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a b s t r a c t

Recent years have witnessed a surge of interest in hypergraph-based transductive image classification.
Hypergraph-based transductive learning models the high-order relationship of samples by using a
hyperedge to link multiple samples. In order to extend the high-order relationship of samples, we
incorporate linear correlation of sparse representation to hypergraph learning framework to improve
learning performance. In this paper, we present a new transductive learning method called combinative
hypergraph learning (CHL). CHL captures the similarity between two samples in the same category by
adding sparse hypergraph learning to conventional hypergraph learning. And more, we propose two
strategies to combine the two hypergraph learning methods. Experimental results on two image
datasets have demonstrated the effectiveness of CHL in comparison to the state-of-the-art methods and
shown that our proposed method is promising.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Currently, there is widespread interest in the development of
image classification using transductive learning. Because transduc-
tive learning explores not only labeled data but also unlabeled data,
it achieves a performance better than the methods that learn about
classifiers based only on labeled data. Its success is based on one of
the following two assumptions: cluster and manifold assumptions.
The cluster assumption supposes that the decision boundary should
not cross high-density regions, whereas the manifold assumption
means that each class lies on an independent manifold. Therefore,
more and more researchers have been devoted to transductive
learning based on these assumptions in recent years [1–36].
Rosenberg et al. proposed self-training to train object detection
systems [8]. Blum and Mitchell used co-training to classify web
pages and provided empirical results which achieved significant
improvement of hypotheses on real web-page data in practice [9].
Joachims introduced transductive support vector machines (TSVMs)
for text classification [10]. Another important transductive learning
method is graph-based learning, which is the derived form of
hypergraph-based learning on which we have focused in this paper.

The graph-based learning [15–41] achieves a promising perfor-
mance between the existing transductive learning methods. Its
development goes through two stages: simple-graph learning and
hypergraph learning. This type of learning is built on a graph, in
which vertices are samples and edge weights indicate the similarity
between two samples. However, the simple-graph learning meth-
ods consider only the pairwise relationship between two samples,
and they ignore the relationship in a higher order. Hypergraph
learning aims to get the relationship between several samples in a
higher order. Unlike a simple graph that has an edge between
two vertices, a set of vertices is connected by a hyperedge in a
hypergraph, and each hyperedge is assigned a weight. Hypergraph
learning derives from simple-graph learning, and thus it achieves a
promising performance in many applications. For example, Agarwal
et al. utilized hypergraph to clustering by using clique average [14].
Zass and Shashua adopted hypergraph in image matching by using
convex optimization [15]. Sun et al. utilized hypergraph to problems
of multi-label learning [16]. Huang et al. applied hypergraph cut to
video segmentation [17]. Tian et al. proposed hypergraph-based
learning algorithm to classify gene expression data by using bio-
logical knowledge as a constraint [18]. Huang et al. formulated the
task of image clustering as a problem of hypergraph partition [52].
A hypergraph-based image retrieval approach is proposed in [19].
This approach constructs a hypergraph by generating a hyperedge
from each sample and its neighbors, and hypergraph-based ranking
is then performed. Wong and Lu proposed hypergraph-based 3-D
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object recognition [20]. Bu et al. [21] developed music recommen-
dation by modeling the relationship of different entities through a
hypergraph to include music, tag, and users.

In hypergraph learning, the weights of the hyperedges are empi-
rically set according to certain rules. Zhou et al. connected k neighbor
points of a given point as a hyperedge [37]. Yu et al. proposed a
hypergraph learning method by adaptively coordinating the weights
of the hyperedge [38]. In essence, they chose multiple neighborhoods
to construct multiple hyperedges for a given point. By this way, how
to define a hyperedge and the weight of a hyperedge is the
succeeding problem we should take into account. There are mainly
two methods to select the neighborhood of a given point, one is to
define a hyperedge with fixed number neighbor points, and the
other one is to define a ball whose radius is less than some threshold.
However, these hypergraph-based methods focus only on proximity
relation for distance. There is some other high-order relationship,
such as linear relationship. For example, given two vectors a and b
for existing a¼k*b, the distance between a and b may be very large,
but, they are similar for one factor difference based on linear
relationship. Therefore, the linear relationship is another one we
should take into account.

This paper takes into account the clustering assumption that the
similar points in feature space more likely belong to the same
category. Then, we define the similarity by two assumptions that we
call as distance-similarity and linear-similarity. Distance-similarity is
that the points derived from a category are located close to each
other. The neighborhood size of the hypergraph based on this assu-
mption is chosen as a fixed number. Linear-similarity is that a data
point can more likely be represented linearly by the data points
nearby which belong to the same category as this data point. It is
analogous to manifold assumptions aforementioned. The neighbor-
hood size of the hypergraph based on this assumption is unfixed
since it is decided by the sparse representation method. Inspired by
the two assumptions, we construct the following two kinds of
hypergraphs on a data set, one is conventional hypergraph which
is based on the distance-similarity, the other one is sparse hyper-
graph which is based on linear-similarity and derived from the
thinking in Refs. [53,54]. We linearly combine the two hypergraph
learning methods by two strategies. The first strategy is to combine
the hyperedges of the two hypergraphs to form a new hyperedge
set. The second strategy is to linearly combine the confidence of the
labeling of the two hypergraph learning methods to form a new
confidence of the labeling to define the label of data points.

The contributions of this paper are as follows:

1) A novel algorithm named Combinative Hypergraph Learning
(CHL) is proposed for image classification. To consider the high-
order information, we incorporate sparse representation into the
standard hypergraph learning framework. Hence, our algorithm
achieves a better performance than that with only conventional
hypergraph learning or with only sparse hypergraph learning.

2) We provide two strategies to combine linearly conventional
hypergraph learning and sparse hypergraph learning. The essence
is that we combine linearly the results of the two hypergraph lea-
rning methods with same weights for one strategy and with diff-
erent weights for the other strategy.

3) We conduct comprehensive experiments to empirically analyze
our algorithm on two image databases. The experimental results
demonstrate that our algorithm outperforms other methods incl-
uding Transductive SVM [10], Simple Graph-Based Learning [50],
and Semi-supervised Discriminant Analysis (SDA) [42,51] classifi-
cations.

The rest of this paper is organized as follows. Section II desc-
ribes the proposed image classification by combinative hypergraph
learning. Section III shows experiments on practical image data-
sets. Section IV concludes the paper.

2. Hypergraph learning

This section introduces conventional hypergraph learning and
sparse hypergraph learning first, and shows combinative hyper-
graph learning theory with two strategies in the following text. In
Table 1, we provide important notations used in the rest of this
paper to present the technique details of the proposed method.
Fig. 1 illustrates the whole framework of our method.

2.1. Conventional hypergraph learning

Given c categories of images including m training data points (x1,
y1), …, (xm, ym), and n testing data points (xmþ1, 0), …, (xmþn, 0),
where xiARd; 1r irmþn is sampled from the input space;
yi ¼ ½0;…;1;…;0�TARc; 1r irm, is the label vector of xi, where
the g-th component is 1 if xi belongs to the g-th category, otherwise,
0; and 0 is a vector with c components of zero.

Table 1
Important notations used in this paper.

Notations Descriptions

H¼(x, ε) The representation of a hypergraph, where x and ε indicate the sets of vertices and hyperedges, respectively
A The incidence matrix for the hypergraph
dist The distance between two samples
φ The diagonal matrix of the vertex degrees
γ The diagonal matrix of the hyperedge degrees
ω The diagonal weight matrix and its (i,i)-th element is the weight of the i-th hyperedge
L The constructed hypergraph Laplacian matrix
yi The label vector for i-th class. Its j-th element is 1 if the j-th object belongs to the i-th class, and otherwise it is 0.
F¼[f1, f2,…,fc] F represents the relevance score matrix for all samples, and fi is the to-be-learnt relevance score vector for class i.
c The number of classes in the dataset
m The number of labeled images in the dataset
n The number of images in the dataset
l The number of hyperedges
Asp, distsp, Fsp The superscript “sp” denotes sparse-based which show difference to A, dist and F, respectively
An, Fn The superscript “n” denotes the concatenated results.
∑¼ ½ς1; ς2;…ςd� The base of sparse representation

w¼ ½w1 ;w2 ;…wd�T The coefficient vector of sparse representation
W¼ ½w1 ;w2 ;…wn� The coefficient matrix of sparse representation
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The hypergraph, H¼(x, ε), is formed by the vertex set, x, and
the hyperedge set, ε, an incidence matrix, A, whose size is |x|� |ε|,
denotes the hypergraph with the following elements:

Aði; jÞ ¼
1; if xiAεj
0; if xi =2εj

(
; ð1Þ

where εj denotes the j-th element of the hyperedge set. The dist-
ance between two data points is

distðxi; xj Þ ¼ exp

 
�‖xi�xj‖2

σ2

!

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
mþn�1

∑
mþn

δ ¼ 1
‖xδ�x‖2

s
x ¼ 1

mþn
∑

mþn

δ ¼ 1
xδ: ð2Þ

We use φ, γ and ω to denote diagonal matrices of vertex deg-
rees, hyperedge degrees and hyperedge weights, respectively. φi

denotes the entry (i, i) of matrix φ, ωi and γi have similar

meanings. Then, the initial weight, ωi, is

ωi ¼ ∑
xj A εi

distðxi; xjÞ: ð3Þ

Based on A, the i-th vertex degree, φi, is

φi ¼ ∑
εj A ε

ωjAði; jÞ; ð4Þ

and the i-th hyperedge degree, γi, is

γi ¼ ∑
xj Ax

Aðj; iÞ: ð5Þ

In this letter, we adopt the regularization framework proposed
in Yu et al. [38], i.e.,

arg min
F;ω

∑
c

η ¼ 1
ðf TηLf ηÞþλ‖f η�Yη‖2þμ‖diagðωÞ‖2

s:t: ∑
l

j ¼ 1
ωj ¼ 1; ωjZ0; j¼ 1; …; l; ð6Þ

Fig. 1. Workflow of the hypergraph learning for image classification with two combinative strategies. (a) Strategy one and (b) strategy two.
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where L¼ I�φ�ð1=2ÞA γ�1ωATφ�ð1=2Þ; l is the number of hyper-
edges; diag(ω) is the diagonal vector of ω, i.e., (ω1, ω2, …, ωl); c is
the number of classes; F is a matrix, F¼ ðf 1;…; f cÞAℜðmþnÞ�c, f η is
the confidence of the labeling for the data belonging to the ηth
category; λ40 and μ40 are two trade-off parameters to balance
the empirical loss, the weight and the regularization; Y¼(y1, y2,…,
ym, 0,…, 0)T, YAℜðmþnÞ�c , Yη is the ηth column of Y. The third term
is introduced to avoid a degenerate solution caused by the former
two terms existing only in the regularization. Here we add two
constraints, one to fix the summation of the weights ∑l

j ¼ 1ωj ¼ 1
and the other to avoid negative weight ωjZ0.

Because the classifier function is not jointly convex with respect
to F and ω, we solve one variable by fixing another variable.

First we initialize ω with (3), so the solution of F becomes

F¼ λ

λþ1
I�φ�ð1=2ÞAγ�1ωATφ�ð1=2Þ

1þλ

 !�1

Y: ð7Þ

Then we update the weights, ω, with an iterative coordinate
descent method as follows:

ωtþ1
i ¼ 0;ωtþ1

j ¼ωt
i þωt

j ; if 2μðωt
i þωt

j Þþðsj � siÞr0

ωtþ1
i ¼ωt

i þωt
j ;ω

tþ1
j ¼ 0; if 2μðωt

i þωt
j Þþðsi � sjÞr0

ωtþ1
i ¼ 2μðωt

i þωt
j Þþ ðsj�siÞ
4μ ; ωtþ1

j ¼ωt
i þωt

j �ωtþ1
i ; otherwise

;

8>>>><
>>>>:

ð8Þ
where si ¼∑c

z ¼ 1�ðrzi Þ2ðγiÞ�1, rz ¼ f Tzφ�1=2A, riz is the i-th compo-
nent of rz; ωt

i denotes the t-th iteration of ωi and the initial iter-
ation t is 0. Based on the coordinate descent method, an iterative
process alternately updates the labels and the weights.

In the next iteration, we calculate the new F with the new ω.
The iteration ceases at a given state. After obtaining F, we set the
g-th class to the i-th data point if the g-th component is the max-
imum in the i-th row of F. A more detailed solution of (6) appears
in Ref. [38].

2.2. Sparse hypergraph learning

Sparse hypergraph learning is similar to conventional hyper-
graph learning. Therefore, this section will show only the differ-
ence between sparse hypergraph learning and spectral hypergraph
learning to avoid repetition. It is the hyperedge construction and
the hyperedge weight definition which will be introduced after the
introduction of sparse representation in this section.

The application of sparse representation to computer vision has
attracted a lot of attention in recent years [43–46]. This paper solves
the sparse representation problem based on ℓ1 minimization.

Given a vector x in Rd, which can be represented on the basis
of d vectors fςiARngdi ¼ 1. By setting a matrix Σ¼ ½ς1; ς2;⋯; ςd� we
can rewrite x as

x¼ ∑
d

i ¼ 1
wiςi ¼Σw ð9Þ

where w¼ ½w1;w2;…;wd�T : Both x and w represent the same data
point, one in the space domain and the other in the∑ domain. Our
object is to find a sparse representation of x in a properly chosen
basis ∑, namely, w must have as few nonzero components as
possible. According to [48], such a sparse representation can be
obtained by solving the optimization problem

min ‖w‖0 subject to x¼ Σw; ð10Þ
where ‖w‖0 is the ℓ0 norm of w, i.e., the number of nonzero
entries. However, such an optimization problem is in general non-
convex and NP-hard. According to Refs. [47,48], we can replace the
non-convex optimization in (10) by the following convex ℓ1

optimization formulation:

min ‖w‖1 subject to x¼Σw: ð11Þ
Now, consider all data points in a dataset, x¼ ½x1; x2;…; xn�.

Each data point, xi, has a sparse representation wi. By setting the
i-th element of wi, (wi)i¼0, the optimization formulation can be
rewritten as

min ∑
n

i ¼ 1
‖wi‖1 subject to xi ¼ xTwi: ð12Þ

Assume that the data set x is drawn from a union of c independent
linear subspaces, namely, that the data set include c categories of
the object. According to Ref. [54], we can obtain block sparse
solutions with the nonzero block corresponding to points in the
same subspace if the aforementioned assumption holds. We can
recover a block sparse representation of a new data point as a
linear combination of the points in the same subspace. This means
that a data point xi and the data points whose index corresponds
to nonzero entry of wi are derived from the same category.

We now show how to define a hyperedge and its weight, which
are different from spectral hypergraph construction. For discrimi-
nation, we use Asp, distsp and Fsp to replace the incidence matrix A,
distance between two data points dist and classifier function F
shown in the above section, respectively. We define Asp as

Aspði; jÞ ¼
1; if i¼ j

1; if j wið Þjj40
0; otherwise

8><
>: ; ð13Þ

where wið Þj
�� �� denotes the absolute of j-th entry of wi, and distsp as

distspðxi; xjÞ ¼ jðwiÞjj: ð14Þ

The following processing is the same as conventional hypergraph
learning. Here, we take Fsp as the solution of the sparse hyper-
graph learning.

2.3. Combinative hypergraph learning

From the above two learning methods, we obtain two hyper-
graphs and combine them with two strategies.

2.3.1. Strategy one
Assume that we obtain two incidence matrixes A and Asp of the

hypergraph aforementioned. We concatenate A and Asp to a new
incidence matrix An whose columns number is the sum columns
of A and Asp as follows:

An ¼ ½AAsp�; ð15Þ
where the rows number of A is equal to that of Asp. And the
corresponding weight of a hyperedge is calculated with Eqs.
(2) and (14), respectively. Then, it performs as the conventional
hypergraph learning process. We can obtain classification function
Fn, then the classification of i-th sample can be accomplished by
assigning it to the g-th class that satisfies g¼ argmax

j
Fn

ij.
This method constructs two hyperedge sets and the corresp-

onding weights into a new hypergraphwhich takes more high-order
information into account. In other words, it combines two kinds of
similarities: distance-similarity and linear-similarity. We consolidate
the similarities between samples in the same category by putting
the sparse hyperedges into the conventional hyperedges.

Strategy two
We obtain two confidences of the labeling, F and Fsp, for con-

ventional hypergraph learning and sparse hypergraph learning.
For this strategy, we define Fn as

Fn ¼ αnFþð1�αnÞFsp
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αn ¼ arg min
α

∑
m

i ¼ 1
‖αFiþð1�αÞFspi �yi‖22

subject to αA ½0;1�: ð16Þ
It means that, here, we combine linearly only the results of the
two hypergraph learnings with the weights a

* and 1�an. We can
get an by minimizing the loss of classification contribution value to
truth classification value with only the labeled data point. The
minimized function is easy to be solved since there is only one
variable. After obtaining Fn, we set the g-th class to the i-th data
point if the g-th component is the maximum in the i-th row of Fn.

For this strategy, we learn the confidence of the labeling ind-
ependent for the two hypergraph-based learnings. Then, we com-
bine only the two confidences of the labeling linearly with optimal
weights.

3. Experiments

We performed experiments for image classification on two
datasets: MNIST handwritten digit image data set [49] and ORL
face image data set [11]. In order to assess the performance of the
proposed method, we compared our method with general classi-
fication algorithms including transductive support vector machine
(TSVM) [10], Simple-Graph Learning (SGL) [50], Hypergraph
Learning (HL) [37], Sparse Hypergraph Learning (SHL) [53] and
Semi-supervised Discriminant Analysis (SDA) [51] classifications.
And more, we analyzed our method in two strategies.

3.1. Datasets and configurations

The MNIST handwritten digit image data set contains 10,000
images. There are ten classes (digit “0” to “9”) of images, each class
has about 1000 images, and each image is 28�28 in resolution,
which results in a 784-D feature vector. For this dataset, in experi-
ments, we randomly select 400 labeled samples as training samples
and the remaining samples as testing samples. The ORL face image
data set contains 64 different images for each of the 38 subjects.
Each image is 48�42 in resolution, which results in a 2016-D
feature vector. Images are taken at different times, with varied
lighting, facial expressions, and facial details. In experiments of this
dataset, we randomly select 20 labeled samples of each category as
training samples and the remaining samples as testing samples.
Fig. 2 shows sample images from the two data sets.

For all the classification methods, we independently repeat the
experiments twenty times with randomly selected training samples
and show the averaged results by Mean Average Precision (MAP).

1) Simple-graph Learning addresses the pair-wise relationships
between any vertices in the correlated Laplacian graph. We
use the regulation, which is similar to the first two items of
Eq. (6). However, simple graph learning has difficulty tuning

the parameters of λ and μ. Here, we set λ to be the norm
variance of the data points, and μ to be λ=4.

2) Semi-supervised Discriminated Analysis aims to find a projection
which is in respect to the discriminated structure inferred from
the training data. The training data, combined with the unlab-
eled data, are used to build a Laplacian graph which provides a
discrete approximation to the local geometry of the data manifold
and can be incorporated into objective functions. It can pre-
serve the manifold structure. We set the weight, wij ¼ exp
ð�normðni�njÞ=2σ2Þ, to an edge if nodes i and j are connected.
And we set neighborhood to be 5 on the k-Nearest Neighbor
classification method.

3) For the method of Transductive Support Vector Machine with
RBF kernel, we use the one-versus-all strategy to solve the mul-
ticlass problems. The optimal values of the radius parameter
and the weighting parameter in regularization are used. As we
chose C-SVC as the type of SVM, we set the parameter C to 20.
We also set gamma and coefficient 0 in kernel function to 1 and
set the degree to 4. And Unlike SVM, Transductive SVM has an
additional parameter that modulates the effect which we set
to 100.

4) Hypergraph-based learning. The neighborhood size is set to 5.
And we set the iteration time in the alternating optimization
process to 10. For Combinative Hypergraph Learning, we ini-
tialize a to 0.01 and iteration step by 0.01.

3.2. Experimental results

Fig. 3 shows the Mean Average Precision (MAP) with several
methods on ORL and MNIST datasets. It shows that CHL achieves
the best results in all the methods. And the results demonstrate
the effectiveness of the proposed method. Compared with SGL,
hypergraph-based learning methods achieve better results, and

Fig. 2. Sample images from (a) MNIST and (b) ORL data sets used in the experiment.

Fig. 3. Mean Average Precision (MAP) of methods for SGL, SDA, TSVM, SHL, HL,
CHL_s1 and CHL_s2 on two datasets.
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it demonstrates that hypergraph-based learning considering
high-order information is effective. SDA shows better results
than TSVM and SHL. For MNIST dataset, CHL_s1 achieves better
results by comparing with SDA and HL, while it shows inferior
performance for ORL dataset. Both CHL_s1 and CHL_s2 show the
best performance for MNIST dataset in all the methods. We
affirm that CHL_s2 shows the best performance over all methods
for two datasets. For CHL_s1, we concatenate the hypergraph
edge sets of hypergraph learning and sparse hypergraph learning
with the same weight. However, the experimental results
showed that this process is not effective for ORL dataset, which
demonstrates that the two hypergraph learning methods are not
the same contribution for classification.

For further illustration of our proposed methods, we show the
correction ratio in detail for each trial on hypergraph-based meth-
ods in Table 2. The correct ratio of HL is better than that of SHL
significantly with gaining about 0.24 for ORL dataset, but, they
show similar performance for MNIST dataset. We can conclude
that the performance of HL is better than that of SHL for the two
datasets. By combining the two hypergraph-based learnings with
two strategies, the learning performance gets an overall better
level than that with conventional hypergraph learning or sparse
hypergraph learning independently. However, the performance
of the two strategies shows different results. Both CHL_s1 and
CHL_s2 achieve better results than HL and SHL for MNIST dataset,
while CHL_s1 achieves worse results than that of HL for ORL
dataset. For each trial on the ORL dataset, the correct ratio of
CHL_s2 is a little higher than that of HL all the time, and it is large
when the correct ratio of HL is low. However, the case on MNIST
dataset is not the same as the ORL dataset that sometimes the
correct ratio of CHL_s2 is higher than that of CHL_s1, sometimes it
is inverse. Overall, they show a similar performance. It is defin-
ite that at least one strategy achieves better results than that of
HL and SHL.

Furthermore, we observe the variable an in Eq. (15) for each
trial. It is local at 0.84 for large probability for ORL dataset and at
0.9 for MNIST dataset. This demonstrates that the weight of
distance-similarity is larger than that of linear-similarity, namely,
that the contribution of distance-similarity on image classification
is larger than that of linear-similarity in our proposed methods.

4. Conclusion

In this paper, we present a new transductive learning method
called combinative hypergraph learning (CHL). CHL captures the
similarity between two samples in the same category by adding
sparse hypergraph learning to conventional hypergraph learning.
And we present two strategies to combine the two hypergraph-
based learnings. Experimental results on two image data sets have
demonstrated the effectiveness of CHL in comparison to the state-
of-the-art methods. However, the stability of the two combined
strategies should be enhanced. In our future work, we want to
analyse further the differences between CHL_s1 and CHL_s2. We
perform the experiments on more datasets and show the suitable
application on our proposed method. We want to provide the
details of which data structure is suitable for which one method.
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