
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/276383605

Automated	Extraction	of	Urban	Road	Facilities
Using	Mobile	Laser	Scanning	Data

Article		in		IEEE	Transactions	on	Intelligent	Transportation	Systems	·	August	2015

DOI:	10.1109/TITS.2015.2399492

CITATIONS

16

READS

259

4	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Lidar	Point	Cloud	Feature	Extraction	View	project

AutoFLPS	View	project

Yongtao	Yu

Huaiyin	Institute	of	Technology

41	PUBLICATIONS			370	CITATIONS			

SEE	PROFILE

Jonathan	Li

University	of	Waterloo

252	PUBLICATIONS			3,240	CITATIONS			

SEE	PROFILE

Haiyan	Guan

Nanjing	University	of	Information	Science	&	…

52	PUBLICATIONS			428	CITATIONS			

SEE	PROFILE

Cheng	Wang

Xiamen	University

157	PUBLICATIONS			894	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Yongtao	Yu	on	16	September	2015.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/276383605_Automated_Extraction_of_Urban_Road_Facilities_Using_Mobile_Laser_Scanning_Data?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/276383605_Automated_Extraction_of_Urban_Road_Facilities_Using_Mobile_Laser_Scanning_Data?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Lidar-Point-Cloud-Feature-Extraction?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/AutoFLPS?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongtao_Yu5?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongtao_Yu5?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Huaiyin_Institute_of_Technology?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongtao_Yu5?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan_Li15?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan_Li15?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Waterloo?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jonathan_Li15?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haiyan_Guan3?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haiyan_Guan3?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanjing_University_of_Information_Science_Technology?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haiyan_Guan3?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cheng_Wang55?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cheng_Wang55?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xiamen_University?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cheng_Wang55?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yongtao_Yu5?enrichId=rgreq-b56d39503e73418db873853e498bb0e9-XXX&enrichSource=Y292ZXJQYWdlOzI3NjM4MzYwNTtBUzoyNzQxNDY1MDAyODAzMjhAMTQ0MjM3MzAyOTU4Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 16, NO. 4, AUGUST 2015 2167

Automated Extraction of Urban Road Facilities
Using Mobile Laser Scanning Data

Yongtao Yu, Jonathan Li, Senior Member, IEEE, Haiyan Guan, and Cheng Wang, Member, IEEE

Abstract—This paper proposes a novel, automated algorithm
for rapidly extracting urban road facilities, including street light
poles, traffic signposts, and bus stations, for transportation-related
applications. A detailed description and implementation of the
proposed algorithm is provided using mobile laser scanning data
collected by a state-of-the-art RIEGL VMX-450 system. First,
to reduce the quantity of data to be handled, a fast voxel-based
upward growing method is developed to remove ground points.
Then, off-ground points are clustered and segmented into indi-
vidual objects via Euclidean distance clustering and voxel-based
normalized cut segmentation, respectively. Finally, a 3-D object
matching framework, benefiting from a locally affine-invariant
geometric constraint, is developed to achieve the extraction of
3-D objects. Quantitative evaluations show that the proposed
algorithm attains an average completeness, correctness, quality,
and F1-measure of 0.949, 0.971, 0.922, and 0.960, respectively,
in extracting 3-D light poles, traffic signposts, and bus stations.
Comparative studies demonstrate the efficiency and feasibility of
the proposed algorithm for automated and rapid extraction of
urban road facilities.

Index Terms—Bus station, light pole, mobile laser scanning
(MLS), road feature inventory, traffic safety, traffic signpost.

I. INTRODUCTION

RAPID update of the inventory of urban road features, on a
regular basis, is of great importance for transportation in-

frastructure management departments, as well as for intelligent
transportation-related applications, including driver assistance
and safety warning systems [1], [2] and autonomous driving [3],
[4]. Accurate and real-time information regarding current road
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conditions, traffic flow, and the surrounding environment forms
significant inputs to the Intelligent Transportation Systems. The
absence, or lack of visibility of necessary traffic signals, is often
the cause of terrible traffic accidents. Thus, effective advance
detecting and monitoring of potential disasters on the road
can reduce casualties and improve traffic safety. According to
manuals in different countries, documentation of urban road
feature inventory includes road geometries (e.g., longitudinal
and transverse slopes, road curvatures, lane width, number, and
direction of travel), road surface features (e.g., road markings,
manholes, sewer wells, and cracks), and roadside infrastruc-
ture (e.g., light poles, traffic signposts, power lines, and bus
stations). Not only can the vectorized data be considered by
transportation agencies to maintain, repair, and reconstruct cur-
rent road signals, but they also provide auxiliary information for
intelligent vehicle applications to make decisions and improve
driving safety. Thus, effective, automated extraction of urban
road facilities, such as street light poles, traffic signposts, and
bus stations, can assist in rapid update of urban road feature
inventories.

Traditionally, urban road feature inventory updates are based
on field work, where workers from transportation agencies
conduct on-site inspections and measurements. This approach
for updating large-scale road networks is labor intensive, time
consuming, and costly. In addition, it is greatly dangerous for
the workers to work on highways or in tunnels. As a revolution-
ary progress, mobile mapping systems, mounted with digital
cameras or videos [5], [6], have been developed and extensively
used in a variety of transportation-related activities. However,
such systems, using optical imaging, suffer greatly from distor-
tions, environmental illumination conditions, occlusions caused
by pedestrians and vehicles, shadows cast by buildings and
trees, and lack of accurate georeferencing. In addition, mapping
missions are only limited to the daytime.

Laser scanning systems, benefiting from the development of
laser and positioning technologies, are now manufactured and
widely used in the fields of transportation, forestry, heritage
conservation, smart city construction, etc. A mobile laser scan-
ning (MLS) system [7], integrated with laser scanners and
global navigation satellite systems (GNSS), uses near-infrared
spectra to measure the surface topologies of visible targets. The
geospatial information of the measured targets is recorded by a
set of 3-D points with real-world position and orientation
information (namely, point cloud); the backscattered energy is
recorded in a form of intensity for reflecting the targets’ sur-
face and material properties. Compared with traditional optical
imaging-based systems, MLS systems can acquire real-world
coordinates of a large area (in the form of highly dense and
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accurate 3-D point clouds) in a short time period. MLS sys-
tems are immune to the impact of environmental illumination
conditions, and can function day and night. Moreover, MLS
systems provide direct views of road surfaces and roadside
features. Therefore, MLS systems are a promising and feasible
alternative to assist in rapidly updating urban road feature
inventories.

In this paper, we develop an automated algorithm for extract-
ing urban road facilities using a state-of-the-art RIEGL VMX-
450 MLS system. This study mainly focuses on the extraction
of street light poles, traffic signposts, and bus stations. Street
lamps provide pedestrians and vehicles illumination at night
for clear visibility of the road environment and safe driving.
Traffic signposts, an important component in transportation,
function to control and regulate traffic activities, warn drivers
of potential dangers, and exhibit correct routes. Bus stations,
a specific segment of a city’s infrastructure, play an important
role in providing passengers with bus stops and buses and taxis
with valid parking spots. However, the absence, or lack of visi-
bility of these fixtures, particularly street light poles and traffic
signposts, not only brings inconvenience to transportation-
related activities, but also leads to catastrophic traffic accidents.
Therefore, accurate and cost-effective methods are urgently in
demand for rapid and automated extraction of the aforemen-
tioned fixtures.

The contributions of this paper are as follows: 1) a voxel-
based upward growing method for removing ground points; 2) a
voxel-based normalized cut segmentation method for segment-
ing the clusters containing multiple objects; and 3) a 3-D object
matching framework for extracting objects of interest.

II. RELATED WORK

MLS systems have enriched the corpus of 3-D data available
for a variety of transportation-related applications [8]. Highly
dense, accurate 3-D point clouds, collected by MLS systems,
have become a leading source for highway mapping, tunnel
deformation monitoring, bridge distress assessment, etc.

In the following sections, we present a detailed review of
existing methods for point cloud segmentation, 3-D object
matching, ground removal, and extraction of light poles, traffic
signposts, and bus stations using MLS data.

A. Studies on Point Cloud Segmentation

Point cloud segmentation has been extensively studied in the
literature. Typically, the existing methods are classified into
the following two categories: indoor scene segmentation and
natural scene segmentation.

Indoor scene segmentation. In [9], a graphical model that
captures various features and contextual relations was proposed
to assist in segmenting indoor scenes. With object affordance
(e.g., pushable and liftable), a hierarchical technique was devel-
oped in [10] to segment indoor scenes for robot manipulation.
First, geometric features were extracted from point cloud seg-
ments. Then, a classifier was built to predict associated object
affordances. Finally, with the classifier, object segmentation re-
sults were enhanced and manipulation uncertainty was reduced

through iterative clustering and entropy minimization. In [11],
a discriminative model that integrates geometrical informa-
tion, pairwise and higher order components was presented for
segmenting indoor scenes. To deal with erroneous sensor
inputs, an improved geometry estimation scheme was pro-
posed to improve segmentation accuracy. A feature descrip-
tor, combined with fast point feature histograms (FPFHs) and
discriminative graphical models, was used in [12] to depict
different geometric surface primitives for the segmentation of
indoor scene point clouds. By defining the classes of geometric
surfaces and using the contextual information from conditional
random fields, this method achieved promising results in indoor
scene segmentation.

Natural scene segmentation. Compared with indoor scenes,
natural scenes contain more complex and irregular-shaped ob-
jects, thereby resulting in more challenges to segment natural
point cloud scenes. In [13], an efficient two-step segmentation
method was proposed for large-scale point clouds. First, a
scan-line-based ground segmentation algorithm was designed
to filter ground points. Then, a self-adaptive Euclidean cluster-
ing algorithm was used to further separate off-ground points
into different objects. A shape-based segmentation method for
segmenting urban scene point clouds was developed in [14].
First, this method calculated the geometric features of each
point and classified the points based on their geometric features
using support vector machines. Then, a set of rules was defined
to segment the classified points, and a similarity criterion
was proposed to overcome over-segmentation. Finally, based
on topological connectivity, segmentation output was merged
into meaningful geometrical abstractions. To deal with noisy,
varying density point clouds, a multiscale and hierarchical
framework [15] was presented to segment urban scene point
clouds. First, the point clouds were resampled into different
scales. Then, each scale’s resampled point set was aggregated
into several hierarchical point clusters. Finally, based on a latent
Dirichlet allocation model, the hierarchical point clusters were
classified into semantic regions by using an AdaBoost classifier.

B. Studies on 3-D Object Matching

Object matching in 3-D patterns has been successfully stud-
ied in the literature [16]. Based on the different representations
of geometric shapes (e.g., triangle meshes, contours, and point
sets), object matching methods are divided into the following
three broad categories [17]: feature-based method [18], graph-
based method [19], and geometry-based method [20]. A variety
of approaches, such as bilateral maps [21], pairwise harmonics
[22], curve analyses [23], and sparse models [24], were pro-
posed to match objects represented by meshes. Object matching
methods have also been used in object retrieval, recognition,
and alignment from 3-D scenes. By using a 3-D deformable
matching method based on the Markov random field (MRF) de-
formation model [25], skeletons of complex articulated objects
were extracted from 3-D point cloud sequences. The extracted
skeletons were then applied to motion capture. Informative,
discriminative feature descriptors play a fundamental role in
deformable shape analysis. Recently, spectral descriptors [26]
were developed for deformable shape matching purposes.
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C. Studies on Ground Removal

Due to the characteristics of MLS systems in direct views of
the ground and high laser pulse repetition rate (PRR), ground
points occupy a great portion of the resultant point clouds. Such
a large number of highly dense ground points not only enlarge
the searching regions for extracting off-ground objects, but also
slow the processing speed. Therefore, some research has been
conducted to develop rapid, effective methods to segment or
remove ground points.

In [27], a curb-based approach was developed to seg-
ment road surface points. This approach operated rapidly and
achieved good performance in segmenting road surface points.
However, this approach was limited to only road surface points
rather than the entire ground points, and it required the assis-
tance of trajectory data. In [28], random sampling consensus
(RANSAC) was first used to fit ground planes on a given point
cloud. Then, the points close to the ground planes were labeled
as the ground. Similarly, a plane fitting approach was proposed
in [29] for removing ground points based on the assumption that
ground points construct good plane structures. However, when
handling scenes with strong ground fluctuations, such plane
fitting-based methods encountered problems. A maximum local
slop filter was developed in [30] to filter ground points. This
filter identified ground points by comparing the local slopes
between a point and its neighbors. In [31], an iterative progres-
sive morphological filter was proposed to remove nonground
points. By gradually increasing the window size and using
elevation difference thresholds, this filter removed different-
sized nonground objects while preserving ground points.

D. Studies on Light Pole Extraction

Existing methods for extracting street light poles are mostly
based on pole-like features. However, when dealing with light
poles attached with traffic signs or advertising boards or light
poles overlapped with or hidden in trees, such methods en-
counter problems. In [32], a principal component analysis
(PCA) method was proposed to extract light poles by consid-
ering both shape and context features. Shape features of each
light pole were computed using height, number of segments,
and structure types; whereas context features were obtained
using the surrounding distributions of light poles. Similarly, a
covariance-based procedure, based on eigenvalue analysis, was
proposed in [33] to detect light poles. Considering prior knowl-
edge of the shape, height, and size of light poles, a percentile-
based algorithm was introduced in [34]. This algorithm first
divided an object segment into quartiles. Then, the third quartile
was selected and partitioned into horizontal slices for further
processing. Finally, light poles were recognized based on the
detection of vertical pole-like structures from the third quartile.

Rather than dealing with highly dense point clouds in 3-D
space, some researchers projected 3-D point clouds into 2-D
space. In [35], all clustered objects were first projected onto
the horizontal plane. Then, the distribution of each object was
captured through covariance matrix decomposition. Finally,
light poles were simply extracted based on eigenvalue analysis.
In [36], a density of projected points (DoPP) algorithm was

adopted for extracting light poles. First, a point cloud was
partitioned into voxels on the XY plane. Then, the maximum
elevation of each voxel was computed, and an elevation thresh-
old was determined accordingly. Finally, by classifying the
point cloud into ground, low ground, and high ground points,
light poles were extracted on the classified points via elevation
thresholding.

To achieve better visibility of the entire surveyed scene, line
scan mode is designed for MLS systems. Consequently, a scan
line-based method was presented in [37] for analyzing pole-like
structures within segmented profiles. Light poles were success-
fully extracted through an integration of scan line segmentation,
point clustering, cluster merging, and cluster classification. In
[38], vertical scan lines on profiles were used to detect point
groups that formed independent poles. Similarly, vertical scan
lines were also considered in [39] for extracting light poles.
However, the extraction was limited to light poles in front of
buildings and on the ground.

E. Studies on Traffic Signpost Extraction

Traffic signpost extraction from MLS point clouds has at-
tracted extensive attention in the literature. In [35], based on
the knowledge that traffic signposts are usually located close to
road boundaries in urban areas, redundant points belonging to
road surfaces were first removed by analyzing the scan lines
of cross sections. Then, the remaining points were clustered
into different spatial objects based on point distances. Finally,
traffic signposts were extracted by finding linear features from
the projection of each clustered spatial object in the horizontal
plane. A smoothing and PCA algorithm was developed in [40]
for extracting traffic signposts based on Laplacian smoothing
and PCA. Laplacian smoothing, using k-nearest neighbors
graph, aimed to smooth each segment to suppress measurement
noise and point distribution bias. Then, PCA was applied to the
smoothed segments to infer pole-like objects. Hough forest was
proposed in [41] for learning mappings from 3-D local patches
to object centroids. This method obtained promising results for
extracting traffic signposts from MLS data.

Traffic signposts exhibit high retro-reflectivity in MLS point
clouds; thus, intensity information provides an important clue
for separating traffic signposts from other objects. In [42],
a point cloud was first filtered based on the distance to the
sensor, sensor angle, and intensity. Then, the filtered points
were clustered and divided into a grid structure. Finally, by
using the RANSAC algorithm, traffic signposts were extracted
by fitting a plane to each cluster. Similarly, traffic signposts in
[34] were fitted with their convex hulls, minimum bounding
boxes, and minimum bounding circles. In [43], a template-
driven method was developed to extract traffic signposts based
on their properties of highly reflective planes aligning perpen-
dicularly to the direction of travel and symmetrical shapes.

F. Studies on Bus Station Extraction

Bus station localization is an important issue in public trans-
portation. Information regarding the exact location of bus sta-
tions provides useful clues, not only for buses to locate correct
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Fig. 1. Flowchart of the proposed algorithm.

parking spots, but also for passengers to quickly find the nearest
bus stops. In addition, overall bus station location information
within a region can be used by transportation administrators
to assess the accessibility of a bus service and improve the
coverage of bus routes. However, there are few studies focusing
on the extraction and localization of bus stations using MLS
data. Therefore, exploiting effective means and methods for
bus station extraction from MLS data is an interesting and
meaningful research topic.

III. METHOD

Fig. 1 shows the detailed workflow of our proposed algo-
rithm. The input MLS point clouds are first preprocessed to
remove ground points using a voxel-based upward growing
method. Then, the off-ground points are clustered and seg-
mented into individual objects via Euclidean distance clustering
and voxel-based normalized cut segmentation, respectively.
Finally, the objects of interest are extracted based on a 3-D
object matching framework.

A. Ground Removal

To obtain good coverage of the surveyed scene, MLS systems
mounted with two laser scanners are basically configured with
a “Butterfly” (or “X”) pattern. While the mapping vehicle is
being driven, these two laser scanners rotate to emit laser
beams. Such a scan mode results in a grid-like pattern in the
scanned point clouds. Due to the laser scanners’ properties
in direct ground views and high measurement rates, ground
points consume a great portion of the collected point clouds.
Because the objects of interest to be extracted belong to off-
ground objects, effectively separating ground and off-ground
points in the point cloud is helpful to reduce the searching
regions. Therefore, to reduce the complexities of both time and
space, we develop a novel voxel-based upward growing method
that rapidly and effectively filters ground points from the entire
point cloud.

Considering the fluctuations of the ground and the efficiency
of our proposed ground removal method, we first vertically
divide a raw point cloud into a set of data blocks with a size of
wb in the XY plane. These data blocks are processed separately
to remove ground points. Then, we organize each of the data
blocks into an octree structure with a voxel size of wv [see
Fig. 2(a)]. As shown in Fig. 2(b), by using the octree partition
structure, a voxel is connected with 26 neighbors in 3-D space.
Based on such an octree partition structure, our voxel-based
upward growing method is carried out as follows.

Fig. 2. (a) Octree partition structure, and (b) upward growing scheme.

Fig. 3. (a) Raw point cloud, and (b) off-ground points after ground removal.

For each voxel v in a data block, it grows upward to its nine
neighbors, who are connected with this voxel and located above
this voxel [see Fig. 2(b)]. Then, the same growing scheme is
applied to the neighbors to continuously grow upward. The
growing process stops when no more voxels can be reached
according to the upward growing scheme. Finally, the voxel
vh that has the highest elevation within the grown region is
ascertained. If the elevation of vh is smaller than a predefined
ground threshold hg , voxel v is regarded as ground; then, all
the points in voxel v are removed. However, if the elevation
of vh is larger than hg , voxel v is treated as a part of an off-
ground object; then, all the points in voxel v are retained. The
voxel-based upward growing method for ground removal has
the following properties: 1) suitable for handling large scenes
with strong ground fluctuations; and 2) removes ground points
rapidly and effectively. Fig. 3 shows a visual example of the
point cloud before and after ground removal.

B. Off-Ground Point Clustering and Segmentation

After ground points are filtered out, the off-ground points
remain isolated and unorganized. The points belonging to a
specific object must be further grouped together before iden-
tifying the objects of interest. In this paper, we introduce a
Euclidean distance clustering approach, which groups discrete
points based on their Euclidean distances to their neighbors.
Particularly, an unlabeled point is grouped into a specific cluster
if and only if its shortest Euclidean distance to the points within
this cluster lies below a clustering threshold dc. Otherwise, a
new cluster is created to contain this point.

The Euclidean distance clustering approach starts at an arbi-
trary unlabeled point and expands radially outward to its neigh-
bors within the spherical region indicated by a radius size dc.
The clustering procedure continues outward from its neighbors
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Fig. 4. (a) Clustering result of off-ground points, and (b) cluster filtering result
using prior knowledge.

to their corresponding neighbors. Such a recursive clustering
procedure stops when no more points can be contained in
this cluster. Then, the remaining unlabeled points are further
grouped into specific clusters by using the same clustering
scheme. Fig. 4(a) presents a clustering result of the off-ground
points. In Fig. 4, different colors represent different clusters.
Specifically, to reduce the computational complexity, based on
prior geometric knowledge (e.g., height and size) of the objects
of interest to be extracted, the small clusters that are unlikely
targets are further removed. Fig. 4(b) shows the filtered clusters
using prior geometric knowledge.

However, as cluster A in Fig. 4(b) shows, by using the
Euclidean distance clustering approach, the objects (a tree and
a light pole) that are adjacent or overlap cannot be effectively
separated. To further segment such clusters containing more
than one object, we develop a novel voxel-based normalized cut
segmentation method. Normalized cut segmentation [44] has
proved to be an accurate, effective method for segmenting 2-
D images. In this paper, we modify this method to achieve the
segmentation of 3-D objects in 3-D point clouds.

First, the clusters containing more than one object are divided
into a voxel structure with a voxel spacing ws using the octree
partition strategy [see Fig. 5(a)]. Then, all the voxels are con-
structed into a complete weighted graph G = {V ,E}, where
the vertices V are represented by the voxels, and edges E are
connected between each pair of voxels. The weight on the edge
is used for measuring the similarity between a pair of voxels
connected by the edge. To assign a meaningful, distinctive
weight wij to the edge connecting a pair of voxels (i, j) ∈ V 2,
we compute the weight from the features associated with the
voxels as follows:

wij =

⎧⎪⎪⎨
⎪⎪⎩
exp

(
−‖pH

i −pH
j ‖2

2

σ2
H

)
· exp

(
−|pZ

i −pZ
j |2

σ2
Z

)

if
∥∥pHi − pHj

∥∥
2
� dH

0, otherwise,

(1)

where pi = (xi, yi, zi) and pj = (xj , yj , zj) are the centroids
of voxels i and j, respectively. pHi = (xi, yi) and pHj = (xj , yj)

are the coordinates of the centroids on the XY plane; pZi = zi
and pZj = zj are the z coordinates of the centroids. σH and σZ

are the standard deviations of the horizontal and vertical distri-
butions, respectively. dH is a distance threshold for determining
the maximal valid distance between two voxels in the horizontal
plane. The centroid of voxel i is defined as

pi =
1
Ni

Ni∑
m=1

pim (2)

Fig. 5. (a) Octree partition strategy, (b) illustration of bipartition, and (c) voxel-
based normalized cut segmentation result.

where Ni denotes the number of points within voxel i, and
pim (m = 1, 2, . . . , Ni) is a point within voxel i. By such a
definition, the similarity between two voxels is measured by
considering their distance in the horizontal plane and their
relative horizontal and vertical distributions.

As shown in Fig. 5(b), normalized cut segmentation aims
to partition the complete weighted graph G into two disjoint
voxel groups A and B by maximizing the similarity within
each voxel group and maximizing the dissimilarity between two
voxel groups. The corresponding cost function [44] is expressed
as

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(3)

where cut(A,B) denotes the sum of the weights on the edges
connecting voxel groups A and B; assoc(A,V ) denotes the
sum of the weights on the edges falling in voxel group A;
and assoc(B,V ) denotes the sum of the weights on the edges
falling in voxel group B. The above terms are defined as
follows:

cut(A,B) =
∑

i∈A,j∈B
wij (4)

assoc(A, V ) =
∑

i∈A,j∈V
wij (5)

assoc(B, V ) =
∑

i∈B,j∈V
wij . (6)

The minimization of Ncut(A,B) is obtained by solving the
corresponding generalized eigenvalue problem [44]

(D−W)y = λDy (7)

where W (i, j) = wij , and D is a diagonal matrix, whose ith
row records the sum of the weights on the edges associated with
voxel i

D(i, j) =

⎧⎨
⎩

∑
m∈V

wim, if i = j

0, otherwise.
(8)

After carrying out eigenvalue decomposition on (7), a set
of eigenvalues and their associated eigenvectors are obtained.
Finally, according to the normalized cut segmentation scheme,
we partition the cluster into two segments by applying a
threshold to the eigenvector associated with the second smallest
eigenvalue [44]. The segmentation result is shown in Fig. 5(c).
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C. Three-Dimensional Object Matching Framework

To handle the conditions of affine transformations, occlu-
sions, incompleteness, and scales existing in the objects from
the same category in 3-D MLS point clouds, we propose a novel
3-D object matching framework to support object extraction.
The problem of object matching in MLS point clouds is de-
picted as matching a set of template feature points, representing
an object, to a set of scene feature points, representing a scene
containing an instance of that object. Denote nT and nS (nT ≤
nS) as the number of template and scene feature points, respec-
tively. Let T ∈ RnT×3 and S ∈ RnS×3 be the matrices record-
ing the 3-D coordinates of the template and scene feature points,
respectively. The objective of object matching is to ascertain an
optimal matching function f(·) that 1) matches every template
feature point pi = (xi, yi, zi) ∈ R3, i = 1, 2, . . . , nT to a scene
feature point qj = (xj , yj , zj) ∈ R3, j = 1, 2, . . . , nS , and
2) minimizes the following overall objective function contain-
ing both feature and geometric matching costs:

min
f

nT∑
i=1

[c (pi, f(pi)) + λ · g (pi, N(pi); f(pi), f (N(pi)))]

(9)

where c(p, q) denotes the feature matching cost between tem-
plate feature point p and scene feature point q; N(pi) denotes
the neighbors of point pi; g(·) is a geometric matching cost
function, which measures the dissimilarity between two sets
of points {pi, N(pi)} and {f(pi), f(N(pi))}; λ balances the
relative weight between the feature and the geometric matching
costs.

1. Feature Matching Cost: Because both the template and
the scene are represented by discrete and irregularly distributed
point sets, the feature descriptors selected for modeling the
local features of the feature points must possess the properties
of robustness to noise and high distinctiveness to different
feature points. FPFHs [45] have proved to be a promising
descriptor to rapidly and saliently depict feature points in 3-D
point clouds. Generally, the FPFH descriptor generates a 16-
D histogram descriptor for each feature point. Denote Hp as
the histogram descriptor for feature point p. Then, the cost of
matching a template feature point p to a scene feature point q is
defined using the χ2 distance [46] as follows:

c(p, q) =

16∑
k=1

[Hp(k)−Hq(k)]
2

Hp(k) +Hq(k)
. (10)

The feature matching costs between each pair of template
and scene feature points are stored in a feature matching
cost matrix C ∈ RnT×nS . The element Cij = c(pi, qj), i =
1, 2, . . . , nT , j = 1, 2, . . . , nS stores the cost of matching the
ith template feature point pi to the jth scene feature point qj .

The matching function f(·) is usually modeled as a binary
variable matrix [47] X ∈ {0, 1}nT×nS

Xij = 1 ⇔ f(pi) = qj , i = 1, 2, . . . , nT , j = 1, 2, . . . , nS .
(11)

Xij = 1 indicates that the ith template feature point pi is
matched to the jth scene feature point qj ; Xij = 0 means that
there is no matching between pi and qj . Because each template

feature point is matched to exactly one scene feature point, each
row of X contains exactly one element with a value of one.

By integrating the feature matching cost matrix C and the
binary variable matrix X, the feature matching cost term in (9)
is expressed as

nT∑
i=1

c (pi, f(pi)) = tr
(
CXT

)
=

nT∑
i=1

nS∑
j=1

CijXij . (12)

Because each row of X contains exactly one element with a
value of one, only one matching cost for each template feature
point is aggregated into the feature matching cost term.

For each row of X, the column index of the element with a
value of one in this row specifies the index of the scene feature
point that is matched to the corresponding template feature
point. Rewrite X into a row-vector representation as follows:

XT =
[
XT

1 ,X
T
2 , . . .X

T
nT

]
(13)

where Xi, i = 1, 2, . . . , nT denotes the ith row of X. Then,
XiS computes the 3-D coordinates of the matched scene fea-
ture point for template feature point pi. Combining all rows of
X, XS represents the 3-D coordinates of all the matched scene
feature points in the same order as the template feature points.

2. Geometric Matching Cost: Considering the affine trans-
formations, occlusions, incompleteness, and scales among the
objects from the same category, we propose a locally affine-
invariant geometric constraint to model the geometric matching
cost function g(·) in (9). We assume that each template feature
point pi is exactly represented by an affine combination of its
neighbors as follows:

pi =
∑

pj∈N(pi)

Aijpj (14)

where A is an nT × nT weight matrix recording the affine
combination coefficients for all template feature points. Denote
Ai as the ith row of A. Then, Ai models the local geometric
distribution around pi. The following two constraints are placed
on A: 1) Aij = 0 if pj �∈ N(pi); and 2) each row of A must
add up to one. The first constraint reflects the local geometric
properties of each template feature point; the second constraint
makes the representation invariant to global transformations.
These two constraints guarantee that a template feature point
is always exactly represented by an affine combination of its
neighbors.

Ideally, by using the affine combination, the representation
error for each template feature point pi is always zero under the
L1-norm∥∥∥∥∥∥pi −

∑
pj∈N(pi)

Aijpj

∥∥∥∥∥∥
1

= 0, i = 1, 2, . . . , nT . (15)

Summing up the representation errors from all template feature
points results in the following expression:

‖T−AT‖1 = ‖(I−A)T‖1 = 0 (16)

where I is an identity matrix, and ‖ · ‖1 denotes the summation
of the absolute values of all the elements in a matrix.

Because XS represents the matched scene feature points in
the same order as the template feature points, replacing T with
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Fig. 6. Illustration of the LPSA algorithm: (a) template feature points, (b)
scene feature points, (c) initial matching with linear programming, and (d) final
matching refined by simulated annealing.

XS in (16) results in the following geometric matching cost
term in (9):

nT∑
i=1

g (pi, N(pi); f(pi), f (N(pi))) = ‖(I−A)XS‖1 . (17)

3. Overall Objective Function: By embedding the feature
matching cost term in (12) and the geometric matching cost
term in (17), the overall objective function for 3-D object
matching is defined as follows:

minimize
X

tr(CXT ) + λ ‖(I−A)XS‖1

subject to X ∈ {0, 1}nT×nS ,X1nS
= 1nT

,XT1nT
� 1nS

.
(18)

There are three constraints in (18).

a) X ∈ {0, 1}nT×nS indicates a point-to-point matching
pattern, where the matching between a pair of feature
points is either “successful” (Xij = 1) or “failed” (Xij =
0).

b) X1nS
= 1nT

indicates that each template feature point
must be matched to exactly one scene feature point.

c) XT1nT
� 1nS

indicates a one-to-one matching pattern,
where each scene feature point is matched by, at most,
one template feature point, i.e., f(p) = f(q) ⇔ p = q.

The overall objective function in (18) has a nonlinear form
with integer constraints. Such a formulation results in an NP-
hard problem, which cannot be efficiently solved in polynomial
time. To obtain an approximately optimal solution to this NP-
hard problem, we develop a linear programming and simulated
annealing (LPSA) algorithm. The LPSA algorithm starts by
solving the following relaxed linear programming problem in
a continuous space:

minimize
X

tr(CXT )

subject to X ∈ [0, 1]nT×nS ,X1nS
= 1nT

,XT1nT
� 1nS

.
(19)

This linear programing problem considers only the feature
matching cost for obtaining an initial solution. Solving such
a linear programming problem leads to a continuous solution
of X. To map the continuous solution to a discrete integer
solution space, we simply set the element with the maximal
value in each row of X to one and set the others in this row
to zero. As shown in Fig. 6(c), some template feature points are
mismatched in the initial solution. Then, the initial solution is
iteratively refined by a simulated annealing procedure based on

Fig. 7. Illustration of lower convex hull. (a) Two-dimensional point cloud
formulation of scene feature points, and (b) lower convex hull and the matching
candidates.

Fig. 8. (a) Light pole prototype, and (b) extracted light poles.

(18). This simulated annealing procedure takes into considera-
tion both feature and geometric matching costs. By iteratively
adjusting the mismatched feature points based on the geometric
constraints, an optimal matching is finally obtained, as shown
in Fig. 6(d).

The LPSA algorithm operates efficiently when the numbers
of both the template and scene feature points are small. The
size of the binary variable matrix X increases dramatically
as the number of feature points increases, resulting in a great
computational burden in solving the linear programing problem
in (19). To reduce the computational complexity, we adopt
a lower convex hull trick [48] to obtain the initial matching
solution. For each template feature point p, we regard the scene
feature points as a 2-D point cloud with their indices as the x-
axis, and the feature matching costs as the y-axis [see Fig. 7(a)].
Then, we compute a lower convex hull with respect to the
second dimension [see Fig. 7(b)]. Finally, only the scene feature
points on the lower convex hull are considered as the matching
candidates for p. Such a lower convex hull trick guarantees
that the number of matching candidates associated with each
template feature point is dramatically reduced.

D. Three-Dimensional Object Extraction

Based on the 3-D object matching framework in Section C,
we propose a model-driven method for extracting 3-D objects
from the segmented off-ground objects. First, a clean and
completely scanned point cloud object prototype [see Fig. 8(a)]
is selected for each category of the objects to be extracted.
Then, the prototype and the segmented objects are voxelized
using the octree partition structure with spacings of vT and vS
(vT > vS), respectively. For each voxel, the point nearest the
centroid of this voxel is selected as the feature point. Next, the
3-D object matching framework is applied to the prototype and
each segmented object to compute the matching cost between
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Fig. 9. Illustration of the RIEGL VMX-450 MLS system and its components.

the feature points on the prototype and the feature points on
each segmented object. Finally, the matching costs from all seg-
mented objects are thresholded to obtain the extraction result.
Fig. 8(b) shows the extracted light poles from the segmented
objects in Fig. 5(c).

IV. RESULTS AND DISCUSSION

A. RIEGL VMX-450 System and MLS Point Clouds

In this paper, a state-of-the-art RIEGL VMX-450 MLS sys-
tem (see Fig. 9) was used to collect 3-D point cloud data along
an urban road in Xiamen, China. The mapping vehicle was
moving at an average speed of approximately 40–50 km/h while
acquiring the point cloud data. Generally, in urban areas, the
mapping vehicle can move at a normal city-limited speed (e.g.,
40–60 km/h). The RIEGL VMX-450 system smoothly inte-
grates two RIEGL VQ-450 laser scanners, four high-resolution
digital cameras, and a set of position and orientation systems,
including two GNSS, an inertial measurement unit, and a
wheel-mounted distance measurement indicator (see Fig. 9).
The two laser scanners are configured with an “X” pattern and
rotate to emit laser beams with a maximum measurement rate
of 1.1 million measurements per second, a line scan speed of
up to 400 scans per second, and a maximum valid range of 800
m. The accuracy and precision of the scanned 3-D point clouds
are within 8 and 5 mm, respectively.

The 3-D point cloud data used in this study were acquired on
Ring Road South, a typical urban road near the seaside. Four
data sets covering the areas of Siming Road South (SRS),
Yunding Road South (YRS), International Conference and Ex-
hibition Center (ICEC), and Xianyue Road (XR) were selected
for evaluating the 3-D object extraction performance. The SRS
data set contains about 581 million points and covers a road
length of approximately 4260 m. The YRS data set contains
about 421 million points and has a road distance of approxi-
mately 2522 m. The ICEC data set contains about 568 million
points and has a road segment of approximately 2947 m. The
XR data set contains about 273 million points and has a road
section of approximately 3693 m.

B. Point Cloud Segmentation

In this paper, we propose a combination of Euclidean dis-
tance clustering and voxel-based normalized cut segmentation
to group off-ground points into individual objects. Euclidean
distance clustering rapidly clusters separated point groups;

whereas voxel-based normalized cut segmentation further di-
vides the adjacent or overlapped clusters into separated objects.
Here, we conducted a group of experiments to compare the
performance of the proposed segmentation method with the
two-step segmentation method [13] and the shape-based seg-
mentation method [14]. As shown in Row 1 of Fig. 10, three
point cloud scenes were selected for comparative study. After
ground removal, the off-ground points were segmented using
these three methods. The segmentation results obtained using
the two-step method, the shape-based method, and the proposed
method are shown in Rows 3, 4, and 5, respectively. On the
whole, these three methods all achieved promising segmenta-
tion results on the three selected scenes. However, as shown by
the boxes labeled #B, #D, #E, and #F, the point cloud clusters
containing multiple trees failed to be segmented by using the
shape-based method; whereas such clusters were well separated
into individual trees by using the two-step and the proposed
methods. Moreover, as shown by the box labeled #C, the point
cluster containing two overlapped trees could not be segmented
with the two-step and the shape-based methods; whereas it
was successfully segmented by using the proposed method. In
addition, as shown by the box labeled #A, a light pole is hidden
in a palm tree and located very closely to the palm tree. The
two-step and the proposed methods failed to segment them;
however, the light pole and the palm tree were well segmented
by using the shape-based method. In conclusion, compared
with the other two methods, the shape-based method attains
the worst performance. The shape-based method well segments
separated clusters and overlapped clusters containing different
categories of objects; however, it has problems in segmenting
clusters containing closely overlapped objects from the same
category. The two-step and the proposed methods well handle
the separated and not very closely overlapped clusters; however,
they have problems in segmenting the clusters containing very
closely overlapped objects either from the same or different cat-
egories. Comparatively, the proposed method obtains relatively
better performance than the two-step method.

C. Three-Dimensional Object Matching

Here, we evaluate the performance of our proposed 3-D
object matching framework to match a template containing a
point cloud object to a scene containing an instance of that
object. We adopted a voxel-based sampling approach to select
a group of feature points from the template and scene point
clouds, respectively. First, both the template and scene point
clouds were divided into a voxel structure with voxel sizes of
vT and vS , respectively, based on the octree partition structure.
Then, for each of the voxels, the point closest to the centroid of
this voxel was chosen as the feature point. Finally, the proposed
3-D object matching framework was applied to the template
and scene point clouds to compute correspondences between
the template and scene feature points.

Seven data sets containing different categories of objects
were selected from the MLS point clouds (see Fig. 11). Table I
details the parameter configurations and the object matching
performance of these seven data sets. The object matching per-
formance was evaluated by the matching errors represented by



YU et al.: AUTOMATED EXTRACTION OF URBAN ROAD FACILITIES USING MOBILE LASER SCANNING DATA 2175

Fig. 10. Point cloud segmentation results on three selected scenes (a), (b), and (c) by using different segmentation methods. Row 1: raw point clouds of the
selected scenes. Row 2: off-ground points after ground removal. Row 3: segmentation results obtained using the two-step segmentation method [13]. Row 4:
segmentation results obtained using the shape-based method [14]. Row 5: segmentation results obtained using the proposed method.

the percentage of mismatched template feature points. The 3-D
object matching results are illustrated in Fig. 11. As reflected
by the matching errors in Table I, the proposed 3-D object
matching framework obtained promising matching results and
achieved very low matching errors on the seven data sets. For
all of the seven data sets, the number of scene feature points
is much greater than the number of template feature points.
Therefore, we used the lower convex hull trick to compute the
initial matching for each template feature point. On the whole,
the proposed 3-D object matching framework works efficiently
in matching a set of template feature points to a relatively large
set of scene feature points.

Comparative studies were also conducted to further compare
the proposed 3-D object matching framework with several
existing methods, including 3-D shape context [49], bilateral
map [21], curve analysis [23], spectral descriptor [26], and

our proposed framework without local geometric constraints.
Fig. 12 shows 12 groups of 3-D point clouds used in the
comparative studies. Each group contains a template object and
a scene object. The red dots represent the manually sampled
salient feature points. The matching performance of different
methods was evaluated by the matching errors represented by
the percentage of mismatched template feature points (See
Fig. 13). Fig. 12 shows the visual examples of the matching
results obtained using the proposed 3-D object matching frame-
work. As reflected by the matching performance in Fig. 13,
our proposed framework outperforms the other methods and
achieves a very low average matching error of 0.79%. Partic-
ularly, comparing the average matching errors obtained using
our proposed framework with and without local geometric con-
straints (0.79% versus 51.87%), we conclude that performance
is greatly improved when locally affine-invariant geometric
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Fig. 11. (a) Template point cloud, (b) template feature points, (c) scene point
cloud, (d) scene feature points, and (d) 3-D object matching results.

TABLE I
PARAMETER CONFIGURATIONS AND MATCHING ERRORS

constraints are considered. In conclusion, our proposed 3-D
object matching framework outperforms the other methods and
achieves the best matching performance.

D. Ground Removal

Here, we test the impact of different parameter configurations
on the performance of ground removal. Two test scenes were
selected from the MLS point clouds. The first test scene (a two-
directional-two-lane road) contains 6.8 million points and has
a road segment of 48.57 m [see Fig. 14(a) ]. The second test
scene (a two-directional-four-lane road) contains 12.1 million
points and has a road section of 94.48 m [see Fig. 14(b)]. A
group of parameter configurations were tested for block size wb

and voxel size wv . The computing time for removing ground

Fig. 12. (a)–(l) Matching results obtained using the proposed framework.

Fig. 13. (a) Matching errors and (b) average matching errors obtained using
different methods.

points with each parameter combination is also recorded and
detailed in Fig. 15. In this paper, the ground threshold hg

was set at 0.4 m. According to the test results, with a fixed
voxel size, the ground removal time increases as the block
size increases; whereas with a fixed block size, the ground
removal time decreases as the voxel size increases. Therefore,
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Fig. 14. (a) Test scene one, (b) test scene two, (c) ground removal result of test
scene one, and (d) ground removal result of test scene two.

theoretically, to obtain good performance in rapidly removing
ground points, the block size should be selected as small as
possible, and the voxel size should be selected as large as
possible. However, a large voxel size reduces the accuracy
in removing ground points. Therefore, considering both time
complexity and accuracy, we chose parameter configurations of
wb = 3 m and wv = 5 cm, which provide for good accuracy
and low computing time in removing ground points. Fig. 14(c)
and (d) show the ground removal results for these two test
scenes with wb = 3 m, wv = 5 cm, and hg = 0.4 m.

Comparative studies were also conducted to further evaluate
the performance and efficiency between our proposed voxel-
based upward growing method and the ground removal method
proposed in [28]. As shown in the first row of Fig. 16, four
point cloud scenes with different types of ground conditions
were selected for comparative study. Fig. 16(a) shows a 1-D
flat road with dense vegetation and sidewalks; Fig. 16(b) shows
a 2-D flat road with a median separating the travel directions;
Fig. 16(c) shows a 4-D sloped road with two low-height and
sloped road sections and two overhanging sloped highways;
Fig. 16(d) shows a sloped, uneven ground with up-and-down
grass lawns. The segmented ground points using the voxel-
based upward growing method and the method in [28] are
shown in the second and the last rows of Fig. 16, respectively.
As shown by the red boxes in Fig. 16, by using the ground
removal method in [28], some cars and low-height vegetation
were falsely labeled as ground. However, by using the voxel-
based upward growing method, such objects were correctly
labeled as off-ground objects. Comparatively, the voxel-based
upward growing method has the property of effectively remov-
ing ground points in both flat and sloped ground conditions,
while simultaneously preserving off-ground objects from their
bottoms. In addition, computing time was also recorded for
efficiency evaluation. By using the voxel-based upward grow-
ing method, the ground removal time was 1.71, 3.26, 3.98, and
3.87 s, respectively, on these four selected scenes. However, by
using the ground removal method in [28], the computing time

Fig. 15. Ground removal time of different parameter combinations on (a) the
first test scene and (b) the second test scene.

was 5.98, 9.66, 9.77, and 10.02 s, respectively, on these four
selected scenes. Therefore, the voxel-based upward growing
method operates faster and achieves better ground removal
results than the method proposed in [28].

E. Three-Dimensional Object Extraction

To evaluate the performance of our proposed algorithm in
extracting 3-D light poles, traffic signposts, and bus stations
from MLS point clouds, we applied our proposed 3-D object
extraction algorithm to the four selected data sets (SRS, YRS,
ICEC, and XR data sets) mentioned in Section A. The parameter
configurations in each processing step are detailed in Table II.
To reduce both spatial and computational complexities, these
four data sets were first preprocessed to filter out ground points
based on the voxel-based upward growing method. Then, the
off-ground points were grouped and segmented into clusters
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Fig. 16. Ground removal results obtained on four selected scenes (a), (b), (c), and (d) by using different methods. Row 1: raw point clouds of the selected scenes.
Row 2: segmented ground points by using the proposed voxel-based upward growing method. Row 3: segmented ground points by using the method in [28].

TABLE II
PARAMETER CONFIGURATIONS IN 3-D OBJECT EXTRACTION (UNIT:

METER)

representing individual objects via Euclidean distance clus-
tering and voxel-based normalized cut segmentation. Finally,
using the 3-D object matching framework, 3-D light poles,
traffic signposts, and bus stations were extracted from the
segmented clusters. The 3-D object extraction results along
with the ground truth for these four data sets are listed in
Table III. Fig. 17 shows a visual example of a part of a point
cloud from the SRS data set and its processing results in each
processing step. The extracted 3-D light poles, traffic signposts,
and bus stations are shown in Fig. 17(e). As shown by the
box labeled #A in Fig. 17, some overlapped palm trees were
grouped into the same cluster after Euclidean distance cluster-
ing. Such a cluster was well segmented into individual objects
through voxel-based normalized cut segmentation. However,
as shown by the box labeled #B in Fig. 17, use of the voxel-
based normalized cut segmentation method failed to segment
two small overlapping banyan trees located very close to each
other. As shown in Fig. 17(e), by using the proposed 3-D object
matching framework, light poles with and without attachments
(e.g., traffic signs and advertising boards), different shapes
of traffic signposts, and bus stations were correctly extracted.
However, the clustering and segmentation results of the off-
ground points greatly affect our proposed 3-D object extraction
algorithm. Regarding light poles and traffic signposts that are
hidden in the trees, our proposed clustering and segmentation
methods fail to separate them from the trees. Therefore, the use
of our proposed 3-D object extraction algorithm fails to extract
such light poles and traffic signposts.

To quantitatively assess the accuracy and correctness of
the 3-D object extraction results on these four data sets, the
following four measures are used: completeness, correctness,
quality [50], and F1-measure [27]. Completeness depicts the

TABLE III
GROUND TRUTH AND EXTRACTION RESULTS

percentage of true positives in the ground truth; correctness
describes the percentage of true positives in the extraction
result; quality and F1-measure are two overall measures. These
four measures are defined as follows:

completeness =
TP

TP + FN
(20)

correctness =
TP

TP + FP
(21)

quality =
TP

TP + FP + FN
(22)

F1 −measure =
2 · completeness · correctness
completeness+ correctness

(23)

where TP , FN , and FP denote the number of true positives,
false negatives, and false positives, respectively. The quantita-
tive evaluation results using these four measures are detailed
in Table IV. The proposed 3-D object extraction algorithm
achieves an average completeness, correctness, quality, and
F1-measure of 0.949, 0.971, 0.922, and 0.960, respectively.
Therefore, our proposed 3-D object extraction algorithm is
suitable for extracting 3-D light poles, traffic signposts, and bus
stations from MLS point clouds.

Our proposed algorithm was implemented using C++ and
executed on an HP Z820 8-core-16-thread workstation. The
computing time in each processing step was recorded for these
four data sets (see Table V). In practice, each of the data sets
was first partitioned into a group of data segments with a road
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Fig. 17. (a) A part of a point cloud from SRS data set, (b) off-ground points,
(c) clustered off-ground points, (d) segmented off-ground points, and (e) the
extracted 3-D light poles, traffic signposts, and bus stations.

length of about 50 m. Then, all the segments were distributed to
a multithread computing environment with 16 parallel threads.
Thus, 16 segments were under process simultaneously. Such
an organization dramatically improves the performance and
reduces the time complexity of our proposed algorithm. As
shown in Table V, the largest data set (SRS data set) containing
about 581 million points and a road segment of approximately
4260 m was processed in 2115 s. Therefore, our proposed
algorithm is suitable for rapidly handling large volumes of MLS
point clouds for automated extraction of urban road facilities.

TABLE IV
QUANTITATIVE EVALUATION RESULTS

TABLE V
COMPUTING TIME ON THE FOUR DATA SETS (UNIT: SECOND)

TABLE VI
GROUND TRUTH AND EXTRACTION RESULTS

F. Comparative Studies

Comparative studies were also conducted to further compare
our proposed algorithm with the percentile-based algorithm
[34] in extracting 3-D light poles from MLS point clouds. A
point cloud data set containing about 160 million points and
with a length of about 948 m in the road direction was selected
for the comparative studies. The ground truth and light pole
extraction results obtained using different methods are detailed
in Table VI. In Table VI, “Clean” denotes the number of light
poles without any attachments; “Attached” denotes the number
of light poles with attachments such as advertising boards and
traffic signs. Fig. 18 shows a part of the point cloud from
the selected data set along with the extracted 3-D light poles
using the proposed algorithm and the percentile-based algo-
rithm, respectively. To extract light poles, the percentile-based
algorithm first horizontally divided an off-ground object into
four quartiles. Then, to reduce the impact of the shrubs attached
at the bottom of a light pole, as well as other attachments
to the pole such as advertising boards and traffic signs, the
third quartile was selected for recognizing pole-like structures.
Finally, an off-ground object with a vertical pole-like structure
in its third quartile was regarded as a light pole. However, as
shown by the box in Fig. 18(b), in the selected data set, large-
size advertising boards are attached to some of the light poles on
their third quartiles. Thus, the percentile-based algorithm failed
to recognize pole-like structures from the third quartile. As a re-
sult, light poles with such attachments failed to be extracted [see
Fig. 18(c)]. Comparatively, by using the proposed 3-D object
matching framework, our proposed algorithm extracted both
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Fig. 18. (a) Raw point cloud, (b) and (c) extracted 3-D light poles using the
proposed algorithm and the percentile-based algorithm, respectively.

TABLE VII
QUANTITATIVE EVALUATION RESULTS

3-D light poles with and without attachments [see Fig. 18(b)].
In addition, quantitative evaluations were also performed on the
light pole extraction results using completeness, correctness,
quality, and F1-meausre. The evaluation results are listed in
Table VII. In conclusion, our proposed 3-D object extraction
algorithm outperforms the percentile-based algorithm in cor-
rectly and completely extracting 3-D light poles from MLS
point clouds.

V. CONCLUSION

In this paper, we have presented a novel 3-D object extrac-
tion algorithm for rapid, automated extraction of urban road
facilities for transportation-related applications. Our proposed
algorithm was successfully applied to four point cloud data
sets for extracting 3-D light poles, traffic signposts, and bus
stations directly from 3-D MLS data. Quantitative evaluations
demonstrated that our proposed algorithm achieves an average
completeness, correctness, quality, and F1-measure of 0.949,
0.971, 0.922, and 0.960, respectively. By adopting a multithread
computing strategy, our proposed algorithm rapidly handles
large volumes of MLS point clouds toward 3-D object extrac-
tion. For a point cloud data set containing about 581 million
points and a road direction distance of approximately 4260 m,
the total computing time for extracting 3-D light poles, traffic
signposts, and bus stations is within 36 min. Comparative
studies also demonstrated that our proposed algorithm out-
performs the percentile-based algorithm in extracting 3-D light
poles. Therefore, we provide a feasible, promising solution

to rapid, automated extraction of urban road facilities toward
transportation-related applications using an MLS system. How-
ever, because the voxel-based normalized cut segmentation
method cannot segment very closely overlapped object clus-
ters, our proposed algorithm might encounter problems when
extracting light poles and traffic signposts that are hidden in
trees. In our future work, we will explore and develop new
methods, which do not depend on point cloud segmentation
operations, for object extraction and recognition from 3-D MLS
point clouds.
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