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Mobile laser scanning or lidar is a new and rapid system to capture high-density
three-dimensional (3-D) point clouds. Automatic data segmentation and feature
extraction are the key steps for accurate identification and 3-D reconstruction of
street-scene objects (e.g. buildings and trees). This article presents a novel method
for automated extraction of street-scene objects from mobile lidar point clouds.
The proposed method first uses planar division to sort points into different grids,
then calculates the weights of points in each grid according to the spatial distribu-
tion of mobile lidar points and generates the geo-referenced feature image of the
point clouds using the inverse-distance-weighted interpolation method. Finally, the
proposed method transforms the extraction of street-scene objects from 3-D mobile
lidar point clouds into the extraction of geometric features from two-dimensional
(2-D) imagery space, thus simplifying the automated object extraction process.
Experimental results show that the proposed method provides a promising solution
for automatically extracting street-scene objects from mobile lidar point clouds.

1. Introduction

A laser scanning or lidar system provides an efficient solution for capturing spatial
data in a fast, efficient and highly reproducible way. It has been widely used in many
fields, such as cultural heritage documentation, reverse engineering, three-dimensional
(3-D) object reconstruction and digital elevation model (DEM) generation, as it can
directly obtain the 3-D coordinates of objects (Biosca and Lerma 2008). Laser scan-
ning can be divided into three categories, namely, airborne laser scanning (ALS),
terrestrial laser scanning (TLS) and mobile laser scanning (MLS) or mobile lidar. ALS
has been successfully used for DEM generation (Kraus and Pfeifer 1998, Axelsson
2000, Sithole and Vosselman 2004) and reconstruction of building rooftops (Haala
and Brenner 1999, Maas and Vosselman 1999, Overby et al. 2004, Akel et al. 2009).
However, it has difficulties in capturing points of the facades of buildings. As mobile
mapping technology has made great progress (Schwarz and El-Sheimy 2007, Tao and
Li 2007, Toth 2009), mobile lidar allows the rapid and cost-effective capture of 3-D
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data from large street sections, including dense point coverage of building facades
(Haala et al. 2008a).

Mobile lidar systems such as the vehicle-borne laser measurement system (VLMS)
(Manandhar and Shibasaki 2002, Zhao and Shibasaki 2005), StreetMapper (Hunter
et al. 2006, Kremer and Hunter 2007, Haala et al. 2008b, StreetMapper 2010),
LYNX (Optech 2009, Zampa and Conforti 2009) and FGI Roamer (Kukko et al.
2007, Jaakkola et al. 2008) have been actively studied and implemented in the past
decade. Kremer and Hunter (2007) evaluated the accuracy and performance of
the StreetMapper system in some real-world projects. A mobile lidar system can
capture high-accuracy, high-density points at a precision and resolution exceeding
those available through aerial photogrammetry when using stationary terrestrial lidar
would be time-consuming (Zampa and Conforti 2009). A detailed review of current
mobile lidar systems was presented by Barber et al. (2008). However, when compared
with the advances in mobile lidar systems, automated algorithms and software tools
for efficiently extracting 3-D street-scene objects of interest from mobile lidar point
clouds rather fall behind, due to huge data volumes and the complexity of urban
street scenes. To extract street-scene objects or detailed features of building facades,
mobile lidar point clouds need to be classified into different categories (e.g. buildings
and trees), which is a key step for accurate identification and 3-D reconstruction of
street-scene objects.

Different from the approaches for ALS data processing, methods for processing
mobile lidar data have to deal fully with 3-D point clouds (Biosca and Lerma 2008).
Due to the non-unique correspondence between (X , Y ) coordinates in the horizontal
plane and the Z coordinate, the algorithms for filtering and classifying ALS data, such
as the triangulated irregular network (TIN)-based filtering method (Axelsson 2000),
have difficulties in handling mobile lidar data because of data dimensionality.

Several researchers have proposed the use of prior knowledge in extracting build-
ings from mobile lidar point clouds. Manandhar and Shibasaki (2001, 2002) used the
information from individual scan lines, geometric structures and densities of points to
classify mobile lidar points into roads and buildings. Abuhadrous et al. (2004) clas-
sified points into buildings, roads and trees by histograms of Z and Y directions in
one profile. These approaches need prior knowledge of profiles and scan lines for clas-
sifying mobile lidar point clouds. Li et al. (2004) proposed a method of density of
projected points (DoPP) to extract buildings. However, this method has difficulties in
setting a reasonable threshold of density for the extraction of building boundaries.

Other researchers have proposed the use of ancillary data, such as range imagery
(Brovelli and Cannata 2004) or digital images captured by CCD cameras (Becker
and Haala 2007), for classification and object extraction from mobile lidar point
clouds. Mrstik and Kusevic (2009) fused airborne lidar data with mobile lidar data
to add building roofs, reduce shadows and increase coverage. They also coloured
the mobile lidar point clouds by fusing the information of the mounted line scan
camera. However, ancillary data are not always available. On the other hand, the
integration of geometric and semantic data shows promise for object extraction and
reconstruction from mobile lidar point clouds. A bottom-up process for window
extraction was proposed by Pu and Vosselman (2009). They classified the point clouds
into different geometric features and applied semantic feature recognition to extract
ground, wall, door and roof protrusion and intrusion. Then, the method of hole-based
window extraction was adopted to further identify windows. Becker (2009) aimed
at data-driven facade reconstruction by combining the bottom-up and top-down
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Object extraction from mobile lidar data 5841

strategies with automatically inferred rules of facade elements. Their approach first
searches for holes on the facade to model windows and doors using cell decomposi-
tion, and then refines the geometry of the facade elements based on semantic data.
For incomplete data, a facade grammar is automatically inferred and then used for
the generation of facade structures. The two methods mentioned above can extract
building facades and even more detailed features (e.g. windows) from mobile lidar
point clouds. However, these methods have difficulties in extracting the point clouds
of individual buildings from mobile lidar point clouds that include trees, buildings and
so on, because of huge data volume, redundancy and occlusion. Other related studies
including road surface modelling from mobile lidar data can be found in the works
of Kukko et al. (2007) and Jaakkola et al. (2008). To this end, an efficient solution
for automatically extracting the point clouds of street-scene objects from mobile lidar
point clouds is urgently needed.

Inspired by the integration of images and point clouds for extraction of features in
the field of ALS, the authors of this article present a method for automated extraction
of street-scene objects from mobile lidar point clouds. The proposed method first gen-
erates the geo-referenced feature image of mobile lidar point clouds and then extracts
the boundaries of street-scene objects (e.g. buildings) by applying the method of image
segmentation and contour tracing on the geo-referenced feature image generated.
Once the boundaries of street-scene objects are extracted, the 3-D points associated
with street-scene objects can easily be isolated and extracted from mobile lidar point
clouds. The proposed method is able to:

• generate the geo-referenced feature image that preserves implicit geometric
features in mobile lidar point clouds;

• extract the boundaries of street-scene objects from the geo-referenced feature
image; and

• extract the point clouds of street-scene objects from 3-D point clouds by the 2-D
boundaries extracted.

2. Method for extraction of street-scene objects

It is rather difficult to directly extract street-scene objects from mobile lidar point
clouds because of noise in the data, huge data volume and no explicit or ancillary
data (e.g. intensity image). Although clustering-based methods (Biosca and Lerma
2008) can extract 3-D boundaries and local geometric features of street-scene objects,
the efficiency is relatively low and the results are uncertain. We propose a method
for generating a geo-referenced feature image that is capable of maintaining implicit
geometric features in mobile lidar point clouds. Hence, the existing operators for
extracting line or key point features from imagery can be adopted to extract the
boundaries of street-scene objects from the feature image generated. Figure 1 elabo-
rates the flow chart of the proposed method. The proposed method encompasses two
key components, namely feature image generation and street-scene object extraction.

In light of the flow chart of the proposed method, feature image generation is the
first step in street-scene object extraction. Although the geo-referenced feature image
can preserve the spatial distribution and the density of mobile lidar points, the fea-
ture image is also able to reflect the varied characteristics of different street-scene
objects, which are represented as grey values in the feature image. To fulfil the above
requirements, the grey values of each pixel and the resolution of the geo-referenced
feature image have to be determined.
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5842 B. Yang et al.

Mobile lidar
point clouds

Generation of geo-referenced
feature image

2-D boundary extraction
and classification 
in feature image

3-D points extraction of
street-scene objects

Figure 1. Flow chart of the proposed method.

2.1 Generation of the geo-referenced feature image

The proposed method first divides the mobile lidar points into grids on the XOY
plane, using (X , Y ) coordinates of points. According to the coordinates of the lidar
points, the minimum bounding box can easily be determined. Let (Xmin, Y min) and
(Xmax, Y max) be the coordinates of the left-bottom and right-top corners of the geo-
referenced feature image, respectively, and the cell size of the grids (Ccsg) be the spatial
resolution. Thus, the width (W ) and the height (H) of the geo-referenced feature image
can be calculated as

{
W = (Xmax − Xmin)/Ccsg

H = (Ymax − Ymin)/Ccsg.
(1)

Once the width and height of the geo-referenced image are determined, the mobile
lidar point clouds can be located in each cell (see figure 2). To generate a geo-
referenced feature image, the grey value of each cell has to be calculated.

The spatial distribution of mobile lidar point clouds implies the local geometric
features of street-scene objects. Hence, the grey values of the geo-referenced fea-
ture image should reflect the spatial distribution of mobile lidar point clouds. The
grey value of each cell of the geo-referenced feature image is determined by the
inverse-distance-weighted (IDW) interpolation method that is widely used for DEM
interpolation (Bater and Coops 2009). As the points in each cell are not 2.5-D but
3-D, the weight associated with each point should be carefully determined in order to
reflect the spatial distribution. To fulfil the above requirement, we define the following
rules to determine the weight associated with each point.

Rule 1: a point has a greater weight than another point if it is higher above the point
of least height than the other point.

Rule 2: a point has a lighter weight than another point if the distance between the
point and the centre of the cell is greater than that between the other point and
the centre of the cell.
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Object extraction from mobile lidar data 5843

Figure 2. Sketch map of cells and data points.

These two rules indicate that the weight of each point is determined by two factors,
namely planar distance and height difference. Once the weight of each point is deter-
mined, the grey value of each cell is calculated by the IDW interpolation method as
follows:

Fij =
( nij∑

k=1

WijkZijk

)/( nij∑
k=1

Wijk

)
, (2)

where Fij is the weighted average of the feature value of the cell with coordinates
(i, j), which will be displayed as grey values in the image, nij is the number of scan-
ning points in the cell, Wijk and Zijk are the weight and height of the kth point in this
cell (0 < k < nij), respectively, and the weight, Wijk, can be calculated by

Wijk = αW XY
ijk + βW H

ijk, (3)

where α and β are the coefficients of weights, which need to be tuned, W XY
ijk is the

weight of the kth point in the cell, calculated using only the planar distance in the cell,
and W H

ijk is the weight of the kth point in the cell, calculated using only the height
difference in the cell. They can be determined as follows:

⎧⎪⎨
⎪⎩

W XY
ijk = √

2Ccsg

/(
Dk

ij + δ
)

W H
ijk = Hk

ij (hmin(ij) − Zmin)/(Zmax − hmax(ij) + δ)

α + β = 1.0

, (4)

where Dk
ij is the planar distance from the kth point in the cell with coordinates

(i, j) to the centre of the cell, Hk
ij is the height difference from the kth point in the
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5844 B. Yang et al.

cell to the lowest point of the cell, hmin(ij) and hmax(ij) are the lowest and highest
elevations in the cell, respectively, Zmax and Zmin are the lowest and highest ele-
vations in the whole scanning area, respectively, and δ is a positive infinitesimal
value to make the denominator of the equation be nonzero. The weight W H

ijk of
the point calculated by the formula mentioned earlier is to emphasize high-lying
objects and objects with a large standard deviation of height values. Dk

ij and Hk
ij are

calculated by

⎧⎨
⎩Dk

ij =
√(

xk
ij − xij

0

)2 +
(

yk
ij − yij

0

)2

Hk
ij = Zijk − hmin(ij)

, (5)

where (xij
k, yij

k) are the coordinates of the kth point in the cell with coordinates (i, j)
and (xij

0 , yij
0 ) are the coordinates of the centre of the cell.

The aforementioned equations demonstrate that the grey value of each cell of the
geo-referenced feature image is co-determined by the planar distance values between
the points and the centre of cell and the height differences between the points and the
lowest height point of the cell. Figure 3 illustrates a simulation result of the weights of
points Wijk with the values of both α and β set to 0.5.

As shown in figure 3, a larger weight will be assigned to the points of higher eleva-
tion when the points have the identical coordinates of (x, y). Hence, a geo-referenced
feature image is generated with the specified values of α and β. It is clear that the grey
values of the geo-referenced feature image will change with different values of α and β.
We will discuss the functionalities of α and β for the generation of the geo-referenced
feature image in the experimental studies.

2.2 Extraction of street-scene objects

In light of the generation of the geo-referenced feature image, the areas with points of
higher elevations have larger grey values in the geo-referenced feature image. Hence,

Wijk

Dij
k

Hij
k

Figure 3. Simulation result of the weights of points.
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Object extraction from mobile lidar data 5845

the areas of buildings and trees have larger grey values compared with their neigh-
bouring areas (e.g. ground and roads). A threshold of grey value can be specified to
extract the areas of larger grey values according to the histogram analysis on the geo-
referenced feature image. In this study, we selected the method of discrete discriminant
analysis (Goldstein and Dillon 1978) to automatically specify the threshold because of
its robustness. The method of discrete discriminant analysis first finds the maximum
and minimum grey values of the feature image. Then, it calculates the between-cluster
variance under an assumed threshold. Finally, it finds the threshold with the highest
value of between-cluster variances as the optimal threshold, which is used to classify
the pixels into different categories.

Figure 4 illustrates the segmentation results of the geo-referenced feature image
generated from a data set of mobile lidar point clouds. To eliminate the noise in
the segmented geo-referenced feature image and to extract street-scene objects (e.g.
buildings and trees), we define the following operators.

(a)

(b) 

Figure 4. (a) Generated geo-referenced feature image with Ccsg = 0.25 m, α = 0.2 and β= 0.8.
(b) Segmentation of the geo-referenced feature image.
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5846 B. Yang et al.

2.2.1 Boundary extraction. In the field of image processing, many methods have
been proposed to extract contours in 2-D image space, including the most widely used
Canny edge detector (Canny 1986) and the active contour model (Kass et al. 1988).
As we deal with a segmented binary feature image (the background is black) here, we
implement contour extraction in a simple way. A pixel is changed into white if it is a
black pixel and its eight neighbouring pixels are black as well. In this way, the black
pixels whose eight neighbouring pixels are not all black will be labelled as boundary
pixels.

In order to trace contours, a contour-tracing algorithm proposed by Pavlidis (1982)
was applied to identify each contour as a sequence of edge points. Figure 5 shows the
result of contour extraction and tracing from a geo-referenced feature image.

2.2.2 Size constraint. As illustrated in figure 5, contours of noise with small sizes
occur in the image. Considering the sizes of trees and buildings, the extracted bound-
ary will be eliminated if its size is less than a threshold. The threshold is a parameter
indicating the perimeter of a contour. Once the Ccsg of one geo-referenced feature
image is specified, the threshold indicates the length characteristics of the outlines of
the geometric objects. Hence, this threshold should be tuned with a different Ccsg. As
all the contours are closed, we count the length of each contour as its size in our study.
Figure 6 illustrates the result of size constraint with a threshold of 100 pixels.

2.2.3 Shape constraint. Generally, trees show an ellipse or circle shape and buildings
show a rectangular shape. The compactness of the polygon shape can be applied to
distinguish buildings and trees. We use the following equation from Touya (2007) to
calculate the compactness (Csp) of each contour shape.

Csp = 4π
Scontour

P2
contour

, (6)

Figure 5. The result of contour extraction and tracing.
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Object extraction from mobile lidar data 5847

Figure 6. Filtering shapes by size constraint (threshold = 100 pixels).

where Scontour and Pcontour are the area and perimeter of a contour, respectively.
According to equation (6), Csp is 1.0 if the contour shows a circle shape. If the contour
shows an elongation shape, Csp is near 0.0. As a tree crown shows an approximate cir-
cle shape and a building shows an approximate rectangle shape, trees and buildings
can be classified according to the shape constraint. Figure 7 shows the contours of
extracted trees and buildings classified by the shape constraint.

Once the generated geo-referenced feature image is segmented and the above-
mentioned three operators are invoked, the boundaries of street-scene objects (e.g.
buildings and trees) can be extracted. Hence, the spatial extension of the extracted
street-scene objects can be easily calculated according to the extracted boundaries
associated. Therefore, the point clouds corresponding to each extracted object can

Figure 7. Example of classifying shapes by shape constraint.
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5848 B. Yang et al.

be extracted from the mobile lidar point clouds according to the spatial extension
calculated.

Generally, the perimeter of a tree crown is larger compared with that of the tree
trunk. The perimeters of buildings at different heights are usually kept at a constant
value. In addition, the mean perimeter of a building in the Z direction is usually much
larger than that of a tree. Hence, buildings and trees show different profiles in the Z
direction, and this can be used to further classify buildings and trees from point clouds.

Given an unknown object with points, the area of a profile at a specified height (Ap)
can be calculated with all the points lying in profile in the Z direction. These areas of
profiles at different heights are used to compute the mean value (μA) of profile areas
in the Z direction. Therefore, a threshold of μA can be set to distinguish buildings and
trees. If μA is smaller than the specified threshold, this object will be classified as trees.
Otherwise, this object will be considered a building.

3. Experimental studies

Two data sets captured by Optech’s LYNX Mobile Mapper (Optech 2009), were
selected for assessing the performance of the proposed method for extraction of dif-
ferent street-scene objects. Data set 1 consists of about 9 million points covering a
400 m × 350 m street scene, while there are 5.1 million points covering an area of
about 140 m × 240 m for data set 2. The spatial span of point clouds is about 1–5 cm.
Figure 8 illustrates the perspective views of the two data sets.

(a)

Height (m)

112

112

111

111

111

111

110

109

108

107

107

106

105

110

109

108

107

107

106

105
Background

Height (m)

Background

(b)

Figure 8. Perspective views of the two data sets: (a) data set 1 and (b) data set 2.
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Object extraction from mobile lidar data 5849

3.1 Geo-referenced feature image generation

In the proposed approach, a geo-referenced feature image is generated from mobile
lidar point clouds before the street-scene object extraction operator is invoked. For
the geo-referenced feature image generation, two parameters should be determined,
namely, spatial resolution, also sometimes designated as Ccsg, and distance weight,
α (height difference weight, β = 1 − α). It is clear that the two parameters have a
vital effect on the visual effects of the geo-referenced feature image. To evaluate such
effects, we generated a set of geo-referenced feature images with different values of
the two parameters. As the spatial span of the mobile lidar point clouds is about 1–5
cm, we generated the geo-referenced feature image with cell sizes of 0.5 and 0.25 m,
respectively. For each cell size, we specified the distance weights, α, as 0.0, 0.2, 0.4,
0.6, 0.8 and 1.0, respectively. Given α + β = 1, the corresponding height difference
weights, β, are 1.0, 0.8, 0.6, 0.4, 0.2 and 0.0, respectively. Figure 9 shows the geo-
referenced feature images of data set 1 with the above values of the parameters. The
left six images and right six images have cell sizes of 0.5 and 0.25 m, respectively.

As shown in figure 9, the areas of buildings (rectangles in figure 9), trees (ellipse
in figure 9) and power lines (star in figure 9) have higher grey values compared
with other areas (e.g. roads and ground). Moreover, the areas of buildings, trees and
power lines have prominent boundaries that are well preserved in the feature images.
Simultaneously, the differences between different street-scene objects are more notable.
It implies that the generated geo-referenced feature image is able to well depict geomet-
ric features of street-scene objects and is suitable for extracting them. The results also
show that the value of α has a great effect on the preservation of geometric features
of street-scene objects in the geo-referenced feature image when a spatial resolution
is specified. As illustrated in figure 9(a) (α = 0.0, β = 1.0), the street-scene objects
of higher elevations (e.g. power lines) in the geo-referenced feature image are visually
prominent compared with those in the other geo-referenced feature images. This indi-
cates that the α value is sensitive to the calculation of grey values. When the parameter
α has a smaller value, the generated feature image enlarges the differences between
the grey values. Hence, the parameter α should be given a smaller value (e.g. 0.2) for
generating the geo-referenced feature image that is helpful for extracting street-scene
objects that have higher elevations, such as power lines and roofs.

To comprehensively evaluate the effect of the α value on the feature image genera-
tion, we analysed the pixel-level differences of the feature images with the same cell size
and different α values. For the six geo-referenced feature images generated with iden-
tical cell sizes, the total number of changed pixels, Nchanged, between the two images
and the sum of the grey values of the changed pixels,

∑
Rratio, was calculated for iden-

tical values of Ccsg. Hence, the pixel-level difference (Ppld) between the two images is
calculated by

Ppld =
∑

Rratio

/
Nchanged. (7)

Figures 10(a) and (b) illustrate the pixel-level differences of the geo-referenced feature
images with cell sizes of 0.5 and 0.25 m, respectively.

The numbers 1, 2, 3, 4, 5 and 6 on the horizontal axis in figure 10 refer to the six
groups of geo-referenced feature images generated with six parameter pairs (α = 0.0,
β = 1.0; α = 0.2, β = 0.8; α = 0.4, β = 0.6; α = 0.6, β = 0.4; α = 0.8, β = 0.2; α = 1.0,
β = 0.0), respectively. The vertical axis represents the value of the pixel-level difference
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α = 0.0

β = 1.0

α = 0.2

β = 0.8

α = 0.4

β = 0.6

α = 0.6

β = 0.4

α = 0.8

β = 0.2

α = 1.0

β = 0.0

Ccsg = 0.5 m Ccsg = 0.25 m

Figure 9. Data set 1: geo-referenced feature images with different α and Ccsg. The rectangles,
ellipse and star indicate buildings, trees and power lines, respectively.

(Ppld). It can be seen that the pixel-level differences between the feature images increase
with differences in α values. The five red stars show the pixel-level differences between
the feature image pairs of 1 and 2, 2 and 3, 3 and 4, 4 and 5 and 5 and 6, respectively. As
the differences of α values between the pairs of six feature images are identical, it shows
that the pixel-level differences between the geo-referenced feature images decline with
the increase of the parameter α. This indicates that the height differences of points
have a more important effect on the grey value determination of the geo-referenced
feature images than the planar.
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Figure 10. Data set 1: pixel-level differences (Ppld) of the geo-referenced feature images with
(a) Ccsg = 0.5 m and (b) Ccsg = 0.25 m. The details of the parameter pairs corresponding to the
numbers 1–6 are described in §3.1.

By comparing figures 10(a) and (b), we also found that the pixel-level difference
between the geo-referenced feature images is proportional to the increase of the Ccsg

when the α value is fixed. Moreover, minor pixel-level differences between the feature
images vary when a smaller cell size is specified. This indicates that the α value has
a minor effect on the qualities of the geo-referenced feature image generated when a
smaller cell size is specified. The feature image 6 was generated with the parameter
of α = 1.0, that is the grey values of the feature image 6 were calculated only by the
weight of planar distance. It can be seen that the pixel-level difference between the
feature image pair 5 and 6 has a sudden jump. This indicates that the grey values of the
feature image should be co-determined by the weights of height difference and planar
distance. The zero value of Ppld in figures 10(a) and (b) shows the zero pixel-level
difference between each image and itself.

3.2 Extraction of street-scene objects

In light of the generation of the geo-referenced feature image and the analysis of the
pixel-level difference between the geo-referenced feature images, the geo-referenced
feature image is able to enlarge the differences of grey values if a small α value and
a small cell size are specified. To validate the effectiveness of the proposed algorithm
for street-scene object extraction, feature images of data sets 1 and 2 were generated
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5852 B. Yang et al.

with the parameters of α = 0.2, β = 0.8 and Ccsg = 0.25 m. This configuration of
parameters is beneficial for emphasizing high-lying objects.

The generated feature images were first segmented by the method of discrete dis-
criminant analysis to maintain the point clouds of street-scene objects. Then, a
contour extraction and tracing operator was invoked to extract the boundaries of
street-scene objects. In our experiment, the thresholds of the size constraint were set
to be 100 and 80 pixels for extracting street-scene objects in data sets 1 and 2, respec-
tively. Then, the thresholds of the shape constraint were specified as 0.4 and 0.6 to
classify buildings and trees from the extracted street-scene objects in data sets 1 and
2, respectively. Generally, the mean diameter of a tree from the tree crown to the tree
trunk in a street-scene environment is less than 5 m. With this prior information, it
is reasonable to set the mean area μA of tree profiles in the Z direction to be 20 m2,
which is calculated as π × 2.52. Therefore, for Z-direction profile analysis, the thresh-
old of μA was specified as 20 m2 for both data sets. The spatial extension of each object
can thus be calculated according to the corresponding boundary extracted. Hence, the
point clouds corresponding to each object can be extracted from the mobile lidar point
clouds according to the spatial extension calculated. Figures 11 and 12 show the results
of street-scene objects extracted from data sets 1 and 2, respectively. The extracted
point clouds of buildings can be used for further building facade reconstruction.

To evaluate the sensitiveness of the size constraint and the shape constraint, data
set 1 was tested with the size constraints of 80, 100 and 120 pixels. Data set 2 was
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Figure 11. Data set 1: (a) top view and (b) perspective view of all the extracted objects.
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Figure 12. Data set 2: (a) top view and (b) perspective view of all the extracted objects.

tested with the size constraints of 60, 80 and 100 pixels. Different thresholds of the
shape constraint were specified corresponding to the size constraint for both data sets.
The percentage of missing buildings or trees and the percentage of falsely classified
buildings or trees were defined to evaluate the proposed method.

The percentage of missing buildings or trees (Em) is the ratio of the number of
missing or undetected buildings or trees (Nm) to the total number of ground-truth
buildings or trees (NT). The missing buildings or trees result from considering build-
ings or trees as non-buildings or non-trees. As a result, the percentage of missing
buildings or trees can be calculated as

Em = Nm/NT. (8)

The percentage of falsely classified buildings or trees (Ef) corresponds to the ratio
between the number of falsely classified buildings or trees (Nf) and the total number
of classified buildings or trees (Nc). The falsely classified buildings or trees result from
considering non-buildings or non-trees as buildings or trees. Likewise, the percentage
of falsely classified buildings or trees can be calculated as

Ef = Nf/Nc. (9)

Table 1 lists the Em and the Ef of both data sets by the constraints of size and shape and
by the size constraint and Z-direction profile analysis and lists the correctly classified
buildings (denoted by B) and trees (denoted by T) by the shape constraint and the
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Z-direction profile analysis. The total number of ground-truth buildings (NTb) and
trees (NTt) were manually counted for both data sets. It can be seen that data set
1 contains more buildings (60 buildings and 14 trees) and data set 2 contains more
trees (2 buildings and 47 trees). As listed in table 1, the Em and the Ef of data sets
1 and 2 were high when only the size and the shape of constraints were used. It can
be seen that the threshold of the shape constraint has a large effect on the Em and
the Ef. The percentages of missing buildings (Emb) and falsely classified trees (Eft)
decline with the increase of the threshold of the shape constraint according to the
shape constraint. However, the percentages of missing trees (Emt) and falsely classified
buildings (Efb) show the opposite trend. This dilemma leads to difficulties in specifying
the threshold of the shape constraint. The percentage of missing trees (Emt) in data set
2 is 70.2% with a shape constraint of 0.7 and a size constraint of 80 pixels. This is
because many trees and buildings have almost the same outlines, especially when the
trees are dense. However, the results were substantially improved when an additional
Z-direction profile analysis was used. It can be seen that the percentage of missing trees
(Emt) using Z-direction profile analysis increases with the increase of the threshold of
the size constraint, while the percentage of falsely classified buildings (Efb) declines.
As the threshold of μA is related to the spatial extension of an object, the percentages
of missing buildings and falsely classified trees will be higher with a larger threshold
of μA. The larger the threshold of μA that is specified, the more buildings will be
classified as trees, which leads to the increase of the percentages of missing buildings
and falsely classified trees.

3.3 Comparison with DoPP algorithm and FCM clustering

To demonstrate the efficiency and effectiveness of the proposed algorithm imple-
mented in C++ language, the DoPP algorithm and the fuzzy C-means (FCM)
clustering (Biosca and Lerma 2008) were compared in our experiment.

The DoPP algorithm divides the mobile lidar points into cells with a certain size
in the XOY plane. Then, the threshold of the minimum number of points in one
cell is specified for finding those cells which have the number of points more than
the specified threshold. The points located in those cells are considered to belong to
building facade points. The FCM clustering method (Biosca and Lerma 2008) con-
sists of two steps, namely the classification of data points into surface categories and
the classification of points lying on planar features into different planes according
to the feature vector, which was calculated by the distance from a point to its best-
fitting plane along its normal direction. In our study, the feature vector of a point
was used to classify the point clouds into planar surfaces, undulating surfaces and the
rest.

The proposed method, the DoPP algorithm and the FCM clustering method were
tested on a computer with 1 Gb RAM and a CPU of 1.8 GHz. Figure 13(a) shows
the buildings extracted with the proposed method. Figure 13(b) shows the extracted
facade points using a DoPP algorithm with the cell size of 0.25 m and the minimum
number of points of 150 in one cell. Figure 13(c) shows the classification results of
the FCM clustering method, where the whole point clouds were classified into planar
surfaces, undulating surfaces and the rest. The number of iterations required for the
convergence was set to be 500. The points in blue are planar features, the points in
green are undulating surfaces and the other points are shown as red dots. It can be
seen that our proposed method achieved a better result.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 1

2:
07

 0
5 

O
ct

ob
er

 2
01

7 



Object extraction from mobile lidar data 5857

Figure 13. Object extraction by (a) the proposed method, (b) the DoPP algorithm and (c)
FCM clustering.

The time complexity of an algorithm is commonly expressed using big O notation.
For geo-referenced feature image generation in the proposed method, it takes O(N)
time to compute the feature values of grid cells, where N is the number of data points.
Given the large volume of mobile lidar data, the time cost in the image processing
procedure is negligible. According to the principle of the DoPP algorithm, it also takes
O(N) time to extract grid cells of building facades. Likewise, it takes O(kNlog2N + N)
time to run k-nearest neighbour searching and compute the feature vector of each
point for the FCM clustering method. For the further process of implementing FCM
clustering, its time complexity is O(NcI), where c is the number of clusters and I is the
number of iterations required for convergence. Table 2 lists the time costs of the three
methods.

It can be seen that our proposed method has almost the same time efficiency as
that of the DoPP algorithm. They both have better time performance than the FCM
clustering method. However, the DoPP algorithm only extracts facade points as a
whole rather than as an individual building facade. Therefore, classifying the extracted
facade points into different buildings needs further tasks. As shown in figure 13(c), the
FCM clustering method classified points into different categories according to the
feature vector defined. However, it is difficult to separate ground points from build-
ing points because of similar planar feature vectors of ground and building facades.
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Table 2. Time efficiency comparison of the three methods.

Method Procedure (Ccsg = 0.25 m) Processing time (s)

DoPP algorithm Counting points in grids 2.095
Building facade extraction 26.140

FCM clustering Feature vector calculation of each point 1823.52
Classification of all points using FCM 609.66

The proposed method Generation of feature image 3.701
2-D object classification 0.140
3-D street-scene object extraction 24.180

Note: DoPP, density of projected points; FCM, fuzzy C-means.

Our proposed method is capable of classifying the extracted points into different
objects (e.g. buildings). It also demonstrates that the proposed method maintains
the local geometric features of street-scene objects. For instance, the point clouds of
building roofs and tree crowns are well preserved in the extracted point clouds,
which is particularly useful for further building facade reconstruction with high levels
of detail.

4. Discussion

The extraction of street-scene objects from mobile lidar point clouds is quite a time-
consuming job due to huge data volumes and a lack of explicit geometric features.
This article proposes a promising solution for efficiently extracting point clouds of
street-scene objects from mobile lidar point clouds. The main contributions of the
proposed method are the generation of the geo-referenced feature image first fol-
lowed by extracting street-scene objects from the feature image. Thus, the proposed
method transforms the extraction of street-scene objects from 3-D point clouds to
object extraction from 2-D imagery. We have presented a formula to calculate the grey
values of the geo-referenced feature image with a specified cell size of the grid (e.g. 25
cm). Image segmentation and contour extraction techniques were applied to extract
the boundaries of street-scene objects in image space. Hence, the point clouds of the
street-scene objects (e.g. buildings and trees) can be extracted in 3-D according to the
boundaries associated.

The calculation of the grey values of the geo-referenced feature image demonstrates
that the generated feature image is of vital importance for efficiently extracting street-
scene objects from mobile lidar point clouds. Moreover, two parameters, namely the
cell size of the feature image and the weights of points, determine the qualities of the
feature images generated. The cell size of the grid can be obtained from the acquisi-
tion parameters, such as the scanning frequency and average span between the scanned
points. The weights of points of each cell consist of height differences with the mini-
mum height of the whole area and the planar distances to the centre of the cell. The
analysis of pixel-level differences between the generated feature images shows that the
height differences of points play a more important role for the weights of points com-
pared with the planar distance values. That is why we assign a larger proportion to
the height differences part for the determination of the weights of points. This is also
helpful for enlarging the grey-value differences of the geo-referenced feature image,
which is useful for extracting the boundaries of high-lying street-scene objects. On the
other hand, an α value is easily tuned to generate the geo-referenced feature images
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Object extraction from mobile lidar data 5859

with a given cell size for different purposes. For example, the geo-referenced feature
image can be generated with a low α value for enlarging the grey values of the area
of higher elevations, which is beneficial for the extraction of power lines, as shown in
figure 9 (dotted in star).

In our method, the threshold of the size constraint differs from objects to be
extracted and is affected by the cell size of grids. It may be difficult to automatically
adjust the threshold of the size constraint for different street-scene objects without
prior knowledge. On the other hand, the proposed method calculates the compactness
of each extracted object as a shape constraint to classify buildings and tree crowns.
It can be seen that the shape constraint has a large effect on the two types of errors.
Moreover, when compared with the size constraint, the shape constraint is more dif-
ficult to specify. Hence, many non-trees and non-buildings were misclassified as trees
and buildings. Nevertheless, the percentages of missing buildings or trees and falsely
classified buildings or trees were greatly reduced by 50% and 70%, respectively, with
an additional Z-direction profile analysis. This is because the profiles of buildings and
trees in the Z-direction are different. With prior knowledge of the diameter of the
tree crown, the threshold of the mean area of tree profiles was easily specified for the
Z-direction profile analysis.

5. Conclusions

Automated extraction of street-scene objects from mobile lidar point clouds remains
a major unsolved problem in the use of mobile lidar mapping systems. A key issue is
to identify geometric features (e.g. the boundary of a building) from 3-D lidar point
clouds. This article has presented a novel solution for efficiently extracting street-
scene objects (e.g. buildings and trees) from point clouds collected by Optech’s LYNX
Mobile Mapping System. Our method consists of three key steps: (1) determination of
the weights of points, (2) generation of a geo-referenced feature image and (3) image
segmentation towards object extraction from the feature image. The geo-referenced
feature image generated from mobile lidar point clouds is able to represent the spatial
distribution of scanned points and preserve the local geometric features of street-scene
objects. The experimental results demonstrate that our method is capable of generat-
ing the geo-referenced feature image, in which the geometric features of street-scene
objects are well preserved with the two parameters of the cell size and point weights.
Moreover, these two parameters can easily be tuned for different purposes. In addi-
tion, our method demonstrates high computational efficiency for the extraction of
point clouds of street-scene objects, which is beneficial for further reconstruction of
building facades. Our further studies will focus on vector-based 3-D construction of
street-scene objects based on the point clouds of the extracted building.
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