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Automated Detection of Urban Road Manhole
Covers Using Mobile Laser Scanning Data

Yongtao Yu, Haiyan Guan, Member, IEEE, and Zheng Ji

Abstract—This paper proposes a novel framework for auto-
mated detection of urban road manhole covers using mobile laser
scanning (MLS) data. First, to narrow searching regions and
reduce the computational complexity, road surface points are
segmented from a raw point cloud via a curb-based road surface
segmentation approach and rasterized into a georeferenced inten-
sity image through inverse distance weighted interpolation. Then,
a supervised deep learning model is developed to construct a mul-
tilayer feature generation model for depicting high-order features
of local image patches. Next, a random forest model is trained to
learn mappings from high-order patch features to the probabilities
of the existence of urban road manhole covers centered at specific
locations. Finally, urban road manhole covers are detected from
georeferenced intensity images based on the multilayer feature
generation model and random forest model. Quantitative evalu-
ations show that the proposed algorithm achieves an average com-
pleteness, correctness, quality, and F1-measure of 0.955, 0.959,
0.917, and 0.957, respectively, in detecting urban road manhole
covers from georeferenced intensity images. Comparative stud-
ies demonstrate the advantageous performance of the proposed
algorithm over other existing methods for rapid and automated
detection of urban road manhole covers using MLS data.

Index Terms—Deep learning, manhole cover, mobile laser scan-
ning (MLS), random forest, road distress, road safety.

I. INTRODUCTION

FOR many intelligent transportation systems (ITS), the
accurate information about current road conditions, road

surface marks, and road surface fixtures is greatly important
to conduct correct behaviors and improve safety. Accurate and
real-time detection and recognition of these characters form
significant inputs to many intelligent transportation related ap-

Manuscript received September 15, 2014; revised January 9, 2015; accepted
March 12, 2015. Date of current version November 23, 2015. This work was
supported by the National Natural Science Foundation of China under Grant
41471379. The Associate Editor for this paper was H. Wang. (Corresponding
author: Yongtao Yu).

Y. Yu is with the Fujian Key Laboratory of Sensing and Computing
for Smart Cities, Xiamen University, Xiamen 361005, China (e-mail:
allennessy.yu@gmail.com).

H. Guan is with the College of Geography and Remote Sensing, Nanjing
University of Information Science and Technology, Nanjing 210044, China
(e-mail: guanhy.nj@nuist.edu.cn; guanhy.nj@gmail.com).

Z. Ji is with the School of Remote Sensing Information and Engineering,
Wuhan University, Wuhan 430079, China (e-mail: jz07@whu.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2015.2413812

plications, such as driver assistance and safety warning systems
[1], [2] and autonomous driving [3], [4]. However, the absence
of accurate feedbacks from the road to the ITS might lead
to terrible traffic accidents in urban areas. Therefore, rapidly
and effectively detecting potential road surface distresses can
reduce the occurrence of severe casualties and improve traffic
safety. Among the road surface fixtures, road manholes are a
common character on urban roads. They usually function to
conduct rainwater, drainage, power cables, telecommunication
cables, and other things. Generally, they are covered with a
metal-made or concrete-made cover to keep vehicles, pedestri-
ans, and other things from dropping into the wells. However,
if the manhole cover is removed or stolen by someone, or
broken caused by some uncertain factors, it is very dangerous to
the moving vehicles and pedestrians, especially at night. Thus,
rapid and automated detection of road manhole covers not only
assists the transportation infrastructure agencies to conduct
monitoring and repairs for driving safety, but also provides
useful information to the ITS for the warning of potential road
distresses and safety hazards.

Traditionally, the monitoring and repairing of road surface
distresses were mainly accomplished by on-site inspections and
maintenances. Such field measurements were time consuming,
labor intensive, and costly for maintaining complicated urban
road networks. Sometimes, it was even greatly dangerous to
work on highways or in tunnels. With the development of
optical imaging techniques, mobile mapping systems (MMS)
integrated with digital camera(s) or video(s) [5], [6] were
widely used in a variety of transportation related applications.
However, due to the passive mapping ways, optical imaging
based MMS relied greatly on the illumination conditions of
the environment. Thus, the mapping mission was only limited
to the daytime. In addition, the MMS suffered greatly from
distortions, blurs, occlusions caused by nearby moving objects,
shadows cast by roadside high buildings and trees, and lack of
accurate geospatial information of the measured targets.

In the past two decades, laser scanning and navigation tech-
nologies have rapidly developed and been used in a variety of
applications, such as military, transportation, mining, forestry,
map drawing, heritage documentation, and basic surveying
and mapping. Among the laser scanning products, mobile
laser scanning (MLS) systems [7] have shown outstanding
advantages in transportation related activities. Compared to
its airborne counterparts, an MLS system has the following
advantages: 1) more direct views of road surfaces and roadside
vertical objects, 2) higher point density and higher accuracy
of 3-D point clouds, and 3) less costly mapping missions.
Moreover, compared to optical imaging based MMS, MLS
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See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



YU et al.: AUTOMATED DETECTION OF URBAN ROAD MANHOLE COVERS USING MLS DATA 3259

systems can collect high-density and high-accuracy 3-D point
clouds of real-world coordinates over a large area within a
short time period. Due to the active mapping ways of MLS
systems, the mapping mission can be carried out day and night.
Therefore, MLS systems are a promising and cost-effective
alternative for rapidly monitoring road surface distresses.

In this paper, we propose an automated algorithm for detect-
ing urban road manhole covers using MLS data. First, to narrow
searching regions and reduce the computational complexity,
road surface points are segmented from a raw point cloud using
a curb-based road surface segmentation approach and rasterized
into a georeferenced intensity image through inverse distance
weighted (IDW) interpolation. Then, a supervised deep learning
model is developed to construct a multi-layer feature generation
model for depicting high-order features of local image patches.
Next, a random forest model is trained to learn mappings from
high-order patch features to the probabilities of the existence
of road manhole covers centered at specific locations. Finally,
road manhole covers are detected based on the combination of
these models. The contributions of this paper are as follows: 1) a
multi-layer feature generation model is proposed to effectively
generate high-order patch features; and 2) a random forest
model is developed to cast weighted votes for detecting road
manhole covers.

The rest of this paper is organized as follows: Section II
reviews some related work on manhole cover detection.
Section III describes the proposed road manhole cover detec-
tion framework. Section IV reports and discusses the experi-
mental results. Finally, Section V gives the concluding remarks.

II. RELATED WORK

Most of existing methods for manhole cover detection are
based on digital imagery. A morphological method was devel-
oped in [8] for detecting round-shaped manhole covers from
road surface images. First, a black top-hat operation with disk-
shaped structure elements was performed to extract round-
shaped components. Then, a masking operation was applied to
the round-shaped components with a thresholded input image.
Finally, manhole covers were obtained by eliminating the black
regions with small areas or the regions without any holes.
In [9], inspired by separability filters, a novel method was
proposed to detect obscure and textured manhole covers from
noisy and inhomogeneous contrast road surface images. Rather
than analyzing the intensity difference between the manhole
covers and their surroundings, the separability and uniformity
of the image intensity distributions were studied using the
Bhattacharyya coefficient. Finally, three indicators (circular
object indicator, oriented separability indicator, and uniformity
indicator) were defined and used to achieve the detection of
manhole covers. A model-based method was introduced in [10]
for detecting and localizing circular-shaped manhole covers in
aerial images. This method was based on a parametric intensity
model, which defined a circular-shaped manhole cover model
with five parameters for respectively depicting the radii and
intensity distributions. Localization of manhole covers was
achieved by directly fitting this model to the observed image
intensities.

Caused by frequent occlusions, regular changes in illumi-
nation conditions, substantial viewpoint variances, and varying
textured appearances and designed shapes, accurate detection,
recognition, and 3-D localization of manhole covers from im-
ages captured by moving vans is greatly challenging. In [11],
a multi-view method integrated with 2-D and 3-D techniques
was presented to detect road manhole covers from road surface
images. The detection process was separated into single-view
and multi-view processing stages. At single-view processing
stage, the position and inclination of the ground plane were first
estimated in order to projectively warp the images to generate
fronto-parallel views. Then, single-view processing was applied
to such fronto-parallel views using either a single part-based
detector or a cascaded framework composed of segmentation,
area, aspect ratio, variance, symmetry, and texture-based filters.
At multi-view processing stage, the detections from the single
views were fused and grouped into more reliable 3-D hypothe-
ses, which were fed into a graph-cut segmentation filter. Finally,
these hypotheses were used for accurate 3-D localization of
manhole covers. Considering the complex background of road
surface images, an improved Hough transform was proposed
in [12] for the detection of manhole covers. First, on binary
edge images, all the contours were ascertained through contour
tracking. Then, false alarms were eliminated using contour
filters. Finally, the improved Hough transform was applied to
detect circular-shaped manhole covers.

Due to the superior properties of MLS systems over the
optical imaging based systems, MLS data have also been in-
vestigated by some researchers to detect road manhole cov-
ers. In [13], marked point processes were proposed to detect
circular-shaped and rectangular-shaped manhole covers from
MLS point clouds. First, road surface points were segmented
using a curb-based approach and then rasterized into 2-D geo-
referenced intensity images through IDW interpolation. Next,
two types of marked points were defined to model the ge-
ometric features of manhole covers. Finally, circular-shaped
and rectangular-shaped road manhole covers were detected and
optimized based on the reversible jump Markov chain Monte
Carlo (RJMCMC) algorithm. A multi-scale tensor voting ap-
proach was developed in [14] for detecting road manhole covers
from MLS point clouds. Similarly, road surface points were first
segmented and rasterized into 2-D georeferenced intensity im-
ages. Then, manhole cover candidates were ascertained through
distance-dependent intensity thresholding. Next, a multi-scale
tensor voting framework was performed to suppress noise and
preserve manhole cover pixels. Finally, manhole cover regions
were extracted via distance-based clustering and morphological
operations. A new method combined with multi-view matching
and feature extraction techniques was developed in [15] to
detect road manhole covers using close-range images and MLS
data. To achieve accurate road manhole cover detection, a novel
edge detection and feature extraction method was introduced
to overcome the difficulties of viewpoint variances, varying
ground materials, and complex road scenes with shadows and
vehicles. The MLS data were used to segment road scenes so
that roadside features and off-road objects, such as vehicles
and pedestrians, were excluded from the road. Then, the arcs
detected by Canny detectors were extracted and fitted to form
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Fig. 1. (a) Raw point cloud, and (b) segmented road surface points (red).

ellipses, which were finally resampled and matched to adjacent
images for checking the existence of road manhole covers.

III. METHOD

A. Data Preprocessing

In a data acquisition mission, the 3-D point cloud data of
both road surfaces and roadside features can be simultaneously
collected by an MLS system. However, the detection of road
manhole covers only focuses on road surfaces instead of the
entire scene. Therefore, in order to reduce the quantity of
the data to be processed and narrow the searching regions,
road surface points should be segmented from the raw point
cloud accurately and rapidly. In our previous study [16], we
developed a curb-based road surface segmentation approach.
This approach investigates the geometric properties of the curbs
that are designed to separate the road from the sidewalks on
urban roads. First, with the assistance of the trajectory data
that is acquired by the onboard navigation system, a raw point
cloud is vertically partitioned into a set of data blocks with a
certain width (e.g., 3 m) along the direction of the trajectory.
Rather than handling the entire data block, a vertical profile
is generated perpendicularly to the trajectory within each data
block. Then, through profile analysis, curb points are located
within each profile by selecting the points on opposite sides
of the trajectory with specific elevation gradients constrained
by an elevation filter. Finally, the curb points ascertained from
all profiles are fitted into curb-lines. Based on the knowledge
that curbs indicate the boundaries of the road, road surface
points are easily segmented from the raw point cloud by using
the fitted curb-lines. This curb-based road surface segmentation
approach operates rapidly and effectively and achieves high
accuracy in road surface segmentation. Therefore, in this study,
we use this curb-based road surface segmentation approach [16]
to prepare road surface points for the detection of road manhole
covers. Fig. 1 illustrates a visual example of the segmented road
surface points using the curb-based approach.

Instead of handling the 3-D discrete road surface points, we
rasterize them into a 2-D georeferenced intensity image based
on the intensity information of the laser points. In our previous
study [13], [16], we propose an inverse distance weighted
(IDW) interpolation method to generate georeferenced intensity
images from 3-D MLS point clouds. According to the IDW
interpolation method, the road surface points are first vertically
divided into a grid structure with a certain spacing (e.g., 2.5 cm)
in the XY plane. These grids correspond to the pixels in the
resultant georeferenced intensity image. Next, the laser points

Fig. 2. Illustration of the generated 2-D georeferenced intensity image.

Fig. 3. Illustration of (a) a subset of positive training samples, and (b) a subset
of negative training samples.

within each grid are weightedly interpolated to generate a single
pixel based on the following rules [16]: 1) a point with higher
intensity obtains a greater weight; and 2) a point with shorter
distance away from the grid’s geometric center obtains a greater
weight. In this way, the generated georeferenced intensity im-
age well reflects the retro-reflectivity properties of the road
surface. Therefore, in this study, we use the IDW interpolation
method [16] to convert the 3-D discrete road surface points into
2-D orthographic road surface images. These orthoimages are
used for road manhole cover detection. Fig. 2 shows a visual
example of the generated 2-D georeferenced intensity image of
the segmented road surface points using the IDW interpolation
method.

B. Patch Feature Learning

Recently, deep learning models [17]–[19] have attracted
great attention for their superior capabilities in learning hier-
archical deep features from large amounts of unlabeled data.
Among these deep learning models, deep Boltzmann machines
(DBM) [19] have been proven to be a promising and powerful
tool. A DBM model is actually a layer-wise structure composed
of a stack of restricted Boltzmann machines (RBM) [20] with
feedbacks from upper layers. In this paper, we propose a super-
vised learning strategy to jointly train a DBM model from a set
of manually labeled training samples. The trained joint DBM
model is used to construct a multi-layer feature generation
model for describing the high-order feature representation of
a local image patch.

First, a group of training samples with a size of n× n
pixels are manually selected from the generated georeferenced
intensity images. These training samples are manually labeled
into two categories: positive training samples consisting of
manhole cover patches [see Fig. 3(a)] and negative training
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samples consisting of the background road surface patches [see
Fig. 3(b)]. Then, we jointly train a two-layer DBM model
[see Fig. 4(a)] using the labeled training samples. Let v ∈
[0, 1]n

2
be a vector of real-valued visible units that represent

a linear arrangement of an image patch (a positive or nega-
tive training sample). Let L be a binary label vector with a
“1-of-K” encoding pattern [19]. That is, L = [1, 0]T and L =
[0, 1]T respectively encode a positive training sample and a
negative training sample. Let h1 ∈ {0, 1}D1 andh2 ∈ {0, 1}D2

represent the lower and higher layer binary hidden variables,
respectively. Here, D1 and D2 are the number of hidden units
in the lower and higher hidden layers, respectively. Then, for
this joint DBM model, the energy of the joint configuration
{v,L,h1,h2} is defined as [19]:

E(v,L,h1,h2; θ)=
1
2

n2∑
i=1

v2i
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i
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(1)

where θ = {W1,W2,WL,σ} are the model parameters.
W1, W2, and WL represent the visible-to-hidden, hidden-
to-hidden, and label-to-hidden symmetric interaction terms,
respectively; σ represents the standard deviations of the visible
units. The marginal distribution over the visible vector v with a
label L takes the following form:

P (v,L; θ) =

∑
h1,h2 exp

[
−E(v,L,h1,h2; θ)

]
∫
v′
∑

h1,h2,L exp [−E(v′,L,h1,h2; θ)] dv′ .

(2)

The conditional distributions over the visible, label, and two
sets of hidden units are defined as:

p
(
h1
j = 1|v,h2

)
= g

⎛
⎝ n2∑

i=1

w1
ij

vi
σi

+

D2∑
m=1

w2
jmh2

m

⎞
⎠ (3)

p
(
h2
m = 1|h1,L

)
= g

⎛
⎝ D1∑

j=1

w2
jmh1

j +

2∑
k=1

wL
kmlk

⎞
⎠ (4)

p(vi = x|h1) =
1√

2πσi

exp

⎛
⎝−

(
x− σi

∑D1

j=1 w
1
ijh

1
j

)
2σ2

i

⎞
⎠

(5)
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where g(x) = 1/(1 + exp(−x)) is the logistic function [19].
Exact maximum likelihood learning in this joint DBM model

is intractable. In order to rapidly and effectively train this
model, a greedy layer-wise pre-training [21] is first applied
to initialize the model parameters θ. Then, a joint training

Fig. 4. (a) Jointly trained DBM model, and (b) feature generation model.

algorithm that benefits from variational and stochastic approx-
imation approaches [19] is adopted to jointly fine-train the
model parameters.

After the joint DBM model is trained, the stochastic ac-
tivities of binary features in each hidden layer are replaced
by deterministic real-valued probabilities to construct a multi-
layer feature generation model [see Fig. 4(b)]. Considering
the feedbacks from the hidden layers, for each input visible
vector v, the mean-field inference [22] is applied to obtain an
approximate posterior distributionQ(h2|v). Then, the marginal
q(h2|v) of this approximate posterior is input as an augment to
this multi-layer feature generation model. Finally, the output of
this multi-layer feature generation model produces a high-order
feature representation (I) for vector v associated with a 2-D
image patch:

IT = g

(
g

(
vT

σT
W1 + q(h2|v)T (W2)

T
)
W2

)
∈ [0, 1]D2 .

(7)

C. Random Forest Training

Random forests [23], [24] are a promising and powerful
model for learning mappings from local image patch features
to the probabilities of the existence of an object centered at
specific locations. They have been successfully used for spatial
context modeling [23], object detection [24], classification [25],
segmentation [26], etc. In this paper, we train a random forest
model to cast weighted votes about the certainty of the existence
of road manhole covers based on the high-order features of local
image patches.

First, the training samples (positive and negative training
samples) (see Fig. 5) are normalized and linearized to form
real-valued visible inputs to the multi-layer feature generation
model. Then, the output of the multi-layer feature generation
model produces the high-order features of these training sam-
ples. Finally, the obtained high-order features along with the
class labels of the training samples form the training data for
constructing a random forest (see Fig. 5).

For a random forest, each tree in the forest is constructed
separately based on a set of local patches {pi = (Ii, ci)} (see
Fig. 5), where Ii is the high-order feature representation of the
patch; ci is the class label of the patch (0 means a negative
sample and 1 indicates a positive sample). As shown in Fig. 5,
each internal node of a constructed tree in the random forest
represents a binary test function, which bipartitions the patches
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Fig. 5. Illustration of random forest training framework.

arriving at this node into two subsets according to their feature
representations and respectively redistributes these two subsets
to its left and right children nodes for further processing. Here,
we define the binary test function as follows:

BT (I) =

{
0, if I(e) < τ

1, otherwise
(8)

where I(e) represents the e’th feature channel of feature I; τ ∈
(0, 1) is a real handicap value for determining the distribution
direction of a patch. Thus, a patch with a test value of 0 is dis-
tributed to the left child node, whereas a patch with a test value
of 1 is distributed to the right child node. For each leaf node
in a tree, the statistical information about the patches reaching
this node is analyzed and stored. Here, the label proportion
information CL ∈ [0, 1], which represents the proportion of
positive patches, is computed and stored at the leaf node. In
this way, the leaf nodes form a discriminative codebook with
information about the probabilities of the distributions of the
manhole covers’ centers. At detection stage, this information is
used to cast weighted votes about the existence of the manhole
covers centered at specific locations in a voting space.

At training stage, each tree in the random forest is recur-
sively constructed starting at the root. During construction, each
newly constructed tree node receives a set of training patches.
If the depth of the node reaches the pre-defined maximal depth
dmax or the number of patches lies below a threshold Nmin,
the constructed node is labeled as a leaf node. Then, the label
proportion information CL is computed and stored at this leaf
node. Otherwise, an internal node is constructed and an optimal
binary test function is determined to bipartition and redistribute
the training patches. Finally, the split two subsets are respec-
tively distributed to two newly created children nodes. In order
to suppress the uncertainty of class labels, we adopt the same
way, which uses class-label uncertainty measures, to design the
binary test function as in [27].

D. Road Manhole Cover Detection

Fig. 6 illustrates a detailed workflow of the proposed algo-
rithm for automated detection of road manhole covers from the

Fig. 6. Illustration of road manhole cover detection framework.

georeferenced intensity images that are generated from road
surface point clouds. At detection stage, we adopt a sliding
window strategy to partition a test image into a group of
local image patches with a size of n× n pixels. In order to
generate a full and redundant coverage of the test image, two
adjacent patches are designed to have an overlapping size of no

pixels. Then, these patches are input into the multi-layer feature
generation model to obtain high-order feature representations.

Next, each of the generated patches is distributed into the
constructed random forest, where each tree receives a copy
of this patch. When the patch arrives at an internal node, the
binary test function stored at this node is used to conduct a
correct route for this patch according to its high-order feature
representation. Once the patch arrives at a leaf node, the label
proportion information CL stored at this leaf node is used to
cast weighted votes.

Consider a patch p(x, y) = (I(x, y), c(x, y)), where I(x, y)
is the high-order feature representation of the patch centered
at position (x, y) in a test image; c(x, y) is the hidden class
label of the patch. Let E(x, y) be the random event corre-
sponding to the existence of a road manhole cover centered
at position (x, y) in a test image. By this definition, the exis-
tence of a road manhole cover centered at position (x, y) in-
evitably indicates c(x, y) = 1. Then, the conditional probability
p(E(x, y)|I(x0, y0)) that the patch feature I(x0, y0) of a patch
p(x0, y0) centered at position (x0, y0) estimates the certainty
of the existence of a road manhole cover centered at position
(x, y) is expressed as:

p(E(x, y)|I(x0, y0))

=p(E(x, y), c(x, y)=1|I(x0, y0))

=p((E(x, y)|c(x, y)=1, I(x0, y0))p(c(x, y)=1|I(x0, y0)).
(9)

Both terms in (9) can be estimated by passing the patch feature
I(x0, y0) through the trees in the constructed random forest.
The information stored at the leaf nodes that the patch finally
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Fig. 7. Illustration of RIEGL VMX-450 MLS system and its components.

arrives at is used to compute the conditional probability. For a
single tree t, the probability estimation is given by:

p (E(x, y)|I(x0, y0); t) =
CL

2πσ2

× exp

(
− (x− x0)

2 + (y − y0)
2

2σ2

)
(10)

where σ2 is the variance of the Gaussian Parzen window [27].
By integrating the entire random forest {ti}Ti=1, we average the
probabilities coming from all trees to generate a forest-based
probability estimation:

p
(
E(x, y)|I(x0, y0); {ti}Ti=1

)
=

1
T

T∑
i=1

p (E(x, y)|I(x0, y0); ti) . (11)

This forest-based probability estimation casts a weighted
vote by a single patch p(x0, y0) about the existence of a road
manhole cover in its vicinity. Then, by aggregating the votes
cast from all the patches, we construct a 2-D voting space
V S(x, y), where each position (x, y) contains the accumulated
votes about the existence of a road manhole cover centered at
this position:

V S(x, y) =
∑

p(x0,y0)

p
(
E(x, y)|I(x0, y0); {ti}Ti=1

)
. (12)

The operations suggested by (10)–(12) might be inefficient
when constructing the voting space. As an efficient alternative,
first, each patch p(x0, y0) casts a vote (1/T )

∑T
i=1 C

i
L, where

Ci
L is the label proportion information stored at the leaf node

that the patch ends up in the i’th tree, to the position (x0, y0).
Then, the voting space is obtained by Gaussian-filtering the
votes accumulated at each position.

Finally, based on the constructed voting space, the centers
of road manhole covers are estimated by ascertaining the posi-
tions with local maxima values via a traditional non-maximum
suppression process (see Fig. 6).

IV. RESULTS AND DISCUSSION

A. MLS System and Point Cloud Data Sets

In this paper, the 3-D MLS point cloud data were acquired
using a state-of-the-art RIEGL VMX-450 MLS system (see

Fig. 8. Illustration of the ROC curves for different parameter configurations
of (a) patch overlapping size, and (b) patch feature dimension.

TABLE I
PARAMETER CONFIGURATIONS IN ROAD MANHOLE COVER DETECTION

Fig. 7) on the urban roads in Xiamen City, a port city in
southeast China. The VMX-450 system was mounted on the
roof of a Buick minivan with a driving speed of approximately
30–50 km/h when collecting the point cloud data. As shown in
Fig. 7, the VMX-450 system is integrated with two full-view
RIEGL VQ-450 laser scanners, four high-resolution digital
cameras, and a set of position and orientation systems, which
include two dual-frequency global navigation satellite system
(GNSS) antennas, an inertial measurement unit (IMU), and a
wheel mounted distance measurement indicator (DMI). The
two laser scanners are respectively installed on the left and right
sides of the main body with an “X” configuration pattern. The
two laser scanners rotate to emit laser beams with a maximum
effective measurement rate of 1.1 million measurements per
second and a line scan speed of up to 400 scans per second. The
accuracy and precision of the resultant 3-D point cloud data are
within 8 mm and 5 mm, respectively.

From the collected point cloud data, three data sets covering
the areas of Siming Road South (SRS), Software Park Phase II
(SPP), and International Conference and Exhibition Center
(ICEC) were selected for evaluating the performance of the
proposed road manhole cover detection algorithm. These three
selected road sections cover urban roads paved with different
materials (cement and asphalt) and of different geometric and
road surface conditions. The SRS data set contains about 406
million points and has a road section of about 2998 m. This
is an old asphalt-paved two-directional-four-lane road near the
seaside with many road markings and some cracks caused by
high traffic loads and moisture. The SPP data set contains about
714 million points and has a length of about 3105 m in the
road direction. This is a newly constructed cement-paved two-
directional-two-lane road with little road makings and cracks.
The ICEC data set contains 568 million points and has a
distance of about 2947 m along the road. This is an old asphalt-
paved two-directional-two-lane road with many road markings
and serious cracks caused by high traffic loads.
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TABLE II
ROAD MANHOLE COVER DETECTION RESULTS, QUANTITATIVE EVALUATIONS, AND COMPUTING TIME

B. Parameter Sensitivity Analysis

At both training and detection stages, the configurations of
the following two parameters have a significant impact on the
performance of the proposed algorithm: patch overlapping size
(no) between two adjacent patches and dimension of the high-
order patch feature (D2). In order to obtain an optimal con-
figuration for these two parameters, we conducted a group of
experiments to test the performance of each parameter configu-
ration on the road manhole cover detection results. The testing
results were presented and analyzed using receiver operating
characteristic (ROC) curves (see Fig. 8). As shown in Fig. 8(a),
when the patch overlapping size increases, the performance
improves accordingly. However, when the overlapping size is
greater than 8 pixels, the performance almost stays unchanged.
In fact, with the increase of the overlapping size, more redun-
dant patches will be generated and a road manhole cover will be
more likely to be segmented into a single patch. However, when
the overlapping size increases, the number of the generated
patches will increase dramatically at detection stage. This will
surely bring more computational burdens and slow down the
detection speed. Therefore, considering both performance and
time complexity, we set the overlapping size at 8 pixels. As
shown in Fig. 8(b), the dimension of the high-order patch
feature has a very slight influence on the detection performance.
This actually benefits from the implementation of the joint
DBM model for constructing the multi-layer feature generation
model. The multi-layer feature generation model produces a
high-order feature representation for a local image patch. The
high-order feature representation is actually an integration of a
set of low-order features rather than a single feature. Therefore,
it is more powerful and distinctive for depicting a local image
patch. In this paper, we set the patch feature dimension at 50.

C. Road Manhole Cover Detection

We applied the proposed road manhole cover detection al-
gorithm to the three selected data sets (SRS, SPP, and ICEC
data sets) to evaluate its performance. The parameters and their
configurations used at training and detection stages are listed in
Table I. To narrow the searching regions and reduce the time
complexity, these data sets were first preprocessed to segment
road surface points, which were subsequently rasterized into
georeferenced intensity images. Then, the proposed road man-
hole cover detection algorithm was carried out to detect road
manhole covers based on the georeferenced intensity images.
To quantitatively evaluate the accuracy and correctness of the
road manhole cover detection results on the three data sets, we
used the following four measures: completeness, correctness,

quality [28], and F1-measure [16]. Completeness measures the
proportion of true positives in the ground truth; correctness
evaluates the proportion of true positives in the detection result;
quality and F1-measure are two overall measures for depicting
the overall performance of the detection result. These four
quantitative measures are defined as follows:

completeness =
TP

TP + FN
(13)

correctness =
TP

TP + FP
(14)

quality =
TP

TP + FP + FN
(15)

F1-measure =
2 · completeness · correctness
completeness + correctness

(16)

where TP , FN , and FP are the number of true positives, false
negatives, and false positives, respectively.

The road manhole cover detection results, as well as their
quantitative evaluations, are detailed in Table II. As reflected
in Table II, compared to the ground truths, the majority of
road manhole covers were correctly detected in each data
set. In addition, the number of false positives is quite low.
Fig. 9(a) shows some typical examples of georeferenced inten-
sity images containing different types of road manhole covers
under different road surface conditions. Their associated voting
images and detected road manhole covers are respectively
presented in Fig. 9(b) and (c). The voting images are a visual
representation of the voting space constructed after random
forest voting. As shown by the red boxes labeled #1 and #2 in
Fig. 9(c), these two road manhole covers are partially painted
with white road markings. Benefiting from the use of the multi-
layer feature generation model to construct high-order feature
representations for local image patches, our proposed algorithm
can well handle such conditions and correctly detect these road
manhole covers. However, as shown by the blue boxes labeled
#3, #4, #5, and #6, these four road manhole covers show quite
low contrasts with the background road surface and they are
of higher intensities than those of the normal road manhole
covers. Because of heavy traffic flows, these road manhole
covers are covered with thick dusts, thereby resulting in dif-
ferent intensities and low contrasts with the background road
surface. Such conditions usually happen to the road manhole
covers in the middle of the road rather than near the road
boundary. Therefore, our proposed algorithm failed to detect
such road manhole covers. In addition, as shown by the yellow
boxes labeled #7 and #8, these two patches show very similar
appearance to the road manhole covers and they obtain very
high votes in the voting space. Such similarities are usually
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Fig. 9. Illustrations of (a) some typical georeferenced intensity images containing different types of road manhole covers under different road surface conditions,
(b) voting images which are visual representations of the voting spaces constructed after random forest voting, and (c) road manhole cover detection results.

caused by the shadows of mobile obstacles on the road and
the large-area asphalt blocks used for repairing road surface
cracks. Thus, our proposed algorithm falsely detected them
as road manhole covers. Through quantitative evaluations, the
proposed algorithm achieves an average completeness, correct-
ness, quality, and F1-measure of 0.955, 0.959, 0.917, and 0.957,
respectively, on the three selected data sets. On the whole, the
proposed algorithm achieves very promising performance and
obtains very good accuracy in detecting varying types of road
manhole covers under different road surface conditions from
MLS point clouds.

The proposed algorithm was coded using C++ on the
platform of Visual Studio 2010 and run on an HP Z820
8-core-16-thread workstation. To evaluate the computational
performance of the proposed algorithm, the model training
time, preprocessing time, and road manhole cover detection
time were also recorded. In this paper, the number of posi-
tive and negative training samples for training the multi-layer
feature generation model and the random forest model was

7820 and 7820, respectively. The time cost for training the
multi-layer feature generation model and the random forest
model was approximately 5.3 and 0.6 hours, respectively.
At detection stage, each data set was first partitioned into a
group of segments with a length of about 50 m along the
road based on the vehicle’s trajectory. Then, all the segments
were distributed to a multi-thread computing environment with
16 parallel threads. Hence, 16 segments were simultaneously
being processed. Such a strategy can dramatically improve
the performance and reduce the time complexity of the pro-
posed algorithm. After statistics, the preprocessing time for
road surface segmentation and georeferenced intensity image
rasterization was 50.95, 53.52, and 49.73 seconds, respectively,
for the SRS, SPP, and ICEC data sets. The computing time
for road manhole cover detection was 167.27, 174.13, and
163.98 seconds, respectively, for the SRS, SPP, and ICEC data
sets (see Table II). In conclusion, the proposed algorithm is very
feasible and promising for rapidly and automatically detecting
road manhole covers using MLS point cloud data.
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TABLE III
ROAD MANHOLE COVER DETECTION RESULTS AND QUANTITATIVE EVALUATIONS ON THE SYNTHETIC DATA OF DIFFERENT POINT DENSITIES

However, due to the scanning mechanism of MLS systems,
the mobile obstacles (e.g., moving vehicles and pedestrians)
on the road might generate occlusions for the measurement
of road surfaces. Thus, the road manhole covers occluded by
the mobile obstacles cannot be completely scanned by using
MLS systems. Such occlusions cause challenges for accurately
and completely measuring road manhole covers. In practice,
in order to reduce the influence of mobile obstacles on the
measurement of road surfaces, the mapping missions should be
carried out at night or during low-traffic-flow time period. In our
mapping mission, the occlusions of road manhole covers also
exist in the three selected data sets. Therefore, the ground truths
in Table II are actually the road manhole covers completely
and correctly scanned in the point cloud data. In addition, the
materials and colors of road manhole covers and the unevenness
and materials of the road surface also bring challenges for the
accurate measurement of road manhole covers. In this paper,
to improve the performance of the proposed algorithm, we
selected different shapes, colors, and materials of road manhole
covers as positive training samples and different materials and
conditions of road surface patches as negative training samples
for training the high-order feature generation model and the
random forest model (see Fig. 3). Moreover, three selected road
sections of different road surface materials and road surface
conditions were used for evaluating the performance of the
proposed algorithm. The experimental results demonstrate the
feasibility and accuracy of the proposed algorithm in detecting
different types of road manhole covers under different road
surface conditions.

D. Performance Evaluation

Different MLS systems are configured with different laser
scanners and navigation systems. Due to different scanning
rates of laser scanners and accuracy of navigation systems, the
point density and data quality of the collected point clouds vary
greatly among different MLS systems. Thus, it is necessary to
evaluate the performance of the proposed algorithm in handling
lower-grade MLS point clouds toward road manhole cover
detection. However, due to the lack of publicly available point

clouds of other MLS systems, we generated a group of synthetic
point cloud data of different point densities and data qualities
using the point clouds collected by our RIEGL VMX-450
system. Then, we conducted a group of simulated experiments
to evaluate the performance of the proposed algorithm in de-
tecting road manhole covers from the synthetic data. In this
simulated study, the segmented road surface point clouds in
the SRS, SPP, and ICEC data sets were used for performance
evaluation.

To generate point clouds of different point densities, which
represent the point clouds collected by the laser scanners of
different scanning rates, a raw point cloud was sampled along
the scan lines to select a set of laser points with certain point
intervals. Such synthetic different-density point clouds were
used to detect road manhole covers. To this end, each of the
three data sets was sampled scan line by scan line to generate
a group of synthetic data using the following point intervals:
1 point, 2 points, 3 points, 4 points, and 5 points. These
synthetic data correspond to the point cloud data collected by
the MLS systems with laser scanning rates of approximately
550 000, 367 000, 275 000, 220 000, and 183 000 measurements
per second, respectively. Table III lists the road manhole cover
detection results on the synthetic data. Quantitative evaluations
using completeness, correctness, quality, and F1-measure were
also performed on the detection results, as shown in Table III.
With the decrease of point density, the detail and quality of the
georeferenced intensity image is degraded greatly, thereby re-
sulting in different feature representations and lower saliencies
of road manhole covers in the degraded georeferenced inten-
sity image. Consequently, the road manhole cover detection
performance decreases with the decrease of point density. As
reflected in Table III, when the point interval is ≤ 3 points
(laser scanning rate is ≥ 275 000 measurements per second),
the proposed algorithm can still obtain promising performance
on the synthetic data. However, when the point interval exceeds
3 points, the performance decreases greatly, especially for
the SRS and ICEC data sets. Therefore, point density affects
significantly on the detection of road manhole covers from
MLS data. For the lower-grade MLS systems with lower laser
scanning rates (e.g., < 275 000 measurements per second), it
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TABLE IV
ROAD MANHOLE COVER DETECTION RESULTS AND QUANTITATIVE EVALUATIONS ON THE SYNTHETIC DATA OF DIFFERENT DATA QUALITIES

TABLE V
ROAD MANHOLE COVER DETECTION RESULTS, QUANTITATIVE EVALUATIONS, AND COMPUTING TIME FOR DIFFERENT ALGORITHMS

is not suitable to perform road manhole cover detection on the
point clouds acquired by such systems.

Due to the mechanism of laser scanning, the backscattered
laser pulse intensity is influenced greatly by the quality of
laser scanners, quality of navigation systems, material property
of the measured objects, and range between the object and
the scanner. Such intensity perturbations result in speckle-
like noise (multiplicative noise) in the georeferenced intensity
images. To generate point clouds of different qualities, we
superimposed the georeferenced intensity image with different
levels of speckle noise. Such speckle-noise-contaminated geo-
referenced intensity images were used for road manhole cover
detection. To this end, the georeferenced intensity images of the
three data sets were contaminated by superimposing speckle
noises with mean zero and the following different variances:
0.05, 0.10, 0.15, 0.20, and 0.25. Table IV details the road
manhole cover detection results on the synthetic data and the
quantitative evaluations on the detection results. Specifically,
the contamination of speckle noise degraded the quality of
the georeferenced intensity images. Such degradation of the
georeferenced intensity images lowered the saliencies of road
manhole covers, thereby leading to the decrease of detection
performance. However, benefited from the use of the multi-
layer feature generation model, when the level of speckle noise
is relatively low (≤ 0.20), the proposed algorithm can still
obtain promising detection performance on the synthetic data.
When the georeferenced intensity images are contaminated by

high levels of speckle noise (≥ 0.25), the detection performance
decreases dramatically, especially for the ICEC data set. In
conclusion, the quality of point clouds influences greatly on the
detection of road manhole covers from MLS data. Thus, for the
lower-grade MLS systems with lower point cloud qualities, it
is not feasible to perform road manhole cover detection on the
point clouds collected by such systems.

E. Comparative Studies

To further examine the performance of the proposed al-
gorithm, we also conducted a group of comparative studies
to compare our proposed algorithm with an existing marked
point process based road manhole cover detection algorithm
[13] and a multi-scale tensor voting based road manhole cover
detection algorithm [14]. The marked point process based
algorithm considered the geometric and intensity properties
of road manhole covers. The detection task was achieved by
simulating and optimizing the marked point process of disks
and rectangles. The multi-scale tensor voting based algorithm
utilized the intensity information of road manhole covers for
segmenting low-intensity regions. The detection framework
consisted of a chain of conventional techniques including in-
tensity thresholding, tensor voting, and region growing. These
two algorithms have the following similarities: 1) both of them
are developed to detect road manhole covers based on MLS
point clouds; 2) both of them utilize georeferenced intensity
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images, which are generated from road surface point clouds,
to detect road manhole covers; and 3) both of them have the
capability of detecting both circular-shaped and rectangular-
shaped road manhole covers. In this comparative study, we used
the entire data of the three selected data sets with different road
surface conditions to test these two algorithms for road manhole
cover detection. Table V lists the road manhole cover detec-
tion results obtained by using these two algorithms. Quantita-
tive evaluations using completeness, correctness, quality, and
F1-measure were also performed on the detection results, as
shown in Table V. Comparatively, the multi-scale tensor voting
based algorithm obtained the lowest performance and generated
relatively less true positives and more false positives. Because
of the complex road conditions and the varying and imbalanced
intensities of road manhole covers in these data sets, the multi-
scale tensor voting based algorithm cannot obtain promising
performance by using intensity thresholding and segmentation
techniques. However, our proposed algorithm achieved a better
performance than the other algorithms and generated relatively
less false positives.

To compare the computational efficiency of these algorithms,
the computing time was also recorded for each data set, as
shown in Table V. For fairness, all the algorithms were exe-
cuted in a multi-thread computing environment with 16 parallel
threads. Comparatively, the multi-scale tensor voting algorithm
took similar time to our proposed algorithm, while the marked
point process based algorithm took more time than the other
two algorithms because of the complex simulation and opti-
mization procedures of the marked point process. In conclusion,
compared to the marked point process based algorithm and
the multi-scale tensor voting based algorithm, our proposed
algorithm achieves better performance in correctly detecting
different types of road manhole covers under different road sur-
face conditions and obtains promising computational efficiency.

V. CONCLUSION

In this paper, we have proposed a novel algorithm for au-
tomatically detecting urban road manhole covers using MLS
point cloud data. The proposed algorithm have been success-
fully applied to three selected MLS point cloud data sets, which
were acquired by a state-of-the-art RIEGL VMX-450 MLS
system, to detect both circular-shaped and rectangular-shaped
road manhole covers. Through quantitative evaluations on the
detection results, the proposed algorithm achieved an average
completeness, correctness, quality, and F1-measure of 0.955,
0.959, 0.917, and 0.957, respectively, on the three selected
data sets. Computational performance analysis showed that, by
using a multi-thread computing strategy, the proposed algo-
rithm can rapidly handle large-volume point cloud data toward
road manhole cover detection. In addition, comparative studies
have demonstrated that the proposed algorithm outperforms the
other two algorithms in correctly detecting road manhole covers
with varying appearances and under heterogeneous road surface
conditions. Therefore, MLS point cloud data are a promising
data source for rapidly and accurately measuring road surface
features and distresses. They can be exploited to assist in many
intelligent transportation related applications.
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