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A new way of implementing two local anomaly detectors in a hyperspectral image is
presented in this study. Generally, most local anomaly detector implementations are
carried out on the spatial windows of images, because the local area of the image scene
is more suitable for a single statistical model than for global data. These detectors are
applied by using linear projections. However, these detectors are quite improper if the
hyperspectral dataset is adopted as the nonlinear manifolds in spectral space. As
multivariate data, the hyperspectral image datasets can be considered to be low-
dimensional manifolds embedded in the high-dimensional spectral space. In real
environments, the nonlinear spectral mixture occurs more frequently, and these mani-
folds could be nonlinear. In this case, traditional local anomaly detectors are based on
linear projections and cannot distinguish weak anomalies from background data. In
this article, local linear manifold learning concepts have been adopted, and anomaly
detection algorithms have used spectral space windows with respect to the linear
projection. Output performance is determined by comparison between the proposed
detectors and the classic spatial local detectors accompanied by the hyperspectral
remote-sensing images. The result demonstrates that the effectiveness of the proposed
algorithms is promising to improve detection of weak anomalies and to decrease false
alarms.

1. Background and introduction

Anomaly detection is a primary procedure of auto target curing in hyperspectral image
processing. Anomaly detectors can handle original hyperspectral data to identify pixels
with distinct spectra from the background (Stein et al. 2002; Yver and Marion 2007; Huck
and Guillaume 2010). The anomaly detectors do not require prior spectral information,
reflectance spectrum retrieval, and atmospheric compensation. Nowadays, it is a very
active research topic in the field of hyperspectral image processing.

Ahlberg, Renhorn, and Forskningsinstitut (2004) stressed that algorithms for target
and anomaly detection in hyperspectral imagery can be divided into two categories as (a)
detectors that are based on unstructured models, and (b) detectors that are based on
structured models. The unstructured models refer to no specific geometric structure on
the data. They are also called probabilistic, statistical, and/or data-driven models.
Anomaly detection methods based on unstructured models are traditional and familiar.
They encompass the well-known Reed-Xiaoli (RX) detector proposed by Reed and
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Yu (1990) and its improvement, e.g. the subspace RX (SSRX) detector and RX after
orthogonal subspace projection (Schaum 2007; Borghys et al. 2012). Detectors using
structured models were based on linear subspace or the linear mixture model (LMM),
such as orthogonal subspaces projection (OSP) developed by Harsanyi, Farrand, and
Chang (1994), and low probability detection (LPD) (Harsanyi, Farrand, and
Chang 1994; Chang 2005). It was interesting that both structured and unstructured
detectors performed the same functional form of matched filter or linear projection
(Chang and Chiang 2002).

In general, the anomaly detection algorithm can be implemented either in the global or
the local area of the image scene. There were two ways to implement local detectors
(Bachega, Theiler, and Bouman 2011), which are sliding spatial windows and segmenta-
tion of the image scene. The fundamental concept of both methods involves local data of
the image scene, and it is more suitable for a single statistical model. The RX algorithm
was derived by hypothesis tests that are based on multivariate Gaussian distribution. It is
always considered to be a local method, such as local RX and quasi local RX (Caefer
et al. 2008; Borghys et al. 2012).

Multivariate Gaussian distribution is frequently used in anomaly detection. It usually
implies the assumption of statistical independence between the dimensions. However, the
description of the geometric dispersion of hyperspectral image datasets is not accommo-
dated, even for the local spatial data. Because the data dimensions (or bands) are
dependent on the hyperspectral images, the geometric dispersion would be some lower-
dimensional manifold. Furthermore, a nonlinear spectral mixture occurs more often in real
environments; the nonlinear manifolds would be more common. In this case, anomaly
detectors based on linear projections cannot deal with these data efficiently. Therefore,
there were many kernel-based detectors, such as kernel RX and kermnel OSP
(Nasrabadi 2014). They could handle this problem by using the kernel functions to
implement a linear projection in high-dimensional feature space. Another two kinds of
detectors were developed to treat this problem. One kind was to use a local topological
structure to calculate the weighted vertex volume (WVV) and extract the ‘outliers’ in the
local spatial image (Messinger and Chester 2011). Outlier detection aims at discovering
anomalous or inconsistent patterns from a dataset. This was one of the major tasks in data
mining when working on a large dataset (Zhao and Saligrama 2009; Ramaswamy,
Rastogi, and Shim 2000). Similar studies have been shown in the literature of Du and
Zhang (2014a, 2014b). The patches with a local linear structure have been used to fit the
manifold structure of the entire hyperspectral image. The other kind of detectors focused
on manifold embedding methods. Agovic et al. (2007) have studied anomaly detection in
transportation corridors using manifold embedding. They investigated the usefulness of
manifold embedding methods for feature representation in anomaly detection problems.
The study focused on both the linear methods, such as multidimensional scaling (MDS),
and the nonlinear methods including locally linear embedding (LLE) and isometric feature
mapping (ISOMAP).

In this article, an improved method for the local detectors has been proposed.
Borrowed from the local linear concepts in manifold learning methods (Seung and
Lee 2000), the sliding windows would be established in spectral space, and the local
dataset could be considered to be a linear manifold. The detector based on a linear
projection has been implemented in these local datasets. These detectors can be called
spectral space window anomaly detection (SSW-AD). An improved method has encom-
passed two major detectors: RX based on the spectral space window (SSW-RX) and low
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probability anomaly detection (LPAD) (Li, Wang and Zheng 2014) based on the spectral
space window (SSW-LPAD).

2. Nonlinear manifold and anomalies

As a kind of multivariate dataset, the distribution of the hyperspectral dataset could be
considered to be a lower-dimensional manifold in spectral space. Usually, the dimension
of this manifold is called the intrinsic dimension (Verveer and Duin 1995). If the spectral
data fit the description of the LMM, the manifold is linear and can be regarded as a
hyperplane or a linear hypersimplex (Koppen 2000). In this case, the whole dataset can be
linearly projected into a subspace whose dimension is an intrinsic dimension. The
dispersion of the original data can be represented accurately in this linear subspace.

On the other hand, the lower-dimensional manifold would be nonlinear if spectral data
fit the description of the nonlinear mixed model, such as a hyper-curved surface or a
nonlinear hypersimplex (Koppen 2000). Different from the case of a linear manifold, the
whole dataset cannot be described accurately by using a linear transform (e.g. translation,
rotation, and scaling) in intrinsic dimensional subspace. It needs a higher-dimensional
linear subspace to contain this manifold.

In anomaly detection, nonlinear properties of the data manifold have considerable
effects on the detectors based on the linear projection. An example in 3-dimensional space
(3-D) can illustrate this problem, see Figure 1. Figure 1(a) shows a 2-D curve C and one
anomaly point 4 in the 3-D space, and Figure 1(b) shows a 3-D curved-surface C and one
anomaly point 4 in the 3-D space. In Figure 1(a), the curve C can be considered to be a
nonlinear manifold and its intrinsic dimension is 1. The points of the curve C and anomaly
point A are all located on the plane P. In order to suppress the energy of points in curve C
effectively, the detectors on linear orthogonal projections will project all points to the
orthogonal space of plane P. Obviously, the energy of anomaly point 4 will be submerged
into the points of curve C in the projected subspace. It will be hard to detect 4 from this
projected image. The case of Figure 1(b) has the same problem.

Next, the detectors based on a statistical model are considered, such as the RX
algorithm. Multivariate Gaussian distribution is usually used as a statistical model, the
probability density function is:

Plane P77
Anomaly |
point A |
/ oz
~~~~~~~ " | |
- ..~~-~- --------- Cllrve C
“}/ """"""""""
(a) )]

Figure 1. Nonlinear manifold and anomaly point. (a) 2-D curve and anomaly point; (b) 3-D curve
surface and anomaly point.
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where x is the multivariate random vector, M is the covariance matrix, g is the mean
vector, and superscript / is the dimension. This model implies that the data of dimensions
are statistically independent of each other. However, if the data among the dimensions are
nonlinearly correlated, the whole dataset will be distributed in a nonlinear manifold, such
as the curved-surface C in Figure 1(b). However, the geometric structure of the multi-
variate Gaussian distributed model will be an ellipsoid. The anomaly point 4 is included
in this ellipsoid and cannot be separated from this ellipsoid in the projected data.

Nevertheless, if detectors have handled the nonlinear manifold data based on linear
projections, the weak anomalies (close to the background manifold) would be ignored,
even for the local data of the image scene. Therefore, if a small area is segmented from
this manifold, it could be considered to be a linear structure. At the same time, the detector
implementations based on linear projections could be carried out efficiently. This is the
motivation of the proposed method.

3. Method

It is important to compare the performance between the proposed algorithm and algo-
rithms based on the spatial window. Here, the algorithms based on the spatial windows
will be introduced first; they were the local RX (LRX) and local OSP (LOSP) algorithms
(Chao, Huijie, and Wei 2009). Next, two detectors based on the spectral space windows
will be presented: SSW-RX and SSW-LPAD.

3.1. Local RX (LRX)

The RX algorithm is a constant false alarm rate (CFAR) adaptive anomaly detector that is
derived from the generalized likelihood ratio test (GLRT). It has been considered to be the
benchmark anomaly detection algorithm for hyperspectral data (Yver and Marion 2007;
Messinger and Chester 2011). The RX algorithm is based on the assumption that the
background can be modelled as a multivariate Gaussian distribution, the detector was:

>, anomaly present
<, anomaly absent

Do) = (x — )™M (x, —m{ @

where x; is the pixel spectra of the image data, and subscript i refers to the ith pixel of the

N N
datasets. g = 13" x; is the mean spectrum, and M = L " (X; — u)(X; — p)"is the covar-
i=1 =
iance matrix.

Usually, the RX algorithm is regarded as a local detector, but it can also handle global
data. In the implementation of LRX, the covariance matrix and the mean spectrum of the
background are estimated locally in a window around the pixel under test (PUT). A
double sliding window is used: a guard window and the outer window are defined, and
the background statistics are determined using the pixels between the two windows (see
Figure 2).
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/ Guard window

Outer window

Figure 2. Double spatial window of LRX.

3.2. Local orthogonal subspace projection (LOSP)

The local orthogonal subspace projection (LOSP) algorithm (Chao, Huijie, and Wei 2009)
was based on the assumption that the variation of terrain was small in the local area of the
image scene. Hence, the mean spectrum of the windows could represent the background
and be used for constructing the orthogonally projected operator. If the spectrum of the
PUT is d, the mean spectrum of the sliding window is d and then the detector of the
LOSP is:

Pross — xd" [1 —a@'ayd", 3)

_ m
where d = > y;, y; is the pixels’ spectra in the window except PUT. « is a scalar for
normalizatidTi!

3.3. Spectral space window RX (SSW-RX)

In SSW-RX, the RX algorithm was implemented on sliding windows in spectral space. By
calculating the Euclidean distance between any two pixel spectra, the list of nearest
neighbours can be established for each PUT. Then, double sliding windows were defined
as the guard window and the outer window. The size of the outer window defined the
k-nearest neighbours, and the size of the guard window was defined as the G-nearest
neighbours. The pixel spectra between the two windows were used to calculate statistical
parameters, such as the mean vector and the covariance matrix. G represents the number
of anomalous pixels with similar spectra in the whole image scene.

It is worth noting that the radii of these windows are variable because the density is
different throughout the entire manifold. Theoretically, taking into account the require-
ments of the minimum number of pixels for the detection algorithm, the entire number of
pixels between the two windows should form a linear manifold. Thus, k£ and G should be
mutative if the density of the manifold is different everywhere. To estimate an appropriate
k is very complex, while the efficiency of computing & is low. This is in order to determine
whether or not the various neighbourhood areas of every pixel are linear manifolds.
Moreover, the constant values have been chosen to make a convenient calculation and
comparison (Parzen 1962; Cremers, Timo, and Christoph 2002).
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3.4. Spectral space window LPAD (SSW-LPAD)

In the SSW-LPAD, the LPAD algorithm is implemented on sliding windows in spectral
space. The LPAD algorithm was derived from the assumption that the geometric structure
of dataset is a linear manifold (Li, Wang and Zheng 2014; Bachega, Theiler, and
Bouman 2011; Borghys et al. 2012). If an image dataset is considered to be a linear
manifold, anomalies will not be included in this manifold because of spectral indepen-
dence. The distances along the special direction could be used to evaluate whether the
points are anomalies or background data. The purpose of the LPAD was to find these
particular directions.

First, a mathematical description of the linear manifold in high-dimensional space was
considered. It could be developed from the general plane equation in a 3-dimensional
space. Suppose there was a dataset Q which is distributed in a linear manifold in
I-dimensional space, all of the vectors @ = (a;, a», ... a;) in dataset Q should meet the
following formula:

xiar +x2as + - - - + x50 + x4 = 0, )

where the nonzero vector x = (x1, X, ..., X;+1) is the normal vector of this linear manifold.
With respect to the linear algebra, Equation (3) means all the vectors a of Q could linearly
express each other. After removing the mean vector of the dataset, the matrix form of
Equation (4) could be rewritten as:

Ax =0, %)

where A is an N x [ matrix. The row vectors in A represent /-dimensional spectra of the
dataset. N is the number of samples in the dataset. x is the normal vector.

Considering the hyperspectral image dataset, the main parts of the geometrical
structure would be composed of background data, and it would be a linear manifold.
The anomalies would be located outside the manifold. Therefore, the anomalies could be
distinguished from the manifold efficiently if we could find a decision boundary along the
normal direction of the manifold properly. In fact, Equation (5) is a homogeneous linear
equation. In this case, the extraction of normal vectors is converted to solve homogeneous
linear equations. Matrix A is a singular matrix because the row vectors could be denoted
as a linear combination of the others. Therefore, the solution of Equation (5) is not unique
and has a solution set. The Moore—Penrose pseudoinverse (Barata and Hussein 2012) was
used to calculate that. If some rows of A are linearly independent, the solution set (in
terms of least squares) of Equation (5) can be derived from the Moore—Penrose
pseudoinverse:

x=(E-U'U), ©)

where U" denotes the Moore—Penrose pseudoinverse, where U™ = UT(UUT) . Uisa k x [
matrix, it should be constructed by £ independent rows of A. E is the identity matrix and &
is an arbitrary /-dimensional vector.

Because ¢ is an arbitrary /-dimensional vector, the spectrum of PUT could be used to
replace it. Thus, the vertical distance (along the normal direction of the manifold) between
the PUT and background linear manifold would be calculated as:
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where D represents the function of distance and a represents the spectrum of PUT.
Usually, matrix U could be composed of the endmembers of the background. However,
for convenient calculation, the larger eigenvectors were always used to replace the back-
ground endmembers. Thus, the equation became:

D(@) = a"(E = V' V)a = a"(E = VI (VV') 'V)q, (8)

where V is composed of several significant eigenvectors of the data covariance matrix.
This detector is called low probability anomaly detection (LPAD) because it is similar to
the LPD detector. The significant difference is the unit vector in LPD, and it was replaced
by the spectrum of PUT in LPAD.

In this article, we implemented the LPAD in the sliding windows. For every PUT,
spectra between the double windows were involved in the calculation of the covariance
matrix. The number of significant eigenvectors in SSW-LPAD was the same as the
intrinsic dimension of the global data.

4. Data collection and description

To assess the performance and compare the effectiveness of different algorithms, two
groups of hyperspectral images were used in these experiments: (a) the field imaging
spectrometer system (FISS) and (b) the operative modular imaging spectrometer (OMIS)
that was produced by the Shanghai Institute of Technical Physics (SITP) of the Chinese
Academy of Sciences. The basic parameters of the two image datasets are depicted in
Table 1.

The data of FISS were collected from the vehicle platform, and it was placed 30 m
from the ground. The image was 230 x 300 pixels and 86 bands were selected. The
anomalies in FISS data were small planks depicted in a green colour and put in the corn
field (see Figure 3). Figure 3(a) shows the hyperspectral image cube and Figure 3(b)
shows the digital pictures. There are in total 15 planks, and their sizes are about 6—10 cm.
In Figure 3(b), the white dots indicate the actual positions of the planks.

The data of OMIS were achieved by the actual flight of the airborne platform. The
image size is 250 x 250 pixels. Because of the low signal noise ratio, the bands of vapour
absorption have been removed; only 80 bands have been processed in this research. The
original image and ground truth data are shown in Figure 4. The anomalies have two
parts: (a) the vehicles in the centre of the image (i.e. labelled from T1 to T7 in
Figure 4(b)), and (b) the eight white tiles in the top of the image.

Table 1. Main parameters of the two datasets.

FISS dataset OMIS dataset
Spectral coverage (um) 0.4-0.9 0.4-12.5
Spectral resolution (nm) 1.4 10-500
Number of bands 344 128
Instantaneous field of view (mrad) 1 3-5

Sensor height 30 1000
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(@ (b)

Figure 3. FISS data and target positions, southwest, Beijing, China (116° 11" E, 39° 52’ N). (a)
False-colour image (R, band 167; G, band 243; B, band 340); (b) digital photo.

— White tiles

Clay and bush

(a) (b)

Figure 4. OMIS data and anomaly positions, southwest, Beijing, China (116°10" E, 39°51'N). (a)
False-colour image (R, band 125; G, band 45; B, band 15); (b) anomaly positions.

5. Results and comparative analysis

Three groups of algorithms were compared by using two hyperspectral images. First were
global detectors, including the global RX and the global LPAD; second were detectors
based on spatial windows, including LRX and LOSP; third were detectors based on
spectral space windows, including SSW-RX and SSW-LPAD. For LRX, LOSP,
SSW-RX, and SSW-LPAD, the size of the outer window was set as 15 x 15 pixels; the
guard window was 5 x 5 pixels. The number of superlative eigenvectors was nine for
FISS data and six for OMIS data. Figure 5 shows the projected image of six algorithms
for FISS data. Figure 6 shows the projected image of six algorithms for OMIS data.

The thresholds were calculated by exploiting a constant false alarm rate (CFAR)
algorithm in projected images. The experimental receiver operating characteristic (ROC)
curves (Matteoli, Diani, and Corsini 2010) were calculated to assess the performance.
They have been derived by counting the number of targets accurately detected, and the
corresponding number of false alarms (see Figure 7). CFAR used the lognormal distribu-
tion. Figure 7 shows the six ex-ROC curves for FISS and OMIS data.
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Figure 5. FISS data projected images of six algorithms. (@) Global RX; (b) global LPAD; (c) LRX;
(d) LOSP; (e) SSW-RX; (f) SSW-LPAD.

The influence of the two parameters (K and G, the size of the guard window and outer
window) on detection performances are depicted in Figure 8. The SSW-LPAD algorithm
and OMIS dataset were used here. Usually, guard window G could be determined with the
targets of spatial size and image resolution.

First, on the basis of the fixed K, the experimental ROC curves on different G were
calculated, such as in Figure 8(a). Obviously, G should not be too large. At the same time, it
should not be too small. Since the spectra are mixed, there would be many pixels that have a
similar spectrum as the targets in the image. If G is small, these pixels will involve in the
orthogonal projection, and the separation between targets and background will decrease.
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Figure 6. OMIS data projected images of six algorithms. (a) Global RX; (b) global LPAD; (c)
LRX; (d) LOSP; () SSW-RX; (f) SSW-LPAD.

On the other hand, the experimental ROC curves on different K were calculated based
on the fixed G, such as in Figure 8(b). Different K were tested, and only six curves are
shown here. For the first few easily detected anomalies, six curves were similar. However,
for the last few weak anomalies, the performances of the detector with K greater than 200
are more promising to have a better output. It meant that outer windows should be big
enough to form the local linear manifolds (i.e. at least 5—6 times more than the G). A
small K would lead to the decrease in detection performance. However, the larger value of
K was not necessary. In Figure 8(b), the detection performances of detectors with
K greater than 200 are similar.
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Figure 7. Experimental ROC curves of six algorithms of FISS and OMIS data. (¢) Experimental
ROC curves of FISS data; (b) experimental ROC curves of OMIS data.
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Figure 8. Experimental ROC curves of SSW-LPAD algorithms and OMIS dataset based on
different K (the size of the guard window) and G (the size of the outer window). (a)
Experimental ROC curves of different G; (b) experimental ROC curves of different K.

The experiments and analyses in this study have revealed that

(1) The detectors on spectral space windows (SSW-RX and SSW-LPAD) outper-

formed the global and spatial local detectors. They were better in background
suppression, primarily for the SSW-RX detector (see Figure 5(e) and Figure 6(e)).
The texture of the background almost disappeared in the projected images.
Optimal detection results of FISS data were SSW-LPAD and SSW-RX for
OMIS data. In addition, (2) among the detectors on the unstructured model,
SSW-RX outperformed global RX and LRX, especially for weak anomaly detec-
tion. However, we should be cautious in handling the trade-offs between the
accuracy of statistical parameter estimation in local data and rationality of the
statistical model in global data. We should make a proper choice between the
global and local algorithms, for example, in Figure 7(a), the global RX had a
better performance than LRX for the first few targets. This is because the terrain
of the FISS data was almost unique and the estimation of statistical parameters in
global RX was better than LRX. This is the well-known case of the ‘curse of
dimensionality’ (Koppen 2000). Moreover, (3) among the detectors on a struc-
tured model, SSW-LPAD outperformed the global LPAD and LOSP, especially
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for FISS data. All targets could be detected in the case of few false alarms (see
Figure 7(a)). In these algorithms, LOSP showed unsatisfactory results (see
Figures 5(d) and 6(d)). The main reason was that using a mean spectrum was
not good enough to suppress background energy in the windows. According to
the properties of the manifolds, local spatial data may not necessarily coincide
with the one-dimensional linear manifold because of the complexity of the terrain.
Therefore, LOSP would obtain better results if more endmembers of the back-
ground could be used in the projections. Finally, (4) although performances of
SSW-AD were better than spatial local detectors, it was more outstanding in the
projected image than others for the particular target, such as target T1 in
Figure 6(c). This case indicated that the LRX could distinguish the targets
whose spectra are similar to the spectral neighbours but different from the spatial
neighbours. That also meant, for the SSW-LPAD algorithm, an inappropriate
neighbourhood of the local manifold may lead to failure of detection.

In summary, there were better performances for the local detectors based on spectral
space windows. This case showed that it was reasonable and adequate to handle the
nonlinear manifold by using the detectors based on spectral space windows. These
detectors could improve the detection of weak anomalies hidden in the nonlinear struc-
tures and decrease the false alarms. However, there was a critical limitation we would
encounter. The computational efficiency of SSW-AD was low. The calculation of the
nearest neighbour’s list was very time-consuming. The time complexity was O(M x N)?),
where O was the function of the time complexity and M and N were the image sizes.
Thus, this paper recommends motivating further research to find a proper way to speed up
the aforementioned limitation.

6. Conclusion

Algorithms of SSW-AD have been derived from geometric structure features of low-
dimensional manifolds. By applying the local linear concepts in nonlinear manifolds, we
establish the sliding window for neighbours in spectral space and implemented detectors
based on linear projection in these local areas. Thus, the problem of global nonlinear data
processing was converted into a local linear way; it improved the performance of detec-
tion. In this article, two local anomaly detection algorithms were presented: the SSW-RX
and the SSW-LPAD. The experimental results and comparative analysis based on real
hyperspectral image data demonstrated the effectiveness of the proposed algorithms. At
the same time, it also validated the improvement of local linear concepts when dealing
with the nonlinear manifold data in anomaly detection.
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