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Automated Road Information Extraction
From Mobile Laser Scanning Data
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Abstract—This paper presents a survey of literature about road
feature extraction, giving a detailed description of a Mobile Laser
Scanning (MLS) system (RIEGL VMX-450) for transportation-
related applications. This paper describes the development of
automated algorithms for extracting road features (road surfaces,
road markings, and pavement cracks) from MLS point cloud
data. The proposed road surface extraction algorithm detects road
curbs from a set of profiles that are sliced along vehicle trajectory
data. Based on segmented road surface points, we create Geo-
Referenced Feature (GRF) images and develop two algorithms,
respectively, for extracting the following: 1) road markings with
high retroreflectivity and 2) cracks containing low contrast with
their surroundings, low signal-to-noise ratio, and poor continuity.
A comprehensive comparison illustrates satisfactory performance
of the proposed algorithms and concludes that MLS is a reliable
and cost-effective alternative for rapid road inspection.

Index Terms—Mobile Laser Scanning (MLS), pavement cracks,
road markings, road surfaces, traffic safety.

I. INTRODUCTION

ROAD transportation plays a vital role in the lives of
people worldwide because it unites people for business

or pleasure by connecting small and large cities and urban and
rural communities, as well as connecting a country with its
neighbors, to enable the safe movement of goods, people, and
services. Roads and their features (including bridges, tunnels,
road markings, supporting structures, junctions, crossings, and
interchanges) are carefully designed and constructed to increase
road traffic safety, improve the efficient use of the overall net-
work, and reduce the harm (e.g., deaths, injuries, and property
damage) on the overall network from traffic collisions.

To safely keep people on the move, transportation depart-
ments or agencies in cities or countries must periodically per-
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form road surveying. The documentation of road infrastructure
includes both road surface geometry (e.g., longitudinal and
transverse slopes, lane width, and number of lanes) and road
environment (e.g., road markings, cracks, street signs, trees,
vegetation, and traffic light poles). The surveyed data are used
not only for transportation department administrations to main-
tain, rehabilitate, and reconstruct current traffic and parking
infrastructure but also to assess policies and practices affecting
roadways.

However, these transportation-related road features are man-
ually collected by involving an engineer annotating a digital
map or a manual classification of spatially referenced video
images. The operations for inspecting road features of large-
scale road networks are time consuming, labor intensive, and
costly. Mobile mapping refers to a means of collecting geospa-
tial data using sensors mounted on a mobile platform. The
development of a mobile mapping system was primarily driven
by advances in digital imaging and direct georeferencing tech-
nologies. Image-based mobile mapping systems greatly impact
conventional transportation surveying and mapping [1]. The
technology of 3-D laser scanning has further fuelled model-
based road design and automated machine guidance.

A vehicle-borne Mobile Laser Scanning (MLS) system,
which uses a laser beam to scan a visible surface and record the
beam traveling time and the reflected energy from the surface
to obtain its geometry and intensity data in the form of 3-D
point clouds, has been used in transportation agencies for a
broad spectrum of applications, such as route planning and pre-
liminary highway design [2]. Compared with photogrammetry
and field surveys, an MLS system captures high point density
and accurate 3-D point clouds in a relatively short time period
[3], [4]. However, an MLS system, consisting of a Global Navi-
gation Satellite System/Initial Measurement Unit (GNSS/IMU)
integration system, laser scanners, and several high-resolution
cameras with a computer control device, is still in its infancy
and has only been commercially available for several years [5].
Thus, there is an urgent need to investigate MLS as a reliable
and cost-effective alternative for road inspection, particularly in
regard to effective road traffic safety.

In this paper, we develop three algorithms for extracting road
features (including road surfaces, road markings, and pavement
cracks), which are the main factors for road traffic safety. For
example, asphalt concrete-surfaced pavement distress measure-
ment is an indispensable part of pavement management systems
to cost effectively maintain and rehabilitate roads. Cracking,
which is caused by fracture due to excessive loading, fatigue,
thermal changes, moisture damage, slippage, or contraction, is
the most common type of asphalt concrete-surfaced pavement
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distress [6], [7]. Road markings on paved roadways, a criti-
cal type of road feature in traffic management systems, have
important functions in providing guidance and information to
drivers and pedestrians. Along with pavement condition and
road topography, the lack of visibility of road markings is a
key element in road accidents where the road itself is the cause.
Particularly, in highly populated urban environments, high ac-
cident rates are caused by the absence of clearly presented
road signals [8]. As a result, with the developed algorithms, a
practical system that monitors road environments is needed to
maintain high technical standards for road traffic safety.

II. RELATED WORK

Emerging in 2003, MLS has attracted much attention for
mainly transportation-related surveys [9], [10]. The develop-
ment of MLS has created a data revolution. Using an MLS
system, a mobile mapping crew can drive on a highway, rural
road, railroad, or the shoreline of a river or a lake. Along the
way, the system captures trees, bridges, streetlights, buildings,
power lines, other small street-scene objects (e.g., cracks and
road markings), and virtually anything visible to the eyes in
three dimension. The collected data represent a totally immer-
sive 3-D view of objects and surroundings. In the following
sections, a variety of methods developed for extracting roads,
road markings, and cracks from MLS data are reviewed.

A. Studies on Road Surface Extraction

Although much effort has been made to extract road features
from MLS data, efficient interpretation methods are still in a
state of early development. Most algorithms roughly follow
these common steps when interpreting MLS point clouds:
1) detection of planar or smooth surfaces and 2) classification
of points or point clusters using data features, such as local
point patterns, intensity, and pulse return information [11]. In
the first category, some model fitting methods, such as Hough
transform [12], RANdom SAmple Consensus (RANSAC) [13],
and weighted least square linear fitting [14], were widely em-
ployed to directly identify road surfaces. In the second category,
because point density drops perpendicular to the line of travel,
it was used to separate road surfaces [15], [16]. However, these
methods may fail when erroneous points exist in MLS data.
Recently, intensity has become another factor considered in
road feature detection [17].

Apart from MLS data characteristics, road properties have
been explored to facilitate road feature extraction. For example,
because road curbs represent road boundaries in most urban en-
vironments, some researchers detected curbs to identify road re-
gions and to calculate obstacle-free areas [18], [19]. Reference
[20] combined prior knowledge about the minimal width of
roads and elevation information for classifying road regions and
edges. To compensate for the limitations of MLS data, some
researchers integrated MLS data with other data sources, such
as video cameras [21] and Airborne Laser Scanning data [22].

Most of these reviewed methods, which are based on math-
ematical estimations, could be time consuming and computa-
tionally intensive for such large volumes of MLS data. Little
research has been carried out to extract road surfaces based

on trajectory data, which precisely record real-time position
information of the vehicle. In addition, most urban roads are
designed with curbs for separating them from pedestrian side-
walks. There is a need to develop a road surface extraction
algorithm to accurately estimate road edges based on road
features and MLS data characteristics.

B. Studies on Pavement Crack Extraction

Currently, visual measurement techniques have been mostly
explored to inspect and evaluate pavements in videos or
digital images collected from a specially equipped vehicle.
Reference [7] summarized the following six common seg-
mentation and classification methods: regression/relaxation
thresholding, Canny edge detection, crack seed verification,
multiscale wavelets, iterative clipping method, and dynamic
optimization-based method. Reference [23] also demonstrated
that F∗ seed growing, a dynamic optimization-based method,
can effectively handle blurry and discontinuous pavement im-
ages. However, most algorithms are computationally intensive.
Based on either grayscale discontinuity or similarity, the effec-
tiveness of thresholding-based segmentation methods mostly
depends on pavement environments and materials, leading to
unreliable crack detection results [24], [25]. Wavelet-based
transforms, such as beamlet, contourlet, and their variants, are
another common type of technique for crack extraction [26].
However, due to the anisotropic properties of wavelets, they of-
ten fail to process cracks with high curvature or poor continuity.

Mathematical-morphology-based methods have been used
to extract cracks in pavement images [27]. However, these
algorithms are limited to three structural elements (disk, line,
and square) and by the choice of parameters. Much effort on
crack extraction has been made in the fields of artificial intel-
ligence, data mining, machine learning, and neural networks
[28], [29]. However, the selection of parameters depends on
crack variations and image quality. Additionally, image-/video-
based crack extraction algorithms suffer from the influence of
several environmental factors, such as the following: 1) shad-
ows cast by trees and moving vehicles; 2) weather conditions;
and 3) the imaging time of day, which has the greatest impact
on the visibility of road surfaces.

C. Studies on Road Marking Extraction

When it comes to road marking extraction from either digital
photographs or videos [30]–[34], precise geometrical informa-
tion is limited by the previously mentioned three environmen-
tal factors. Thus, although work on road marking extraction
from either digital photographs or videos has been pursued for
years, fully automated road marking extraction has remained a
challenge.

The MLS data indicate that road markings painted on road
surfaces are highly retroreflective; thus, high reflectance in the
form of intensity has been widely used to extract road markings
[10], [13], [35]–[37]. Reference [35] outlined road markings by
first applying an interpolation method to MLS points, segment-
ing Geo-Referenced Feature (GRF) images based on intensity
and elevation information, and extracting road markings by
integrating their semantic knowledge (e.g., shape and size).
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Fig. 1. RIEGL VMX-450 system with an inset picture of the laser scanners,
cameras, and the navigation system mounted on the roof rack.

However, intensity data are highly dependent on the following:
1) the scanning range from the laser sensor to the target; 2) the
incidence angle of the laser beam; and 3) material properties of
the target. Thus, prior to segmentation, intensity data must be
normalized. Jaakkola et al. [36] applied radiometric correction
to MLS intensity data. Vosselman [37] introduced a distance-
dependent intensity normalization method, by which several
types of road markings are identified. However, the extracted
markings are incomplete and contain distinguishable noise. The
predefined shapes used for fitting to road marking segments are
considered the cause. As most algorithms applied a globally
threshold-based segmentation to intensity data, much noise
is introduced, resulting in a less effective extraction of road
markings.

III. MLS SYSTEM AND MLS DATA

A. RIEGL VMX-450 System

A RIEGL VMX-450 system used in this study is composed
of the following: 1) two RIEGL VQ450 laser scanners; 2) four
charge-coupled device cameras; and 3) a set of Applanix POS
LV 520 processing systems containing two GNSS antennas,
an IMU system, and a distance measurement indicator. As
shown in Fig. 1, by using a point-of-sale computer system, the
previously mentioned components are integrated, fixed within
a case, and mounted on the roof of a vehicle. The accuracy of
the resultant positions and orientations largely determines the
overall performance of the RIEGL VMX-450 system.

The navigation solution in the RIEGL VMX-450 system uses
two dual-frequency GNSS antennas, which are referred to as
a primary receiver and a secondary receiver. Both receivers
provide raw GNSS satellite observable information to a POS
LV computer system. The secondary receiver is used by a GPS
Azimuth Measurement System (GAMS) to aid heading. Its data
are used in conjunction with information from the primary
receiver for GAMS heading calculations.

In Fig. 1, two laser scanners are symmetrically configured on
the left and right sides, pointing toward the rear of the vehicle at
an angular heading of approximately 135◦. This configuration is
called a “butterfly” configuration pattern. The full specifications
for laser scanners can be found on the RIEGL website. Note that
the field of view of a scanner is 360◦, which is also termed as
“full circle” owing to a motorized mirror scanning mechanism.
Thus, the scanned data of the two scanners form a slant gridlike
pattern. The scanning data are complemented by the images
from a camera system. According to pulse per second from the
primary GNSS receiver, the scanned data and digital images are

TABLE I
PARAMETERS OF THE GEO-REFERENCED EQUATION

synchronized with positions and orientations by POS LV 520
system.

B. Georeferencing and Scanning Parameters

Calculation of ground coordinates for illuminated objects,
which is termed as “georeferencing,” from an MLS system
can be found in [38]. The laser scanner is georeferenced when
its position and orientation relative to the mapping coordinate
system are known by a set of navigation systems. These data
must be precisely time stamped for sensor integration and
determination of the exact coordinates of mapping points [39].
The coordinates of a target P can be calculated by

rmp =rmGPS(t)+Rm
IMU(t)

(
rIMU
IMU/S−rIMU

IMU/GPS+RIMU
S rSp

)
(1)

where the parameters and their descriptions are listed in Table I.
Equation (1) defines the relationship among all observation

parameters for producing georeferenced point clouds. To ex-
amine final point accuracy, we discuss typical errors in these
observations.

1) IMU attitude errors: The IMU component consists of
three orthogonal accelerometers and three orthogonal gy-
roscopes. Accordingly, systematic sensor errors include
accelerometer biases and gyro drifts. Typically, as the
IMU components are supplied by two or three different
system manufacturers, their accuracies can be examined
from the manufacturers’ technical specifications.

2) Positioning errors: The positioning accuracy of the GNSS
subsystem is influenced by the following factors: multi-
path, atmospheric errors, baseline length, poor satellite
geometry, and loss of lock. Therefore, the absolute level
of the positioning accuracy for an MLS survey is difficult
to quantify.

3) Laser scanner errors: Most laser producers provide two
main error components: errors in distance and errors in
angles. Distance error is caused by the internal accuracy
of the clock because the internal clock measures the time
of flight and the width of the output laser pulse; angle
error is due to the angular resolution of the laser scanner
angle encoder and the uncertainty of beam divergence.

4) Boresight errors: The boresight errors result from the
misalignments between IMU and laser scanner measure-
ment axes. To process laser scanning data, the location
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TABLE II
SCANNING PARAMETERS

of the scanner and its orientation in relation to IMU
must be precisely known because alignment errors will
be propagated over the distance between the sensor and
the object being scanned.

5) Lever arm offset errors: Usually, the origins of laser
scanners and IMU cannot be collocated; thus, the lever
arm offsets must be known in order to accurately obtain
georeferenced MLS point clouds.

The preceding discussion of error sources for an MLS system
demonstrates that the accuracy of MLS point clouds depends on
the underlying accuracy of the GNSS/IMU navigation solution
and laser scanners. Among these errors, two possible error
sources (boresight and lever arm) can be recovered by system
calibration. In fact, the overall accuracy of MLS point clouds
is mainly affected by the navigation solution because the mul-
tipath effects and signal shading (caused by high-rise buildings
and trees along the street) deteriorate the GNSS conditions in a
moving vehicle [3]. GNSS positioning errors in MLS systems
have a great impact on the overall error budget, owing to a
short distance (even about several to 10 m) between a laser
scanner and a scanned object. To improve MLS data accuracy,
geometric correction is indispensable.

For a laser scanner, the following scanning parameters are
defined:

Ss [line/s]=LIncrement[deg]×PRR[Hz]/360◦ (2)
LDist [m/line]=SG [m/s] /Ss [line/s] (3)

PDist[m]= tan (LIncrement[deg])×TDist[m] (4)
PDensity

[
pt/m2

]
=1/ (PDist[m]× LDist[m]) (5)

where the parameters and their descriptions are listed in
Table II.

From (2)–(5), an average point density of the collected data
depends on scan speed Ss, vehicle speed SG, and system
effective measurement rate or pulse repetition rate (PRR). Scan
speed Ss is determined by PRR and scan line incremental.
Scan-line-to-scan-line spacing LDist is proportional to SG and
inversely proportional to Ss, indicating that the higher the
vehicle speed, the lower the scan-line-to-scan-line spacing in
the running direction, whereas the higher the scan speed, the
higher the scan-line-to-scan-line spacing. However, point-to-
point spacing PDist in a single scan line varies significantly
with scan angles and scan counts but very little with vehicle
speeds. The point density within scan lines varies greatly with
both the vertical orientation of the features being scanned and
the distance from the scanner [40].

C. Study Areas and MLS Data

The survey area is within Xiamen Island (longitude
118◦ 04′ 04′′ E, latitude 24◦ 26′ 46′′ N), a part of the City
of Xiamen, a major city on the southeast coast of China. In
addition to Xiamen Island, Xiamen City includes Gulang Islet
and part of the rugged mainland coastal region from the left
bank of the Jiulong River in the west to the islands of Xiang’an
in the northeast. The surveyed Huandao Road, which is called a
golden costal line, is a busy seaside green corridor for tourism,
sightseeing, leisure, and recreation; as a result, moist weather
and excessive loading cause a number of cracks spreading along
the road. The data were acquired on April 23, 2012, by a RIEGL
VMX-450 system.

As discussed in Section III-B, the navigation solution has
great impact on the accuracy of the MLS data. In general,
at least four satellites in view with position dilution of preci-
sion of six or lower are required for the standard positioning
service.

To evaluate the overall performance of the collected MLS
data, reference data, at least one level more accurate than the
system being tested, are collected. In most cases, corner points
of objects on the street and white road markings on the road
surfaces are selected because they are conveniently identified
in point clouds for accuracy assessment. Approximately 30
reference points at the corners of road markings were measured
by Leica personnel in Xiamen. With the reference points, the
accuracy of the collected MLS data is assessed.

As shown in Table III, the mean standard deviations of plani-
metric accuracy for the left and right laser scanners are 0.042
and 0.033 m, respectively. The mean standard deviations of
vertical accuracy for two laser scanners are 0.017 and 0.021 m,
respectively. Notice that the minimum standard deviation ap-
pears at the check points measured near the base station with
good GPS coverage. In spite of check point errors, the data
accuracy is still consistent with the accuracy of the navigation
system and even outperforms the Applanix’s specification. The
errors are lower than ±5 cm and meet the requirements of data
accuracy for urban surveying.

During this survey, we predefined two types of parameters:
mission parameters and scanner parameters.

Mission Parameters: The mission parameter category in-
cludes TDist and SG. The surveyed Huandao Road is quite
busy, the average driving speed ranges from 30 to 50 km/h. The
buildings (e.g., high-rise residential apartments and commercial
buildings) are located along this typical urban road. Thus, we
kept TDist = 30 m and SG = 30 km/h.

Scanning Parameters: As for scanning parameters, we used
the default values for all parameters, such as scan mode (line),
scan line start (0◦), scan line end (360◦), scan increment angles
(0.1143◦), and PRR (550 kHz). Thus, according to (2)–(5), at
the vehicle speed of 30 km/h, the scan speed, the line distance,
the point distance, and the average point density are estimated
as 200 line/s, 0.0583 m, 0.0598 m, and 286.44 point/m2, re-
spectively. Point density, which strongly relies on the incidence
angle and the nominal distance to the target, can be determined
by dividing the number of MLS points on the plane by the
total area.
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TABLE III
ACCURACY OF THE COLLECTED MLS DATA

Fig. 2. Illustration of curb-based road surface extraction from MLS data.
(a) Trajectory-based MLS data profiling. (b) A number of profile examples.
(c) Close-up views of road curbs.

IV. ROAD FEATURE EXTRACTION

A. Road Surface Extraction

Note that curbs are road boundaries that separate pedestrian
pavements or other green spaces from road surfaces. We pro-
pose a curb-based road surface extraction algorithm with the
assistance of vehicle trajectory data. As a mobile mapping crew
drives along road surfaces, trajectory data are useful for curb
detection. The proposed algorithm is composed of four steps:
1) data profiling; 2) pseudo scan line generation; 3) curb
detection; and 4) road edge fitting.

Perpendicular to trajectory data, we first partition point
clouds into a number of data blocks with a given length (Tbs).
A profile is sliced for each data block with a given width
(Tpw). Therefore, each profile contains points pertaining to
road surfaces and points pertaining to objects beyond the road
such as trees, cars, or curbs. As shown in Fig. 2(a), red rectan-
gles represent profiles. All points for each profile are projected
onto the plane perpendicular to the line of travel, as shown in
Fig. 2(b). For the MLS system used in this study, the vehicle
frame is defined as the right-handed orthogonal coordinate
system with its origin at an arbitrary user-defined point. The
orientation of the vehicle frame is fixed so that the x-axis is

Fig. 3. Illustration of pseudo scan line generation.

toward the front of the vehicle, the y-axis is toward the right of
the vehicle, and the z-axis is toward the bottom of the vehicle.
Fig. 2(c) shows a profile image by projecting all points within
the profile onto the YoZ-plane in the vehicle frame. A close-up
view demonstrates that curbs, vertical or nearly vertical to road
surfaces, are sharp height jumps; therefore, we estimate curbs
by slope and elevation difference criteria and, finally, separate
road points from nonroad points.

To this end, each profile is vertically divided into a number
of bars with a bar size of Tcs. The bar size depends on the point
density of MLS data within experiments. Second, a sampling
strategy is carried out for each bar to select a principal point,
as shown in Fig. 3. To determine the principal point within
a bar, a Quick Sort algorithm is used to sort all the points
within the bar in elevation. Next, from the lowest point, we
calculate the elevation differences ΔLj (j = 1, 2, 3, . . . , N) of
two consecutive points and group them into different layers. N
is the number of the points in a bar. The two consecutive points
are labeled into the same layer if and only if the elevation dif-
ference lies below a predefined threshold, that is, ΔLj < LT .
Otherwise, a new layer is created to separate the two points.
Usually, we keep LT = 5 cm. Based on the assumption that
points belonging to road surface are within the lowest layer,
principal points within each bar are determined by selecting the
point with the highest elevation within the lowest layer. With
this scheme, most outliers, such as tree points, over the road
are removed. The extracted points are then reorganized into
a pseudo scan line, which maintains road surface points and
critical road features with less disruptive noise.

The proposed algorithm for detecting curbs is, based on both
slope and elevation evaluation, implemented at the scanning
center in two opposing ways. We mathematically define the
slope between two consecutive points in a generated pseudo
scan line and the elevation difference of a point relative to its
neighborhood in the pseudo scan line. Assume that slopes at
the borders of pavements and roadways are usually larger than
that of continuous points on the roadways. Moreover, pavement
points have larger elevations than roadway points in a neigh-
borhood. We use two criteria to detect whether a point is a curb.
First, the slope criterion is used to detect nonroad points (e.g.,
car points and curbs). Then, the elevation difference criterion
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is used to detect curbs from the nonroad points. Street design
and construction manuals in many countries demonstrate that
curb height generally ranges from 10 to 20 cm. We, thus,
mathematically define the following two observations as

∀ pi :
{

if (Sslope>ST &(Gmin≤Gi≤Gmax))curb candidate
otherwise, noncurb point

(6)

where Sslope denotes the slope of two consecutive points, ST

is a given slope threshold, and Gi is the elevation difference of
a point and its neighbor. Gmin and Gmax are the minimum and
maximum thresholds, respectively. Sslope is defined as

Sslope = arctan

(
Zi+1 − Zi√

(Xi+1 −Xi)2 + (Yi+1 − Yi)2

)

Sslope ∈
[
−π

2
,
π

2

]
(7)

where (Xi, Yi, Zi) and (Xi+1, Yi+1, Zi+1) are the coordinates
of two consecutive points in a pseudo scan.

Note that (7) can take both positive and negative signs. A
positive slope means a point sequence entering a nonroad point
from the road at the curb boundary, whereas a negative slope
represents a point sequence leaving a nonroad point from the
road at the curb boundary. In our algorithm, we start the labeling
process from the vehicle position on the road surface. In other
words, the initial labeling is entering from the road into the
curb. Therefore, once a point, pi gets a slope Sslope greater
than ST , it means that the point reaches a possible curb. It will
be labeled as a curb candidate. From all the curb candidates,
including curbs or some other objects such as cars over the road,
we must check their elevations to detect real curbs. If a curb
candidate’s elevation difference gi at its vicinity is within the
range of [Gmin, Gmax], the curb candidate is labeled as a curb;
otherwise, it will be labeled as a noncurb point. As the survey
vehicle moves along the road surface, with prior knowledge
of the road, we select curb candidates closest to the scanning
center as curbs.

All curbs detected from profiles are sparse because we sec-
tion MLS data along vehicle trajectory data into a number of
data blocks at a certain length. Therefore, we use a cubic spline
interpolation method to generate two smooth road edges from
these curb points and, finally, separate road points from nonroad
points.

B. Applications of Road Surface Extraction: Road Markings

Based on the extracted road surface points, we propose a road
markings recognition framework, which includes the following
three steps.

1) GRF image generation, which locally and globally inter-
polates the extracted road surface points into a GRF im-
age based on elevation and intensity data via an extended
inverse distance weighted method. Although interpola-
tion might cause a loss of accuracy, it is computationally
efficient to process enormous volumes of MLS data using
established image processing algorithms.

2) Point-density-dependent thresholding, which adaptively
segments the GRF image using multiple thresholds. In the
generated GRF image, a threshold-based segmentation is
normally carried out to obtain road markings. However,
intensity values gradually fade from the scanning center
to its two sides. This variation is because intensity values
depend on the following: 1) the scanning range from
the laser sensor to the target; 2) the incidence angle of
the laser beam; and 3) material properties of the target.
Accordingly, we propose a point-density-dependent mul-
tithreshold segmentation method based on the variations
of scanning distance. Within different ranges of the scan-
ning distances, local optimal segmentation thresholds are
adaptively estimated.

We observe that point density approximates normality.
Thus, a Gaussian normal distribution can be fitted to
obtain two estimated parameters: mean μ and standard
deviation σ. Based on the “68–95–99.7” rule of a normal
distribution, which says that about 68% of values within
one standard deviation σ away from the mean, about
95% of the values within two standard deviations, and
about 99.7% within three standard deviations, we assume
that intensity variation follows this rule. Thus, according
to the three-sigma rule, the corresponding ranges are
determined to vertically section data into a number of
bins, on each of which we calculate an optimal threshold
for segmentation by the method of Otsu [25], which is
widely implemented as the default approach to image
thresholding.

3) Morphological operations, which refines the extracted
road markings by removing noise and filling out holes.
With the proposed segmentation method, the extracted
road markings still contain noise and are incomplete. By
knowing the form and the structure of road markings,
a morphological closing operation is defined. Although
there are many types of road markings, such as cross-
walks, characters, words, symbols, and arrows, most of
them are linearly shaped. To simplify convolution, a
horizontally linear shaped structuring element is used to
dilate and erode the extracted road markings. The linear
structure with length l and direction θ is denoted by
Kline θ(l). The direction θ is determined by trajectory
data. The length l = 3 pixels is selected for convoluting
road markings.

C. Applications of Road Surface Extraction: Pavement Cracks

Similarly, the method for extracting cracks is proposed
based on the interpolated GRF image and mainly includes
the following three steps: 1) thresholding, which segments
the generated GRF image into a number of crack candidates;
2) crack enhancement, which enhances crack pixels from a
noisy and corrupted background by applying iterative tensor
voting to the GRF image; and 3) morphological thinning, which
extracts the enhanced cracks from the background.

The visual appearance of cracks in the near infrared is
usually darker than that in the normal road surface because of
the following factors: 1) the increasing surface roughness and
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shadows cause reflectance differences between the actual
pavement and the high-severity cracks; 2) the concave-
shaped cracks make noncracked road pavements brighter; and
3) deeper layers exposed by cracks increase hydrocarbon ab-
sorption and highlight the contrary spectral signals with pave-
ment surfaces [41]. Based on intensity values, we first segment
a GRF image to obtain possible cracks (crack candidates). After
thresholding, we use tensor voting to enhance crack candidates
in the GRF images. The tensor voting framework outperforms
other methods for identifying cracks because of its capability
of preserving all possible sharp curvilinear structures in the
presence of a severe noise and providing a very high computa-
tional efficiency. In two dimension, a second-order symmetric
nonnegative definite tensor is represented by a 2 × 2 matrix,
which is decomposed as [42], [43]

T = (λ1 − λ2)e1e
T
1 + λ2

(
e1e

T
1 + e2e

T
2

)
(8)

where λ1 and λ2 (λ1>λ2) are the eigenvalues. e1 and e2 are the
corresponding eigenvectors. Geometrically, the tensor is visual-
ized as an ellipse shaped by the tensor eigenvectors’ directions
and eigenvalues’ magnitudes. The first term in (9) is termed as
a stick tensor, indicating an elementary curve element with e1
as its curve normal. The second term is called a ball tensor,
indicating a perceptual structure without preferred orientation.

Each crack candidate is initially encoded by a ball tensor with
unit saliency, in a form of a 2 × 2 identity matrix. After the
construction of the tensor space, the first round of ball tensor
voting is performed using the ball voting field. The ball tensors
only cast votes to other ball tensors in their voting fields. We
call this tensor voting as sparse ball voting because votes are
only cast from tensors to tensors, which means noncracks do
not join in this voting.

After large-scale sparse ball voting, all the tensors corre-
sponding to the crack candidates obtain rough orientations and
magnitudes. However, the mapped cracks are inaccurate and
lack saliency. A round of stick voting is required to refine
the orientations and to obtain a saliency map of cracks. Each
oriented crack candidate is further encoded as a stick tensor. A
dense voting process is then executed with the stick field.

Usually, after the dense stick voting process, curvilinear
cracks are enhanced on the resultant saliency map. However,
the cracks in the GRF image are presented with much noise
and a low contrast with their surroundings. Only one round of
dense stick voting could not achieve a good saliency map for the
cracks. An iterative scheme is thus proposed to gradually refine
the previous results of the dense stick voting, which is termed
as iterative tensor voting (ITV). For each iteration, dense stick
voting is employed with the stick voting field. As such, each
iteration refines the previous one. With the iterative scheme, the
tensor with high λ1 − λ2 values seems to be concentrated.

To further remove noise and obtain cracks in the crack
probability map, a 4-pass-per-iteration morphological thinning
algorithm is applied. The algorithm serves to thin the cracks
down to their median axes, by peeling off their boundary pixels.
After the implementation of the algorithm proposed by Jang
and Chin [44], the proposed algorithm produces a converged
8-connected one-pixel-thick skeleton.

Fig. 4. (Top) Raw MLS data and (bottom) extracted road surfaces. (a) Huandao
data set. (b) ICEC data set.

V. EXPERIMENTS AND DISCUSSIONS

A. Road Surfaces

Six parameters were used for road surface extraction. Tbs and
Tpw are used at the stage of data profiling, Tcs and ΔLj are used
at the stage of pseudo scan line generation, and Gi and Sslope

are used at the stage of curb detection. In our study, according
to prior knowledge about road surfaces, we predefined four
thresholds, namely, LT = 5 cm, Gmin = 8 cm, Gmax = 30 cm,
and ST = 60◦. As there are no sharp turnings and curves on
the roads, we kept Tbs = 3.0 m, Tpw = 25 cm, and Tcs = 5 cm
through the following experiments.

We tested our road surface algorithm on two data sets se-
lected from the survey conducted on April 23, 2012: Huandao
containing 8.4 million points and ICEC containing 5.4 million
points, as shown in Fig. 4. With these thresholds, curbs were
extracted from the profiles and fitted into two smooth edges of
the road. A visual inspection demonstrates the good extraction
results of road surfaces, as shown in Fig. 4. To quantitatively
assess the proposed algorithm, we compared the extracted road
surfaces with the reference points collected by a smart station
Leica TS15i-1/GS15, which provides measurements at the mil-
limeter level. Twenty and fifteen reference points are used for
validating the Huandao and IECE data sets, respectively. The
Euclidean distances between the positions of the extracted and
the references were calculated. A box plot for the accuracy
of the extracted road edges is shown in Fig. 5. In each box,
the central line represents the median value, whereas its lower
and upper edges represent the 25% and 75% percentiles. The
minimum and maximum values are represented by the lower
and upper adjacent values. A mean and median value close
to zero indicates high accuracy. Similarly, we calculated the
root-mean-square error (RMSE) values for the two data sets in
horizontal and vertical, respectively. The estimated horizontal
and vertical RMSEs of the Huandao data set are 8.6 and 2.1 cm,
respectively; whereas the ICEC data set has 7.6 and 2.1 cm in
horizontal and vertical accuracies, respectively.

To assess computational efficiency, the proposed algorithm
was tested on a personal computer with a 3.30-GHz Intel(R)
Core(TM) i3-2120 central processing unit. Thus, the running
time is about 1.01 and 0.78 s for the Huandao and ICEC
data sets, respectively. Although operations in the road sur-
face extraction process are mostly performed on 3-D data, the
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Fig. 5. Box plot for the accuracy of the extracted road edges.

Fig. 6. Two road sections including (left) raw MLS data and the (right)
extracted road surfaces. (a) Road 1. (b) Road 2.

process is computationally efficient because of no data indexing
structures required for data querying and searching. Thus, our
algorithm is a feasible means to detect road surfaces in real time
and provides a strong support to inspect road-related features
efficiently.

To demonstrate the ability of our algorithm to different road
types, we tested it on the two distinct road sections: Road 1 and
Road 2, as shown in Fig. 6. Fig. 6(a) shows a road section with
green belts containing trees, shrubs, herbaceous perennials,
and ornamental grasses. Visual inspection demonstrates that
road surface points are completely and accurately extracted,
although some points on curbs are misclassified as road surface
points at the semicircles of green belts. Based on the assump-
tion that road surface is flat in a small local neighborhood,
points close to the extracted road edges were selected and
fitted by a RANSAC algorithm to remove misclassified points.
Fig. 6(b) shows a road section with a large horizontal curvature.
A large Tbs could cause a decrease of the extracted curb points
on the outer side of the road, leading to a large fitting error
and, thus, inaccurate road edge extraction. Thus, we reduced
the value of Tbs from 3.0 to 1.0 m to obtain more road sections
and road profiles and, finally, to detect more curb points for
accurately extracting road edges. The trajectory data determine
the selection of Tbs. The extracted road surface points indicate
that our algorithm is able to handle roads with curvatures.

Fig. 7. Proposed algorithm tested on five road sections with different
types of road markings: (left) GRF image; (middle) point-density-dependent
multithresholding segmentation results; (right) extracted road markings.
(a) Marking 1 (hatch and solid line markings). (b) Marking 2 (crosswalk
markings). (c) Marking 3 (symbol and continuous and broken lane markings).
(d) Marking 4 (arrow, symbol, and continuous and broken lane markings).
(e) Marking 5 (word and continuous and broken lane markings).

B. Road Markings

The applicability of the proposed road marking extraction
algorithm was tested on five road sections containing several
types of road markings, such as arrow, symbol, lane, word, and
hatch markings. To the best of our knowledge, currently, there
is no data set designed for evaluating the performance of road
marking extraction methods from MLS data.

We kept Tcs = 4 cm for generating GRF images. Fig. 7
shows that all road markings are correctly and completely
identified. By comparing the extracted road markings with the
manually interpreted ground truth, we quantitatively evaluate
the extracted road markings using the following three measures:
completeness (cpt), correctness (crt), and F -measure. cpt de-
scribes how complete the extracted road markings are, whereas
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TABLE IV
QUANTITATIVE ASSESSMENT OF THE PROPOSED

ALGORITHM ON FIVE ROAD SECTIONS

Fig. 8. Extracted road markings overlaid on the GRF images. (a) Huandao
data set. (b) ICEC data set.

crt indicates what percentage of the extracted road markings
are valid. cpt is expressed as cpt = Cp/Rf , and crt is defined as
crt = Cp/Ep, where Cp denotes the number of pixels belonging
to the real road markings, Rf is the number of the ground
truth pixels collected by the manual interpretation method, and
Ep represents the number of pixels extracted by the proposed
algorithm. F -measure is an overall score, which is defined as
F = 2 × ((cpt · crt)/(cpt + crt)).

Table IV shows that the crt values are greater than 0.82,
the cpt values are higher than 0.92, and the F -measure values
range from 0.87 to 0.96. The three measures, i.e., cpt, crt, and
F -measure, for all cases, indicate that the proposed method is
robust to different types of road markings.

We conducted tests on the Huandao and ICEC data sets,
respectively. The road markings extracted from the data sets
are displayed in Fig. 8. We overlaid the extracted road markings
on the GRF image. The close-up views of two data sets show
that our algorithm completely extracts road markings with less
noise. The quantitative analysis shows that, for all the road
markings, the values of cpt, crt, and F -measure are consistently
above 0.94, 0.82, and 0.88, respectively.

The experimental results demonstrate that our algorithm is
able to extract road markings from a large amount of MLS
data because of the following: 1) the extracted road surface
serves prior knowledge to facilitate the road marking extraction
process and improve the correctness of road markings; 2) a
combination of local and global intensity weights contributes
to the generation of GRF image; and 3) the proposed point-
density-dependent multithreshold segmentation method over-
comes inconsistent intensity values caused by the incidence
angle of laser pulses and the range of the scanner center to the
illuminated road surface.

Fig. 9. GRF images and extracted cracks. (a) Crack 1. (b) Crack 2. (c) Crack 3.
(d) Crack 4. (e) Crack 5.

TABLE V
QUANTITATIVE ASSESSMENT OF THE PROPOSED

ALGORITHM ON FIVE CRACKS

C. Pavement Cracks

From the Huandao and ICEC data sets, we selected an area
of interest containing small cracks with a few centimeters in
width extending to large alligator cracks up to the size of 10 cm.
Our main focus was to accurately extract these cracks in the
GRF image. Fig. 9 shows Cracks 1–5 selected from the GRF
image with a ground sample distance of 2 cm. Cracks 3–5
have a size of 200 × 200 pixels, and Cracks 1 and 2 have
a size of 250 × 150 pixels. These cracks contain low signal-
to-noise ratio (SNR) rates and low contrasts with their sur-
roundings in the GRF images. With our proposed algorithm,
curvilinear cracks were enhanced, and their surrounding noise
was suppressed or removed. Visual inspection shows that cracks
are well extracted, consistent with the original GRF images, as
shown in Fig. 9. From a quantitative perspective, we assessed
the extracted cracks using cpt, crt, and F -measure. Table V
lists three measures for five cracks. We achieved the cpt values
higher than 0.96, the crt values greater than 0.85, and the
F -measure values higher than 0.90, indicating that the proposed
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Fig. 10. Crack detection results for the 75-m-long road section. (a) GRF image. (b) Detected cracks. (c) Detected cracks overlaid on the GRF image.

algorithm is robust to different types of cracks presented in the
noisy and corrupted GRF images.

To further demonstrate the performance of the proposed
algorithm, we selected a road section covering a number of
cracks, as shown in Fig. 10. The selected two-lane road section
has a length of 75.4 m and a width of around 8 m [see
Fig. 10(a)]. The number of road points is 2 547 020. The
resolution of GRF images is 2 cm, which means that the
width of cracks shown in the GRF image is larger than 2 cm,
indicating these cracks are desperately needed to be repaired,
such as sealing or filling operations. Fig. 10(b) and (c) shows
extracted cracks and their overlaid results in the GRF image. As
shown in Fig. 10(c), we extracted almost all cracks with widths
over 2 cm. In order to accelerate the detection procedure, the
75-m-long road was segmented into a series of small images
with a size of 200 × 125 pixels. The total processing time
for all small images is approximately 5995 s, computationally
intensive due to iteration operations involved in the tensor
voting process. However, it could be solved in the recent
research of distribution computation because the voting process
of each tensor is independent. In a parallel environment, with
a multithread scheme, computation burdens can be distributed
on each parallel procedure, indicating that computational per-
formance will be obviously improved and that time complexity
will be greatly reduced. In addition, although the resolution of
current MLS data limits us to detect cracks over 2 cm, hardware
advancement in the foreseeable future will allow us to detect
cracks at millimeter level.

VI. CONCLUSION

We have presented a RIEGL VMX-450 system used for
transportation-related applications, indicating that MLS tech-
nology is suitable for collecting 3-D geospatial data of road
networks and corridor environments and conducting road in-
ventory and transportation-related surveying.

Assuming that curbs are road boundaries, we have proposed
a curb-based road surface extraction algorithm to extract road
surface points from large volumes of MLS data. Our algorithm
consists of four steps: data profiling, pseudo scan line gener-

ation, curb detection, and road edge interpolation. The experi-
mental results demonstrated that the accuracies of detected road
surfaces meet the requirements of transportation-related road
applications, such as mapping natural terrain, assessing road-
way condition, conducting Geographic Information System,
and modeling urban traffic. Based on the detected road surface
data, we have presented automated road marking and pavement
crack extraction algorithms, respectively. Our road marking
extraction algorithm achieved stable performance on six road
sections, which include arrow, solid, symbol, crosswalk, words,
and hatch markings. Different from highly retroreflective road
markings, cracks are represented by nonuniform intensity, the
low contrast with their surroundings, and low SNR owing
to particle materials of asphalt-concrete-surfaced roads. Our
algorithm used ITV to successfully enhance curvilinear crack
structures from noisy and corrupted road data.

Our research on MLS data provides valuable insights into
and a prototype of road feature extraction at all levels of
transportation agencies and opens a window to advanced MLS
technologies for road surveying.
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