fig. 8. Similar to Fig. 7, except that the assimilation estimates are from
experiments A, C1, and C2 (see Table I for key), respectively.

Overall, a small ensemble size is generally sufficient for the
1D-EnKF to perform well in land surface/hydrological models
that typically, in contrast to atmospheric models, do not involve
chaotic processes. Furthermore, the analysis increment calcula-
tions in the 1D-EnKF are conducted independently for the model
grids (horizontal correlations are neglected) and the state vector
is, thus, relatively small in dimension. An increased ensemble
size would be required if horizontal correlations are taken into
account (i.e., a 3D EnKF) [46]. Additionally, note that a larger
ensemble size would clearly be of advantage for suppressing sta-
tistical noise in error covariance estimates of the state variables
and in error correlations between the states and the measured
variable [44]. This may explain the more satisfactory assimila-
tion estimates of root-zone soil moisture in cropped areas when
the ensemble size is increased to 50 or 100 (see Fig. 7, right).

C. Effect of Observing Frequency

In reality, soil moisture retrievals derived from satellite mi-
crowave sensors (except for synthetic aperture radars) typically
have a time resolution of 1–3 days (separately for the ascend-
ing and descending overpasses). Experiments C1 and C2 are
designed to evaluate the impact of the frequency of the satellite
observations on the assimilation estimates. Experiment C1 (C2)
is the same as experiment A, except for assimilating the syn-
thetic retrievals at 12-h (72-h) intervals. Fig. 8 presents the mean
soil moisture skill from experiments A, C1, and C2. Clearly,
the soil moisture estimates can be further enhanced (experi-
ment C1) when the satellite observations are assimilated more
frequently (i.e., a shorter assimilation interval). In contrast, a
longer assimilation interval (experiment C2) decreases the skill
improvement obtained by data assimilation. Inclusion of more
observational information would clearly be of advantage. There-
fore, in practice, to produce the best soil moisture estimates, we

should jointly assimilate the retrievals from both ascending and
descending orbits or from different platforms. A joint assimi-
lation of the Advanced Microwave Scanning Radiometer-Earth
Observing System (AMSR-E) and the Advanced Scatterometer
(ASCAT) soil moisture retrievals into the NASA catchment land
surface model could lead to higher soil moisture skill (anomaly
R) than the alone assimilation of either of the two retrieval
datasets [20].

Note that the “best” assimilation estimates resulting from
experiment C1 were based upon the synthetic retrievals with
the same accuracy. In [20], the two sensor products (AMSR-E
and ASCAT) also had similar retrieval skills, and, therefore,
their joint assimilation was promising. In practice, however, the
retrievals derived from different orbits (ascending or descend-
ing) or from different sensors may have different accuracies.
For example, L-band sensors (e.g., the Microwave imaging ra-
diometer with aperture synthesis onboard the soil moisture and
ocean salinity (SMOS) mission) are expected to provide bet-
ter soil moisture estimates than the sensors operating at X or
C bands (e.g., AMSR-E) since the latter (operating at shorter
bands) are more susceptible to vegetation effects. Such discrep-
ancies could impact the performance of their joint assimilation,
i.e., a joint assimilation of soil moisture retrieval datasets from
different sensor systems (at different overpassing times), al-
though it means a shorter assimilation interval or an increased
observing frequency (such as in experiment C1) does not neces-
sarily yield the “best” skill. To demonstrate this point, we also
performed an additional experiment in which we jointly assim-
ilated two synthetic retrieval datasets with different accuracies.
The first retrieval dataset is same as that used in experiment A
(the synthetic retrievals were obtained once daily from the truth
soil moisture by adding white noise with a standard deviation
of 0.08 m3 /m3). The second retrieval dataset is generated once
daily (measurement time is shifted by 12 h relative to the first
dataset to represent a different sensor overpassing time) by ap-
plying the noise standard deviations of 0.12 m3 /m3 to the truth
soil moisture. The mean (basin-averaged) retrieval skill (cor-
relation R between synthetic retrievals and the truth fields) for
the first and second retrieval datasets, and their combination are
0.60, 0.44, and 0.54, respectively. The second retrieval dataset
is then assimilated (alone and jointly with the first retrieval
dataset, respectively) into the model. Note that a true observa-
tion error standard deviation (0.08 and 0.12 m3 /m3 for the two
retrieval datasets, respectively) is always used for the alone or
joint assimilation experiments. Results (not shown here) sug-
gest that the soil moisture skill R from the joint assimilation
(12-h intervals) is higher than that when assimilating the second
retrieval dataset alone (24-h intervals), but is lower than that
from experiment A (24-h intervals). This confirms that a joint
assimilation of different retrieval datasets does not necessarily
yield the “best” estimation. Note that the combined retrieval set
(twice daily) has a different retrieval skill from either the first
or second retrieval set (once daily), although the influence of
retrieval skill (see a comparison of experiments A, D1, and D2
presented in Fig. 9) is a consistent explanation for the observing
frequency modulation on the assimilation skill.
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Fig. 9. Similar to Fig. 7, except that the assimilation estimates are from
experiments A, D1, and D2 (see Table I for key), respectively.

D. Impact of Retrieval Skill

In practice, the soil moisture retrievals derived from different
sensor systems typically have different accuracies. In exper-
iment A, the synthetic satellite retrievals (daily-spaced) were
generated by applying the white noise with a standard deviation
of 0.08 m3 /m3 to the true soil moisture. The resulting retrieval
dataset has a mean (basin-averaged) retrieval skill of about 0.60.
To mimic the desired retrieval accuracy for SMOS [10] and
SMAP missions [11] and other retrieval errors, here we change
the random errors applied to the synthetic satellite soil mois-
ture retrievals. By applying the noise with standard deviations
of 0.04 and 0.12 m3 /m3 , separately, to the “true” soil moisture,
two additional synthetic retrieval datasets (daily-spaced), with
mean retrieval skill of 0.74 and 0.43, respectively, are produced,
and are subsequently assimilated into the model (experiments
D1 and D2). Still a true observation error standard deviation is
used for the synthetic assimilation (0.04 and 0.12 m3 /m3 for D1
and D2, respectively). Fig. 9 compares the mean soil moisture
skill results from experiments A, D1, and D2. Clearly, the three
synthetic retrieval datasets lead to three sets of assimilation es-
timates with different accuracies. Relative to experiment A, the
mean soil moisture skill is further improved in experiment D1,
but is degraded in experiment D2. This demonstrates that the
skill improvement increases with increasing retrieval skill.

E. Sensitivity to Input Error Parameters

In experiment A, as mentioned earlier, the model input error
parameters (see Table II) were specified, and a true observation
error standard deviation was used for the synthetic retrievals.
Now, we test the impact of the specified model and observation
input error parameters through a group of new experiments. For
the new experiments, the truth solution and synthetic satellite
retrievals are different from those used in experiment A. Follow-
ing [32], the truth and synthetic satellite retrievals are generated
as follows (see Fig. 10). First, we integrate the MESH model
from 1 January to 31 December with the 2006 forcing data (the
model is spun up by a ten-year repeated simulation using the
2005 forcings). The resulting soil moisture serves as the un-
perturbed “open-loop” solution. Next, using the same forcing
data and for the same period, we perform the MESH model
ensemble simulations (12 members) with the error perturbation
parameters listed in Table II. We randomly select an ensemble
member integration to serve as the synthetic “truth” (so that the
perturbation parameters listed in Table II serve as the “truth”
model error inputs). For a given grid, the synthetic satellite soil
moisture retrievals are generated by adding the white noise with

Fig. 10. Flowchart of the assimilation experiments to identify the impact of
input error parameters

TABLE III
INPUT ERROR OR PARAMETERS (UNIT: M3M−3) FOR EXPERIMENTS E1–E25

Observation
error stdev

Error stdev for the modeled volumetric liquid water in the three soil layers

2.E−04;
1.E−04;
2.E−06

5.E−04;
2.E−04;
1.E−05

1.E−03;
5.E−04;
5.E−05

2.E−03;
1.E−03;
1.E−04

4.E−03;
2.E−03;
2.E−04

0.005 E1 E2 E3 E4 E5
0.02 E6 E7 E8 E9 E10
0.05 E11 E12 E13a E14 E15
0.08 E16 E17 E18 E19 E20
0.11 E21 E22 E23 E24 E25

aThe reference (“truth”) model and observation input error parameters are used.

a standard deviation of 0.05 m3 /m3 to the surface soil moisture
estimates that are extracted from the “true” fields at 24-h in-
tervals. Finally, the synthetic retrievals are assimilated into the
MESH model with the 1D-EnKF scheme. The assimilation will
be repeatedly conducted using different sets of error perturba-
tion parameters to explore the impact of input error parameters.

Here, we choose five sets of input model error parameters,
which approximately represent five different forecast error stand
deviations (stdev) and five values of observation error stdev (see
Table III). Each of the five sets of input model error parameters
and each observation error standard deviation are grouped to-
gether for use in the assimilation integrations. We do not change
the forcing perturbations and the model error correlation time,
which are still same as those listed in Table II. Therefore, we can
perform 25 assimilation experiments (E1 to E25). Note that one
of the 25 experiments (see E13 in Table III) uses the reference
(“truth”) model and observation error inputs.

Based upon the E1 to E25 results, we can plot the assimilation
performance, in terms of the (study domain-averaged) soil mois-
ture skill improvement (assimilation—open loop), as a function



XU et al.: ASSIMILATION OF SYNTHETIC REMOTELY SENSED SOIL MOISTURE IN ENVIRONMENT CANADA’S MESH MODEL 1325

TABLE IV
BASIN-AVERAGED ANOMALY R FOR SOIL MOISTURE ESTIMATES

Soil moisture estimatesa Mean anomaly R with 95% confidence intervals

Surface layer Root zone

Open-loop 0.14 ± 0.01 0.14 ± 0.01
Assimilation (Exp. A) 0.40 ± 0.01 0.39 ± 0.01
Assimilation (Exp. B1) 0.38 ± 0.01 0.35 ± 0.01
Assimilation (Exp. B2) 0.41 ± 0.01 0.42 ± 0.01
Assimilation (Exp. B3) 0.40 ± 0.01 0.41 ± 0.01
Assimilation (Exp. C1) 0.49 ± 0.01 0.47 ± 0.01
Assimilation (Exp. C2) 0.26 ± 0.01 0.26 ± 0.01
Assimilation (Exp. D1) 0.49 ± 0.01 0.48 ± 0.01
Assimilation (Exp. D2) 0.25 ± 0.01 0.24 ± 0.01

aSee Table I for experimental key.

Fig. 11. Skill improvement ΔR (assimilation—open loop) for (left) surface
and (right) root-zone soil moisture as a function of the forecast and observation
error standard deviations (stdev, units: m3m−3). The plus sign denotes the
assimilation experiment with the “true” model and observation error inputs.

of the (study domain and time averaged) forecast and observa-
tion error standard deviations (see Fig. 11). As expected, the
skill improvement ΔR in both surface and root-zone soil mois-
ture is the strongest when the input error parameters are close
to their true values (plus signs). Overall, when the input error
parameters are wrongly specified (i.e., deviating from their true
values) the EnKF filter assimilation still produces an increased
skill (i.e., a positive ΔR), although the skill improvement ΔR
will be decreased. However, if a severe underestimation of ob-
servation error occurs, the skill improvement ΔR, especially for
root-zone soil moisture, could be very weak or even negative
(i.e., the assimilation estimates are worse than the open loop).
This illustrates that even without online (adaptive) tuning of
the observation and model error parameters the EnKF filter is
typically able to improve soil moisture estimates as long as the
observation errors are not severely underestimated. Similar per-
formance may be also applicable to the assimilation estimates
of runoff (e.g., [47]).

V. SUMMARY AND DISCUSSION

In this study, we presented the implementation of the
1D-EnKF scheme to assimilate satellite soil moisture into the
standalone version of the MESH model. To examine the perfor-
mance of the established assimilation scheme under different
conditions, we have conducted a series of synthetic assimilation
experiments. The experiments demonstrated the capability
of the assimilation system to accurately approximate the

“true” surface and root-zone soil moisture states given satellite
observations and the intentionally degraded model estimates.
Through assimilation of satellite soil moisture, almost all areas
experienced positive skill gains ΔR (assimilation—open loop)
but typically with stronger and statistically significant ΔR for the
cropped grids, which generally exhibited low open-loop skill.

A small ensemble size is generally sufficient for the 1D-EnKF
to perform well because the analysis increment calculations are
conducted independently for the model grids (horizontal corre-
lations are neglected). An increased observing frequency (i.e., a
shorter assimilation interval) typically can further enhance the
assimilation estimates. Therefore, in any practical application,
to produce the best estimates, we should jointly assimilate the
retrievals from all the available sources. However, note that a
joint assimilation (i.e., an increased observing frequency) of the
retrieval sets with significantly different observation skills does
not necessarily yield the “best” estimation. The skill improve-
ment typically increases with the increasing retrieval skill. Even
without online (adaptive) tuning of the observation and model
error parameters, the skill of the assimilation product typically
exceeds the skill of the open-loop model (i.e., a positive ΔR)
except when the observation errors are severely underestimated.
The findings have provided an important guidance for the prac-
tical applications of the assimilation scheme [48], [49].

The skill R values presented in this study are derived based
upon the raw soil moisture time series. To evaluate the impact
of soil moisture seasonality on the skill R estimation, we also
computed the anomaly correlation R for the open-loop modeling
and the assimilation from experiments A to D2 (see Table IV).
The soil moisture anomalies are defined as departures of daily
soil moisture from the monthly mean. Overall the raw R metric
of skill and the anomaly R metric lead to the consistent general
conclusions.

Note that, in practice, the assimilation of satellite soil mois-
ture will encounter a number of critical challenges, which were
avoided in our synthetic experiments. They mainly include:
1) the model-satellite measurement scale discrepancy. Soil
moisture derived from spaceborne passive microwave mea-
surements typically have relatively coarse spatial resolu-
tion, whereas there is an increased demand for conducting
land/hydrologic simulations at high spatial resolution. This
raises a question: how to integrate coarse-scale satellite prod-
ucts and fine-scale land/hydrologic models. For the 1D-EnKF
assimilation, a priori disaggregation (downscaled) scheme is
typically used, i.e., coarse resolution observations are disaggre-
gated and remapped onto the model grids prior to assimilation.
For the 3D-EnKF filter (i.e., horizontal correlations between
model grids are considered), we may conduct a direct assimi-
lation of coarse-scale satellite products by upscaling the model
forecast. 2) Statistical bias between satellite and model soil
moisture estimates. In practice, satellite-based soil moisture and
model estimates typically exhibit different climatologies, which
will violate the hypothesis of unbiased errors in model and ob-
servation (for a bias-blind assimilation system). To reduce or
remove the satellite-model bias, a priori observation rescaling
by matching the cumulative distribution functions of the two
datasets is often practical [38]. A priori calibration of the model
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with the climatology of satellite soil moisture can also be used
to remove the bias [50]. 3) Difficulty in quantifying satellite
observation errors. The synthetic experiments indicate that the
accurate specification of observation error covariance is crucial
to the success of the analysis. Satellite soil moisture retrievals are
typically subject to both instrumental errors and representative-
ness errors. The latter are caused primarily by the observation
operator used in the retrieval algorithm and the misfit between
the observation space and the model space. In reality, the errors
in satellite retrievals, especially the representativeness errors,
are difficult or impossible to completely estimate since they
highly vary with time and space. Some approximations could
be efficient. For example, the satellite product climatology can
approximately serve as the observation errors [19], [20].
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