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Bayesian Classification of Hyperspectral Imagery

Based on Probabilistic Sparse Representation
and Markov Random Field

Linlin Xu, Student Member, IEEE, and Jonathan Li, Senior Member, IEEE

Abstract—This letter presents a Bayesian method for hyper-
spectral image classification based on the sparse representation
(SR) of spectral information and the Markov random field mod-
eling of spatial information. We introduce a probabilistic SR ap-
proach to estimate the class conditional distribution, which proved
to be a powerful feature extraction technique to be combined with
the label prior distribution in a Bayesian framework. The resulting
maximum a priori problem is estimated by a graph-cut-based
a-expansion technique. The capabilities of the proposed method
are proven in several benchmark hyperspectral images of both
agricultural and urban areas.

Index Terms—Bayes classifier, graph cut, hyperspectral image
classification, Markov random field (MRF), probabilistic sparse
representation (PSR).

I. INTRODUCTION

HE classification of remotely sensed hyperspectral im-

agery constitutes a challenging data-mining and machine
learning problem due to not only the high dimensionality
of various spectral bands but also the ambiguity in spectral
signatures of different classes caused by the existence of mixed
pixels [1]. In light of these difficulties, one essential issue is how
to extract the most compact and discriminative features from
the high-dimensional hyperspectral bands. Among many recent
studies [1]-[5], the sparse representation (SR) approach has
proven to be an extremely powerful tool for hyperspectral im-
age classification [2], [3]. It assumes that the high-dimensional
spectral vector can be sparsely represented by a few atoms in
a dictionary consisting of training samples. Therefore, forcing
sparsity, the training samples in all classes will compete for
their involvement in representing the spectral vector. The most
relevant class will eventually win large shares, resulting in small
representational residual, whereas the wrong or less-relevant
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classes will have no or less involvement, leading to high
representational residual. Therefore, the label of a pixel can
be determined by selecting the minimum residuals among all
classes. While this approach has proven its capability in re-
vealing the most discriminative information hidden in the high-
dimensional spectral vector, there is still a lack of probabilistic
approach, which provides the probability features rather than
residuals. A probabilistic approach is particularly important,
considering the facts that integrating contexture/spatial infor-
mation is an essential issue for hyperspectral image classifica-
tion [1]-[3], [5] and employing the Markov random field (MRF)
method, i.e., a classic and powerful method for modeling spatial
information, requires conditional probability in a Bayesian
framework [1], [6], [9], [10].

In this letter, we proposed a probabilistic SR (PSR) ap-
proach to be integrated with the MRF technique in a Bayesian
framework. Instead of using a unified dictionary consisting
training samples from all classes, we design one dictionary for
each class. Therefore, we derive a conditional probability for
the spectral vector by sparsely representing it over the class-
dependent dictionaries. While this probabilistic formulation of
SR is used with MRF for hyperspectral data classification, it
may also help other statistical methods in other applications.
The rest of the letter is organized as follows: Section II dis-
cusses the proposed PSR method and its integration with the
MREF technique. In Section III, experiments are designed to
examine the performance of the proposed method. Section IV
concludes this study.

II. PROPOSED APPROACH
A. Problem Formulation

In this letter, we denote the discrete lattice spanned by hy-
perspectral imagery by 7" and a site in the lattice by ¢t € T". We
represent the observation at site ¢ by x, i.e., a p-dimensional
random vector taking on values of various spectral bands, and
the label of site ¢ by y, i.e., a random variable taking on a class
{1,...,n}. Then, a hyperspectral image can be expressed as
x = {x¢|t € T} and the labels of this image as y = {y:|t €
T'}. In the classification problem, we are trying to infer y based
on x, which, in the Bayesian framework, can be achieved by
maximizing the posterior distribution of y given x, i.e.,

p(y/z) < p(z/y)p(y) )]
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where p(x/y) denotes the probability distribution of spectral
vector  conditioned on y, which allows the modeling of
spectral information; p(y) is the a priori probability of labels,
which allows the modeling of spatial information.

In this letter, p(x/y) is approached by SR to mine the most
discriminative information hidden in spectral bands, whereas
p(y) is implemented by the MRF-based multiple logistic
(MLL) prior to constrain regional smoothness. The maximum
a priori (MAP) problem is solved by the graph-cut-based
a-expansion algorithm.

B. PSR

In this letter, we assume that a spectral vector in a class
can be sparsely represented by the training samples in the
same class. Therefore, as opposed to the classic SR approach
that adopts a unified dictionary for all classes [2], [3], we
adopt separate dictionaries for different classes. We express the
observed signal variable at site ¢ that belongs to class k as

wgk) = A(k)sgk) +n (2)

where A (%) = {agk), aék), ce aS\IZ} is the dictionary consist-
(k)

ing of training samples in class k; s; ’ is the sparse vector
corresponding to class k, whose nonzero elements define which
columns in A*) will be used; and n is the class-independent
zero-mean Gaussian noise with diagonal covariance matrix A.
Although it is reasonable to assume different n for different
classes, it would increase the number of unknown parameters,
consequently the risk of overfitting. In our formulation, we

(k)

assume that A(¥)s;" is capable of capturing the discrimina-

. . . . k
tive information in .’BE );

independent. We treat A(k)sgk) as the fixed effect; hence, the
conditional likelihood of spectral vector & can be expressed as

thus, the random noise m is class

plx =z /y = k)
v
(2m)P/2|A[1/2

X exp {‘; (w0 = A©5) AT (- A0

3)
oo 0 0
A=1|¢o9 . o 4)
0 0 o

The matrix A*) can be implemented as a dictionary storing
training samples in class k. Given the dictionary A(®), the
unknown sparse vector sgk) can be estimated by solving the
following optimization problem:

5(F)

s, = argmin HA(k)sgk)

— sctHQ subject to Hsgk)HO <.
(5

The lp norm ||.]|o will simply count the nonzero items in

sgk). Hence, the optimal s:,E’“) is estimated by minimizing the

representation error with constraint on sparsity level. This NP-
hard optimization problem can be solved by some greedy
pursuit algorithms, such as orthogonal matching pursuit (OMP)
or subspace pursuit. Interested readers are referred to [7] and
[8] for further information. The estimation of the second un-
known parameter A relies on the label information. This issue
can be solved by the expectation maximization algorithm, by
treating the label y as missing information [6]. Therefore, A is
estimated from representation residuals in an iterative manner
(see Algorithm 1).

This PSR leads naturally to a discriminative model. As-
suming the labels of different sites are independent, accord-
ing to the Bayes rule, the posterior probability of 7, is
given by

p(ye/®t) o< p(e/ye)p(ye)- (6)

Assuming that the classes are equally likely, then p(y:/x:)
p(x¢/y:). Therefore, according to the MAP criterion, we can
estimate y; by maximizing p(x;/y;) over different classes. We
refer to our classifier as PSR, whose detailed implementation is
summarized in Algorithm 1.

Algorithm 1: PSR

Input: training dictionaries for all classes {A(}) ... AW}
data matrix @ = {x:|t € T}
Output: class labels y = {y;|t € T'}
Initialization: A =1, i := 1; 8{*) = OMP(A*, z,, 7); for
k=1,2,...,nandt €T ,
while i < iters or sum(diagml — f&z_l) > sdo
g¢ = argminy, {—log(p(w:/y:)) }
A" = var({z; — AV sV |t € test set})
end while

C. MRF-Based MLL Prior

Although PSR itself constitutes a classifier, it ignores the
contextual information that is of great importance for hyper-
spectral data classification. Therefore, we further incorporate
the spatial information by using the MRF-based MLL prior. The
MREF is a classical method for modeling contextual information
[9]. It promotes identical class labels for spatially close pixels.
The MRF-based approach is often implemented by the MLL
model, which can be expressed as [10]

p(y) = %exp (— > 5(yt,yu)> (7

teT ue Ny

where N, denotes the neighborhood centered at site ¢; and
5(yt,yu) = —1if ys = yu, whereas 6(ys, yu) = Lif yp # yu-

D. Complete Algorithm

The PSR and MLL in Section II-B and C are incorporated
into a Bayesian framework and solved by the MAP criterion.
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TABLE 1
OA, AA, AND # STATISTICS OBTAINED BY DIFFERENT METHODS (BEST RESULTS ARE HIGHLIGHTED IN BOLD TYPEFACE)
Datasets
Classifies Indian Pines Pavia U Pavia C
OA(%) AA%) K OA(%) AA(%) K OA(%) AA%) |«

OMP 67.8 64.7 0.632 80.4 83.1 0.738 96.2 91.1 0.931

OMPMLL 67.9 64.7 0.632 80.4 83.1 0.738 96.3 91.5 0.932

MLRsub 70.5 68.5 0.663 76.2 77.9 0.701 94.6 84.7 0.897

MLRsubMLL 94.7 90.6 0.946 96.1 95.2 0.953 98.3 95.8 0.970

PSR1 67.0 56.8 0.623 77.9 78.4 0.703 93.9 83.6 0.889

PSRIMLL 93.7 75.6 0.928 98.4 98.2 0.979 99.5 98.2 0.990

PSR2 72.3 65.1 0.686 78.4 78.3 0.709 93.7 82.6 0.884

PSR2MLL 97.8 83.5 0.975 99.1 98.8 0.987 99.4 97.9 0.989
The optimal labeling y can be obtained according to MAP images are urban images acquired by the Reflective Optics Sys-
criterion tem Imaging Spectrometer, with a spatial resolution of 1.3 m,
consisting of 103 spectral bands after removing 12 noisy bands.
N : (yt) The University of Pavia image is centered at the University of

—arg min —log p (act A\, s )+ ) . o ;

Y & y {tEZT[ & lve: A, 8¢ 7u§ (v Yu) Pavia, consisting of 610 x 340 pixels, whereas the Center of
(8) Paviaimage is at the center of Pavia City, consisting of 1096 x

where + is the weighting parameter that determines the relative
contribution of the two components. This combinational opti-
mization problem of estimating y given A and siyt) is solved
in this letter by the graph-cut-based «-expansion algorithm,
which proved being capable of providing efficient and effective
approximation to the MAP segmentation in computer vision
[11], [12]. We refer to the complete algorithm in this section
as PSRMLL, whose detailed implementation is summarized
in Algorithm 2. The time complexity of PSRMLL is largely
determined by the complexity of the OMP algorithm, i.e.,
O(rpM) with M being the number of atoms in dictionary, and
the complexity of the a-expansion algorithm, i.e., O(T) with T
being the number of pixels.

Algorithm 2: PSRMLL

Input: training dictionaries for all classes {A(D), ... A},
data matrix @ = {x|t € T}
Output: class labels y = {y,|t € T'}
Initialization: A = I;7 := 1; égk) = OMP(A®) z;, 7)for
k=1,2,...,nandt €T ‘
while i < iters or sum(diag| A" — Alil) > s do
P={p(xi/ys =k)k=1,2,...,nandt € T}
Y = a — expansion (P, )
A' = var({@, — A(@fv)sgg")ﬁ € test set})
end while

III. EXPERIMENTS

We adopt three benchmark hyperspectral images, i.e., Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) Indian
Pines, University of Pavia, and the Center of Pavia (refer to [13]
for detailed information), to test the proposed algorithms. The
first image was captured by AVIRIS over a vegetation area in
Northwestern Indiana, USA, with a spatial resolution of 20 m,
consisting of 145 x 145 pixels of 16 classes and 200 spectral
reflectance bands after removing 20 water absorption bands
(104-108, 150-163, and 220). The other two hyperspectral

492 pixels. Both images have nine ground-truth classes.

A. Design of Experiments

We implemented Algorithms 1 and 2 in Section II-B and D,
which are referred to as PSR2 and PSR2MLL. To examine the
influence of A, we forced A in PSR2 and PSR2MLL to be the
unit matrix. Therefore, the resulting algorithms are referred to
as PSR1 and PSRIMLL, respectively. We experimentally set
iter = 20 and s = 0.1 for PSR2 and PSR2MLL and v = 20,
7 = 5 for all proposed algorithms. In Section III-D, we will ex-
plore the sensitivity of these parameters. We also implemented
the OMP algorithm in [2] and adopted the residuals in OMP
as the data cost to feed the a-expansion algorithm (referred to
as OMPMLL). Moreover, since the MLRsubMLL approach in
[1] is also an MRF-based approach, we included this algorithm
along with the MLRsub for a comparison study. The smooth
cost in MLRsubMLL was set to be 2 for optimal performance,
whereas all other parameters followed [1].

For the labeled pixels in these data sets, we randomly select
a certain number of pixels from each class as training samples,
whereas the other labeled pixels are used as the test set. For the
Indian Pines data set, training samples in each class constitute
10% of the total samples in that class. For the other two data
sets, we adopt a popular approach, and the number of training
samples in each class is the same as that in [2]. For further
details, the reader is referred to [2].

To be consistent with the other researchers, we adopt three
numerical measures, i.e., overall accuracy (OA), average accu-
racy (AA), and the x coefficient, for evaluation purposes [12].
To account for the possible bias produced by random sampling,
each experiment is performed ten times on different sampling
results. The numerical values in Table I are the average of the
ten realizations. However, the maps in Fig. 1 are from one
realization.

B. Numerical Comparison

Table I provides the statistics of different algorithms on three
benchmark data sets. Overall, PSR2ZMLL greatly outperformed
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OMP (68.5%)

.~r:w,g .... "E}v c

PSR1 (67.1%)

Fig. 1.

the other approaches on most data sets, achieving OA of 97.8%,
99.1%, and 99.4%, respectively.

Comparing with PSR1 and PSR2, the OAs of PSRIMLL
and PSR2MLL increased on average 25%, 21%, and 6% on
the three data sets, respectively, indicating the importance and
benefit of integrating the SR-based classifier with MRF to
utilize both spectral and spatial information for hyperspectral
image classification. MLRsubMLL also significantly increased
the performance of MLRsub. However, nearly no performance
increase for OMPMLL over OMP was observed. It is mostly
because OMP is a hard classifier, which produces residual
features rather than probability features.

Comparing with PSR1 and PSRIMLL, PSR2 and PSR2MLL
achieved higher OA on Indian Pines, slightly higher values on
Pavia U, and comparable values on Pavia C. These results jus-
tify the idea of accounting for the variance heterogeneity across
different spectral bands. Moreover, they may also indicate that
addressing variance inhomogeneity is more beneficial when the
quality of training samples is low, considering that the Indian
Pines data set, on which the PSR2 and PSR2MLL achieve a
higher performance increase than on the other two data sets, as-
sumes higher dimensionality due to more spectral bands, heav-
ier mixed pixel effect caused by lower spatial resolution, and
smaller number of training samples in most classes than Pavia
U and particularly Pavia C.

MLRsub (71.0%)

W Alfalfa [[oats
.Com~nolill .Soybeans-notill
I:ICom-min DSoybeans-min
.Com .Soybean-clean
DGrass/Pasture .Wheat
.Grassfl' rees .Woods

.Grass/Pasture-mowed .Building-Grass-Trces-Drives
-Hay-\vindrowed .Stone-slecl Towers

Classification maps obtained by different methods on the AVIRIS Indian Pines data set (OA is reported in the parentheses).

It is desirable to compare PSR2MLL and MLRsubMLL,
since both approaches are MRF-based generative models for
MAP classification. PSR2 slightly outperformed MLRsub on
Indian Pines and Pavia U, whereas MLRsub achieves better
results on Pavia C. Nevertheless, the adoption of MLL prior
enabled PSR2MLL to achieve higher OA and x values on all
data sets.

C. Visual Comparison

Fig. 1 shows the classification maps by different algorithms
on the Indian Pines image. Generally speaking, it indicates
consistent results with the numerical measures. As we can see,
algorithms without MLL prior, i.e., OMP, PSR1, PSR2, and
MLRsub, produced intense artifacts in the classification map
due to the existence of mixed pixels in the image. Although all
four algorithms performed seemingly well, careful inspection
indicates that PSR2 yields fewer artifacts than the others
in certain classes, e.g., Grass/Pasture, Building-Grass-Tree-
Drives, and Soybeans-min. By combining with MLL prior,
PSRIMLL, PSR2MLL, and MLRsubMLL produced very
smooth results, although there still exist misclassified patches
in classes such as Soybeans-min and Building-Grass-Tree-
Drives. Nevertheless, some small classes, such as Oats, were
totally misclassified because of the lack of enough training
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Fig. 2. Error bar of OA as a function of (a) sparsity 7 and (b) smooth cost .

samples for small classes. We also noticed that there is not
much difference between the maps of OMPMLL and OMP.

D. Sensitivity of Parameters

This section explored the sensitivity of two important pa-
rameters, i.e., sparsity level and smooth cost for SR-based
algorithms. Fig. 2 plots the error bar of OA as a function of
sparsity 7 and smooth cost y based on the AVIRIS Indian Pines
data set.

Fig. 2(a) indicates that PSR-based algorithms achieved the
highest performance when the sparse level was 3. Therefore,
from the sparsity level of 3, the performance of PSR-based
algorithms reduced quite sharply. This is not surprising because
the increased sparsity level allows the wrong class to represent
the test sample equally well as the true class, which conse-
quently leads to the loss of discriminative power. PSR2MLL
achieved higher OA than PSRIMLL, and both PSRIMLL and
PSR2MLL outperform OMPMLL when the sparsity level is
lower than 30. OMP achieved stable results, and OMPMLL
demonstrated slightly increased performance on high sparsity
level.

In Fig. 2(b), the increase in smooth cost increased the per-
formance of PSRIMLL and PSR2MLL to a stable level but did
not indicate the noticeable influence on OMPMLL. Moreover,

PSR2MLL achieved higher accuracy but lower variance than
PSRIMLL across most smooth-cost levels, indicating the worth
of accounting for the variance heterogeneity in PSR.

IV. CONCLUSION

In this letter, we have proposed a PSR approach to be
integrated with MRF in a Bayesian framework for hyperspectral
image classification. We assume that the spectral vector in
a class can be sparsely represented by the training samples
in the same class. Moreover, the representation error is as-
sumed being class independent, with zero mean and diagonal
covariance matrix. Based on these assumptions, we have de-
rived the class conditional distribution of the spectral vector,
which is used with the MRF label prior distribution to form a
MAP problem. The proposed approach is solved by graph-cut-
based a-expansion techniques. On benchmark hyperspectral
images, the proposed algorithm achieved new state-of-the-art
performance.
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