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Comparison of X-Band and L-Band Soil Moisture
Retrievals for Land Data Assimilation
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Abstract—This paper explores for the first time assimilation of
the X-band soil moisture retrievals by the advanced microwave
scanning radiometer-Earth observing system and the advanced
microwave scanning radiometer 2 in Environment Canada’s stan-
dalone Modélisation Environmentale Surface et Hydrologie model
over the Great Lakes basin, in comparison with the assimilation of
L-band soil moisture retrievals from the soil moisture and ocean
salinity mission. A priori rescaling on satellite retrievals is per-
formed by matching their cumulative distribution function (CDF)
to the model surface soil moisture’s CDF, in order to reduce the
satellite-model bias in the assimilation system. The satellite re-
trievals, the open-loop model soil moisture (no assimilation), and
the assimilation soil moisture estimates are validated against point-
scale in situ measurements, in terms of the daily-spaced anomaly
time series correlation coefficient R (soil moisture skill). Results
show that assimilating X-band retrievals can improve the model
soil moisture skill for both surface and root zone soil layers. The
assimilation of L-band retrievals results in greater soil moisture
skill improvement ΔRA-M (the assimilation skill minus the skill
for the open loop model) than the assimilation of X-band prod-
ucts does, although the sensitivity of the assimilation to the satellite
retrieval capability may become progressively weaker as the open-
loop skill increases. The joint assimilation of X-band and L-band
retrievals does not necessarily yield the greatest skill improvement.
Overall, ΔRA-M exhibits a strong dependence upon the difference
between the satellite retrieval skill and the open-loop surface soil
moisture skill.

Index Terms—Advanced microwave scanning radiometer-Earth
observing system (AMSR-E), advanced microwave scanning ra-
diometer 2 (AMSR2), data assimilation, soil moisture, soil moisture
and ocean salinity (SMOS).

I. INTRODUCTION

A SSIMILATION of satellite microwave soil moisture in
land surface and hydrologic models as well as numer-

ical weather prediction models has received considerable at-
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tention within the past decades [1]–[4]. In particular, ten years
(2002–2011) of operations of the advanced microwave scanning
radiometer-Earth observing system (AMSR-E) provided key
data sources for advances in land data assimilation. The level-2B
AMSR-E soil moisture product (X-band), based upon the NASA
standard algorithm, was assimilated into the NASA catchment
land surface model (CLSM) using the ensemble Kalman filter
(EnKF) method [5]. The assimilation led to an overall improve-
ment relative to either the open loop (no assimilation) model
estimates or satellite retrievals alone, in terms of soil moisture
anomaly time series correlation with in situ measurements. In
[6], the extended Kalman filter method was used to assimilate
the surface soil moisture derived from AMSR-E C-band bright-
ness temperature measurements based upon the land parameter
retrieval model (LPRM) algorithm into the interactions among
surface, biosphere, and atmosphere land model. The introduc-
tion of AMSR-E soil moisture yielded substantial analysis incre-
ments (changes in the model estimate between before and after
the implementation of the analysis equation) for both surface
and root-zone soil moisture, although the assimilation estimates
were not validated against real in situ observations. The assim-
ilation of AMSR-E soil moisture could be as efficient as the
precipitation corrections for enhancing the model soil moisture
skill [7]. The study [7] assessed the contributions of two AMSR-
E soil moisture products (June 2002 to July 2009), the NASA
standard algorithm product archived at the National Snow and
Ice Data Center (NSIDC) and the LPRM-derived AMSR-E soil
moisture. The assimilation of LPRM product generally led to
larger soil moisture skill improvement than the NSIDC product
[7]. More recently, studies suggested that the CLSM soil mois-
ture skill could be improved through the assimilation of either
AMSR-E or the advanced scatterometer (ASCAT) soil moisture
products. A joint assimilation of the two sensor products pro-
duced the best soil moisture skill [8]. Note that due to the bias
(systematic error) between satellite retrievals and model soil
moisture estimates, a priori rescaling on satellite retrievals [the
cumulative distribution function (CDF) matching] was applied
during the aforementioned efforts.

The AMSR-E soil moisture retrievals (derived from the X-
band brightness temperatures using single-channel algorithm),
without a priori scaling, were assimilated into the Noah land
surface model [9]. Their work was motivated by the assumption
that the mean value of satellite retrievals has potential contri-
bution to improving the model mean values of soil moisture.
Although the assimilation resulted in the improved soil mois-
ture estimates (reduced bias and root-mean-square-error values
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against in situ measurements, especially for the mass conserva-
tion scheme), their analysis typically made systematic correc-
tions to the model soil moisture estimation (a symptom of bias
in the assimilation system).

However, X (or C) band sensors are susceptible to vege-
tation cover and are typically sensitive to only the land sur-
face with low vegetation biomass. The assimilation of L-band
(∼ 1.4 GHz) sensor soil moisture products can offer the new
opportunities for improving the model soil moisture estimation
for a relatively wide range of vegetation conditions because L-
band sensors have stronger penetration of vegetation and soils
than those operating at X (or C) band frequencies. In recent
years, significant progress has also been made for assimilation
of L-band soil moisture products, which is attributed largely
to the launch of European Space Agency’s (ESA) soil mois-
ture and ocean salinity (SMOS) satellite [10], [11]. By applying
a vegetation-based disaggregation scheme, SMOS soil mois-
ture was assimilated into a soil–vegetation–atmosphere-transfer
model (coupled with MIKE SHE) at a fine scale [12]. In [13],
SMOS soil moisture was assimilated into a land surface model
over the central Tibetan Plateau at a coarse scale (∼ 100 km).
Some researchers investigated the impact of SMOS soil mois-
ture assimilation upon the predictive capability of the variable
infiltration capacity model [14]. In [15] and [16], four years
(2010–2013) of SMOS soil moisture retrievals were assimilated
into a land surface-hydrological model, Environment Canada’s
Modélisation Environmentale-Surface et Hydrologie (MESH),
over the Great Lakes basin with the one-dimensional version
of EnKF (1D-EnKF). The newly launched (January 2015) soil
moisture active passive (SMAP) mission will surely trigger more
research efforts in the field of L-band soil moisture assimilation
over the next decade.

Since October 2011, the AMSR-E soil moisture data have
been no longer available due to a technical problem with the in-
strument’s antenna. However, as the successor of AMSR-E, the
advanced microwave scanning radiometer 2 (AMSR2) onboard
the first generation of the global change observation mission-
water satellite, launched by the Japan Aerospace Exploration
Agency (JAXA) in May 2012, has further extended the X (and
C)-band passive soil moisture measurements. Meanwhile, L-
band soil moisture retrievals have become increasingly available
with the launch of the SMOS and SMAP missions. Although
satellite soil moisture products derived from X-band (or C-band)
and L-band measurements typically performed differently [17]–
[19], their comparison in land/hydrologic data assimilation ap-
plication has been rarely conducted.

Previous studies have demonstrated that assimilation of ei-
ther synthetic satellite soil moisture [20] or SMOS soil mois-
ture retrievals [15], [16] could improve the MESH model’s soil
moisture skill for both the surface and root zone layers. In the
present study, we investigate how differently X-band and L-
and soil moisture retrievals, via data assimilation, modulate
the MESH model’s soil moisture estimates. To this end, we
assimilate the AMSR-E soil moisture retrievals (2003–2011),
derived from NSIDC and LPRM algorithms, as well as the
AMSR2 soil moisture (year 2013), derived from JAXA’s lookup
table algorithm, into Environment Canada’s MESH model over

the Great Lakes basin. The assimilation of X-band retrievals
(AMSR-E/AMSR2) is compared with the assimilation of L-
band retrievals (SMOS). The Great Lakes basin (rather than
those areas with lower vegetation biomass, such as the Southern
Great Plains) is chosen as the study area since it offers a rela-
tively dense vegetation condition that can favor the assimilation
performance comparison between the X-band and L-band soil
moisture products.

Furthermore, it has been proven that a combined assimilation
of X-band and C-band soil moisture retrievals could produce the
best assimilation results (i.e., better than assimilation of either
product) (e.g., [8]). However, it is still unclear whether a joint
assimilation of X-band and L-band soil moisture products can
also lead to the best soil moisture skill improvement in practice.
In this study, we also perform the combined assimilation of X-
band and L-band soil moisture products. These efforts could
provide insight into the dependence of the assimilation upon the
satellite retrieval capability. There are two primary contributions
that make this study original: 1) this study presents for the
first time a comparison between the assimilation of X-band soil
moisture retrievals and the assimilation of L-band retrievals; and
2) this study demonstrates that the joint assimilation of passive
X-band and passive L-band soil moisture products performed
differently from the combined assimilation of passive X-band
and active C-band products.

II. DATA AND METHODS

A. AMSR-E Soil Moisture Retrievals

The AMSR-E measurements span from 18 June 2002 through
4 October 2011, with a resolution of 1–2 days for either ascend-
ing (01:30 P.M. LST) or descending (01:30 A.M. LST) orbits. A
number of algorithms have been used to extract soil moisture
from AMSR-E brightness temperatures. In this work, we assimi-
late two AMSR-E soil moisture products: 1) the AMSR-E/Aqua
level-2B land surface product archived at the NSIDC (data ver-
sion V09) [21] and 2) the LPRM algorithm-based AMSR-E
level 2 soil moisture product [22] archived at the NASA God-
dard Earth Sciences Data and Information Services Center. The
two products have been widely used in various validation and
assimilation studies [7], [23]–[25]. In the remainder of this pa-
per, the two AMSR-E products are referred to as NSIDC and
LPRM products, respectively.

The NSIDC product is delivered at a 25 km equal-area scal-
able Earth grid cell spacing. The soil moisture retrievals were de-
rived from the X-band (10.7 GHz) brightness temperature mea-
surements using the polarization ratios (PRs) approach (modi-
fied from [26] and [27]). The use of normalized PRs (brightness
temperature difference between the vertical and horizontal po-
larizations at a given frequency normalized by their sum) can
effectively remove the surface temperature dependence. PRs at
10.7 and 18.7 GHz are used to derive the vegetation/roughness
parameter based upon empirical relationships. Soil moisture
is then estimated based upon departures of PR at 10.7 GHz
from local monthly minima, which is used as a baseline. Except
for surface soil moisture and vegetation/roughness parameter,
the NSIDC product also contains useful ancillary data, such
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as surface types and quality control flags. Utilizing the ancil-
lary information, we exclude soil moisture retrievals that are
contaminated by dense vegetation, open water, frozen surface,
snow cover, radio-frequency interference, rainfall, etc.

The LPRM algorithm uses a forward radiative transfer model
to retrieve surface soil moisture and vegetation optical depth
through a nonlinear iterative procedure [22], [28]. The LPRM
product includes soil moisture retrievals and vegetation optical
depths derived from both the AMSR-E’s X-band (10.7 GHz) and
C-band (6.9 GHz) brightness temperature measurements and
the land surface temperature that is separately derived from the
vertical polarization brightness temperatures at 36.5 GHz. Here,
we use only the X-band LPRM retrievals, to be consistent with
the NSIDC product. The LPRM retrievals are not considered
whenever the land surface is frozen.

B. AMSR2 Soil Moisture Retrievals

AMSR2 (May 2012–present), as the successor of AMSR-
E, is generally the same as the AMSR-E instrument. AMSR2
acquires microwave emission from the Earth’s surface and atmo-
sphere with a temporal resolution of 1–2 days for either ascend-
ing (1:30 P.M. LST) or descending (1:30 A.M. LST) overpass.
In this work, we assimilate the AMSR2 level 2 soil moisture
content (SMC) product released by JAXA. The product version
is Ver. 1.1 (1.110.100) [during the preparation of this paper, the
Ver. 2.0 (2.220.2.00) of AMSR2 products was released]. The
inversion of soil moisture is based upon a lookup table method
[29]. The lookup table, which was derived from theoretical cal-
culations using a forward radiative transfer model, describes
the relation of soil water content and vegetation water content
(as well as the fractional vegetation cover) with two indices,
the normalized polarization difference at 10.7 GHz (i.e., bright-
ness temperature difference between the vertical and horizontal
polarizations normalized by their average) and the normalized
frequency difference between 36.5 and 10.7 GHz horizontal
polarizations (i.e., difference between brightness temperatures
obtained at the two frequencies normalized by their average). By
looking up the table, soil moisture and vegetation water content
can be estimated based upon the observed polarization differ-
ence and frequency difference (as well as the observed fractional
vegetation cover). Currently, only volumetric soil moisture data
are stored in the AMSR2 level 2 SMC product. Only one year
(2013) of AMSR2 retrievals is used in this study.

C. SMOS Soil Moisture Product

The ESA SMOS level 2 soil moisture user data product
(MIR_SMUDP2) is used in this study. The MIR_SMUDP2 soil
moisture retrievals are equally spaced at about 15 km (oversam-
pled by a factor of nine) with a temporal resolution of 1–3 days
for both ascending (6:00 A.M. LST) and descending (6:00 P.M.
LST) orbits. The retrieved soil moisture was primarily based
upon an iterative algorithm [30]. Three years (2010/2011 and
2013) of SMOS retrievals from both ascending and descending
overpasses are used in this study. The processor version of the
level 2 product was changed over the years with V501 (REPR
data set) for 2010/2011 and V551 (OPER data set) for 2013.

Utilizing the attached reference information in the product, we
exclude the retrievals those are contaminated by open water,
frozen surface, snow, rain, etc. The reader is referred to [16]
for details.

D. Assimilation Scheme

Here, we use the 1D-EnKF with 12 ensemble members to
assimilate satellite soil moisture into the MESH model. Al-
though the two- or three-dimensional filtering can account for
the spatial error correlations in meteorological forcings and/or
soil moisture products, the improvement (relative to 1D-EnKF)
is generally marginal for satellite soil moisture assimilation [31].
The model configurations and the1D-EnKF assimilation scheme
were described in [20]. The meteorological forcing data are de-
rived from Environment Canada’s Canadian precipitation anal-
ysis and the global environmental multiscale model forecasts.
Prior to the assimilation, the satellite retrievals are resampled
onto the forecast model grids (∼ 15 km × 15 km resolution) us-
ing a nearest neighbor approach. Whenever and wherever the
model (combined with the rainfall forcing data) indicates the
presence of precipitation, frozen soils, or snow cover, the corre-
sponding satellite retrievals are removed. In a data assimilation
system, to what extent the model forecast will be modified given
observations is governed by the model forecast and observation
error covariances. The EnKF method estimates the model fore-
cast errors based upon an ensemble of model integrations. The
ensemble spreading defines the forecast error variance. Here,
the ensemble of model integrations are generated by applying
random errors to the forcing data and to the model-forecasted
soil moisture to account for uncertainties in forcing inputs and
in model physics and/or parameters. The error parameters were
specified in [20, Table II].

The observation errors are represented using another ensem-
ble with the mean equal to zero and the variance equal to the
observation error variance. Satellite soil moisture retrievals are
typically subject to both instrumental errors and representative-
ness errors. The latter are caused primarily by the observation
operator used in the retrieval algorithm and the misfit between
the observation space and the model space. In reality, the er-
rors in satellite retrievals, especially the representativeness er-
rors, are difficult or impossible to completely estimate since
they vary with time and space. An approximate estimate can
be obtained by taking the climatological variance of satellite
product as the observation error variance (e.g., [5], [7], [8]). In
this study, error standard deviations (stdevs) (unscaled) of 0.02,
0.08, 0.05, and 0.08 m3/m3 are assumed for AMSR-E/NSIDC,
AMSR-E/LPRM, AMSR2, and SMOS products, respectively.
These quantities are derived from their respective climatological
stdevs (across the study period and the study domain).

Since the satellite retrievals and model surface soil moisture
exhibit different climatologies, a priori rescaling (bias reduc-
tion) is applied to the retrievals and the observation error stdevs.
The retrievals are rescaled by matching their CDF to the model
surface soil moisture’s CDF [32]. The observation error stdev
is also rescaled by multiplying it with the ratio between the
time series stdev of the scaled retrievals (almost identical to
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Fig. 1. Vegetation cover over the Great Lakes basin and location of in situ
stations for soil moisture measurements (black dots). In situ soil moisture data
are taken from the Michigan automated weather network.

the model surface soil moisture stdev) and that of the unscaled
retrievals. The rescaling of the retrievals and their error stdev
is conducted locally (independently for each site). Notice that
since the absolute magnitude of satellite soil moisture is changed
the assimilation products are meaningful only in terms of the
time variability of soil moisture, which is consistent with the ad-
vantage of point-scale in situ soil moisture measurements (see
Section II-E).

E. In Situ Soil Moisture Observations and Skill Metric

The study domain for this work is the Great Lakes basin
(see Fig. 1). In this work, in situ soil moisture measurements
from the Michigan Automated Weather Network (MAWN;
http://www.agweather.geo.msu.edu/mawn/) are used to validate
the satellite retrievals, the model, and assimilation estimates.
The specification of in situ stations and measurements was pro-
vided in [16]. MAWN is comprised of 79 stations. Each sta-
tion uses two Campbell Scientific water content reflectometers
(CS615 or CS616) to measure soil moisture. The two probes are
horizontally inserted to provide hourly soil moisture measure-
ments at depths of 10 and 25 cm (at 46 stations) or are vertically
installed to measure moisture in the top 60 cm of soils (0–30
and 30–60 cm) (at 33 sites). For the Great Lakes basin, the for-
est cover and open water pose a challenge to satellite remote
sensing of soil moisture. The validation sites located in forested
areas and near the lakes, relative to inland cropped sites, typ-
ically had lower satellite (SMOS) soil moisture retrieval skill

and worse assimilation performance [16]. In the present study,
the AMSR-E and AMSR2 soil moisture retrievals are more sus-
ceptible to forest cover (due to a shorter wavelength) and the
presence of lakes (due to a coarser footprint). Therefore, most
of the stations that are located in forested areas or near the lakes
(within ∼ 40 km of the coast) were excluded from the valida-
tion. This poses an obstacle to a performance comparison of
inland sites and those near the lakes (i.e., the impact of water
contamination). Eventually, only 30 in situ stations (black dots
in Fig. 1) are withheld for this study. A basic quality control is
applied to in situ soil moisture data at these withheld stations.
In situ measurements are rejected

1) when the corresponding soil temperature is below 0 °C;
2) if they exceed any realistic ranges (e.g., “spikes” that can-

not be explained by physical variability); or
3) if the data series contain sudden changes that are impos-

sibly associated with physical processes.
Although point measurements are not readily converted to

the spatial averages, the temporal variability of soil moisture
observed by point measurement may be spatially representative
[33]–[35]. The neighboring MAWN sites are typically in good
agreement for the temporal pattern of soil moisture [16], indicat-
ing that point measurements used in this work could represent
the areal average (satellite product scale or model grid cell) in
terms of the temporal variability of soil moisture.

At each validation site, the satellite retrievals, the open-loop
soil moisture, and the assimilation estimates are assessed against
in situ measurements in terms of the anomaly time series cor-
relation R (soil moisture skill). The soil moisture anomalies are
defined as departures of the daily soil moisture from the monthly
means (averaged over all available years). The satellite retrieval
skill and the surface soil moisture skill (open-loop and assimila-
tion) are computed using the satellite retrievals or the model top
soil layer (0–10 cm) against in situ measurements taken at 10
cm depth or in the top 30 cm of soils (for those sites where the
probes are vertically installed). The root-zone soil moisture skill
(open-loop and assimilation) is derived using a depth-weighted
average of soil moisture estimates in the model’s top two lay-
ers (0–10 and 10–35 cm) against the arithmetic mean of in situ
measurements at 10 and 25 cm depths or the 0–30 cm profile
measurements. The satellite soil moisture skill R is computed
only over the days with available satellite data, whereas the
model and assimilation skill R values are obtained based upon
the complete time series (except for the model snow covered or
frozen soil periods).

III. ASSIMILATION OF AMSR-E PRODUCTS

First, we present the assimilation of the two AMSR-E soil
moisture products, NSIDC and LPRM. The assimilation period
is from 1 January 2003 through 04 October 2011. This is also
the sample period for the CDF matching and the rescaling of the
retrievals and their error stdevs. The rescaled observation error
stdevs range from 0.02 to 0.11 m3/m3 (across the study stations)
for both of the two products. At each validation location, the
soil moisture skill (anomaly R) is computed based upon the
soil moisture anomalies over the assimilation period. The soil
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Fig. 2. Mean soil moisture skill (the average across all validation sites) for
the AMSR-E retrievals (NSIDC alone and LPRM alone), the open-loop model,
and the assimilation estimates (NSIDC and LPRM, respectively). Error bars
indicate the 90% confidence intervals for the average values.

moisture anomalies are defined as departures of the daily soil
moisture from the climatological monthly means.

A. Comparison Between NSIDC and LPRM Products

The two AMSR-E soil moisture products (NSIDC and
LPRM) have been evaluated using in situ point or network mea-
surements over different regions such as the United States [23],
[36], Canada [24], Europe [25], [37], and Australia [38]. Each
product performed differently in different studies. It is gener-
ally accepted that the LPRM product has better correlations
with in situ data than the NSIDC retrievals. In the present work,
each product also performed differently at different individual
sites (not shown). The soil moisture skill (anomaly R) results
averaged over the 30 validation sites are summarized in Fig.
2. The mean skill values with 90% confidence intervals are
computed for the AMSR-E retrievals, the open-loop (single in-
tegration without assimilation), and the assimilation estimates.
The confidence interval for the mean anomaly R is estimated
using [R̄ − t S√

N
, R̄ + t S√

N
], where R̄ is the sample mean of all

single R values (single site) for a given soil moisture product,
N is the sample size, which is the summation over available
validation sites, and S is the sample stdev. The value of t, which
depends upon the degrees of freedom (i.e., N – 1) and the level
of confidence, can be determined from the t table. Here, the
calculation of confidence intervals for the mean R is different
from [7] and [8], but our method is the conventional way to
estimate the confidence interval for a population mean [39],
[40]. The calculated confidence intervals likely underestimate
the true confidence intervals because the spatial and/or temporal
correlations in R values are neglected here.

Fig. 2 shows that the mean retrieval skill is higher for LPRM
(anomaly R = 0.31) than for NSIDC (anomaly R = 0.24),
which is fairly consistent with the results over other regions
[23], [25], [38]. The mean anomaly R for the model open-loop
is 0.28 for surface soil moisture, and is 0.40 for root zone soil
moisture (see Fig. 2). After the assimilation of NSIDC product,
the mean model skill is increased by about 0.08 for both sur-
face and root zone soil moisture. After assimilating the LPRM

product, the mean skill improvement ΔRA−M , defined as the
skill for the assimilation minus the skill for the open-loop, is
about 0.15 for either surface or root zone soil moisture. As ex-
pected, the improvement in the model soil moisture skill through
assimilation increases with increasing retrieval skill.

Fig. 2 shows that the mean skill for the assimilation estimates
always exceeds that of the open-loop model, even when the re-
trieval skill (e.g., NSIDC) is lower than that of the open-loop
model. Synthetic assimilation experiments suggested that if the
open-loop model skill was low to modest even the retrievals of
low skill could contribute to the assimilation skill [41]. The study
[41] also indicated that the surface soil moisture skill from the
assimilation estimates was typically above the satellite obser-
vation skill, except for the presence of a poor open-loop model
skill and a high satellite skill. Similarly, Fig. 2 reveals that the
mean ΔRA−S , defined as the skill for the surface soil moisture
assimilation product minus the retrieval (observation) skill, is
about 0.12 for the assimilation of either NSIDC or LPRM prod-
uct. This evidently demonstrates that the assimilation produced
superior soil moisture estimates, relative to both the open-loop
model and the observation product alone.

In [7], the contributions of both the NSIDC and LPRM prod-
ucts (June 2002 to July 2009), through the EnKF assimilation, to
the CLSM model soil moisture skill were assessed using in situ
measurements from the continental United States Soil Climate
Analysis Network (SCAN). We can compare their skill levels
with our results. Note that differences between the two studies
are expected since the model, forcing data, and in situ measure-
ments used in [7] are different from those used in our study.
However, the two studies showed similar modulation of the two
AMSR-E products on the model soil moisture skill. Both stud-
ies showed that the retrieval skill was higher than for LPRM
than for NSIDC. Accordingly, the LPRM retrievals resulted in
greater skill for the assimilation product. For the CLSM model
forced with precipitation from the NASA modern era retrospec-
tive analysis for research and applications, which has the mean
open-loop skill (0.43 for surface soil moisture and 0.47 for root
zone), the mean skill improvement ΔRA−M (for both surface
and root zone) is about 0.05 for the NSIDC assimilation and
about 0.11 for the LPRM assimilation [7]. In addition, after
assimilating 3.5 years (January 2007 to May 2010) of LPRM
retrievals in CLS, the mean skill (anomaly R) improvement was
about 0.09 (the open loop skill is about 0.45) over the United
States SCAN/SNOTEL network and the Murrumbidgee soil
moisture monitoring network in southeast Australia [8]. The
skill improvement values are smaller than those obtained in the
present study (0.08 for NSIDC and 0.15 for LPRM), which may
be due to the higher open-loop anomaly R in their studies [7],
[8]. However, overall, these studies yield the same general con-
clusions, especially regarding the assimilation dependence on
the satellite retrieval skill.

B. Assimilation Dependence Upon the Retrieval-Model Skill
Difference

In general, the skill improvement ΔRA−M (the assimila-
tion skill minus the open-loop skill) increases with the satellite
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Fig. 3. Time series of surface soil moisture (SM) anomalies (over 2009–2011)
corresponding to (a) the best soil moisture skill improvement (ΔRA−M =
0.34) and (b) the worst skill improvement (ΔRA−M = −0.08) for the assim-
ilation of AMSR-E LPRM retrievals (1 January 2003 through 4 October 2011);
their locations are denoted in (c). In (a) and (b) panels, the four data sets of
soil moisture anomalies (In situ measurements, LPRM retrievals, the open-loop
model, and assimilation estimates) are provided.

retrieval (observation) skill, but decreases with increased open-
loop skill [40]. Therefore, due to the spatial variability of the
satellite retrieval skill and/or the open-loop model skill, the as-
similation performed differently at different sites. Fig. 3 presents
the time series of surface soil moisture anomalies (over 2009–
2011) corresponding to the highest [see Fig. 3(a)] and the lowest
[see Fig. 3(b)] surface soil moisture skill improvement for the
assimilation of AMSR-E LPRM retrievals. At the site with the
best ΔRA−M [see Fig. 3(a)], the LPRM retrieval skill is rela-
tively high (anomaly R = 0.60) and the open-loop model skill
is relatively low (anomaly R = 0.34), and thus a strong skill im-
provement (ΔRA−M = 0.34) is expected. On the contrary, if the
satellite retrieval skill is relatively low and the open-loop model
skill is relatively high, we usually expect weak or even negative
ΔRA−M , as observed for the site in Fig. 3(b). The lowest skill
improvement is located in coastal areas [see Fig. 3(c)], reflecting
the impact of water on satellite soil moisture observation.

To further investigate the impact of the open-loop skill and the
retrieval skill on the assimilation, Fig. 4 provides the skill im-
provement ΔRA−M against ΔRS−M , defined as the retrieval

Fig. 4. Skill improvement ΔRA−M (skill for the assimilation minus the
open-loop skill, ordinate) for (left) surface and (right) root-zone soil moisture
against ΔRS−M (skill for the satellite retrievals minus skill for the open-
loop surface soil moisture, abscissa), derived from the assimilation of AMSR-
E/NSIDC (circles) and the assimilation of AMSR-E/LPRM (triangles). Symbols
in red mean that ΔRA−M are not statistically significant at the 5% level. The
horizontal dashed line denotes ΔRA−M = 0. The two vertical dashed lines
denote ΔRS−M = −0.2 and 0.

skill minus the skill for the open-loop surface soil moisture,
across the individual validation sites. It is obvious that the
skill improvement ΔRA−M approximately increases linearly
with ΔRS−M when assimilating either AMSR-E/NSIDC or
AMSR-E/LPRM retrievals. As long as ΔRS−M exceeds –0.2
(i.e., assimilating retrievals with a skill no more than 0.2 be-
low the open-loop skill), the assimilation is typically able to
increase the model skill (i.e., a positive ΔRA−M is expected).
If the retrieval skill is greater than or equal to the open-loop
surface soil moisture skill (i.e., ΔRS−M ≥ 0), the skill im-
provement ΔRA−M is often statistically significant. When the
skill for the retrievals is more than 0.2 below the open-loop skill
(i.e., ΔRS−M < −0.2), the chances for positive ΔRA−M be-
come slim. The results are fairly consistent with [8]. The study
showed that the assimilation of AMSR-E and ASCAT retrievals
in CLSM typically generated an improved skill (in terms of
anomaly R) for both surface and root zone soil moisture as long
as the satellite observation skill is no more than about 0.2 lower
than the open-loop skill. Similarly, the assimilation of SMOS
soil moisture may be not helpful and even negatively affect
the open-loop skill if the skill (in terms of raw R) for SMOS
retrievals is more than about 0.3 below the open-loop skill [16].

As shown in Fig. 4, overall the surface soil moisture ΔRA−M ,
relative to root-zone ΔRA−M , exhibits a better linear relation-
ship with ΔRS−M . For a given ΔRS−M , the skill improvement
ΔRA−M is usually more variable (along the ordinate) for root-
zone soil moisture than for surface soil moisture. This may
be due to the fact that during the assimilation the updating of
root-zone soil moisture is subject to the accurate information
exchanges between the surface soil and deeper layers, which,
in turn, are controlled by factors such as model dynamics and
input error parameters. Additionally, some observational noise
may be eliminated during their propagation to deeper soil lay-
ers. However, notice that a linear relation between ΔRA−M and
ΔRS−M is not expected to be perfect since the sensitivity of
ΔRA−M to ΔRS−M is additionally affected by the magnitude
of open-loop skill R. The synthetic experiment [41] showed that
along the axis of retrieval skill the contour lines of the skill im-
provement ΔRA−M are denser at low to modest open-loop skill
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(anomaly R) than at higher open-loop skill [see Fig. 2(c) and (d)
therein], i.e., the skill improvement ΔRA−M is more sensitive
to the increase in the retrieval skill when the open-loop skill is
low to modest than when the open-loop skill is high. Therefore,
the same ΔRS−M typically leads to larger ΔRA−M for a lower
open-loop skill.

IV. COMPARISON BETWEEN AMSR-E AND SMOS

The assimilation of SMOS soil moisture retrievals (2010–
2013) in the MESH model over the Great Lakes region was
reported in [16]. The study revealed the impact upon the assim-
ilation of the open-loop skill and the satellite retrieval (obser-
vation) skill. The crop-dominated grids typically experienced
substantial skill improvement ΔRA−M when the assimilated
SMOS retrievals also came from crop surfaces, due to the pres-
ence of a high satellite observation skill and a low open-loop
skill. Here, we perform the comparison between the assimila-
tion results from SMOS and AMSR-E, which may offer further
insight into the dependence of the assimilation upon the satel-
lite retrieval skill. As a reminder, the AMSR-E products covered
June 2002 to October 2011 while the SMOS retrievals are avail-
able from January 2010 to present. Additionally, the SMOS
assimilation is also applicable to some forested locations [16].

Our comparison is based upon only the period (1 January
2010 to 4 October 2011) and locations (black dots in Fig. 1)
for which both SMOS and AMSR-E retrievals are available.
The satellite/model CDF matching and the rescaling of the re-
trievals and their observation error stdev, independently for each
site and for each satellite product, are all based upon this pe-
riod. For the same period, however, the length (number) of
AMSR-E retrievals (instantaneous values) is typically greater
than the length of SMOS data series since the mean revisit time
is shorter for AMSR-E than for SMOS. The rescaled satellite
retrievals may vary with the length of retrieval samples used in
the CDF matching scheme [14], [42]. To minimize the effect
of this factor on the intercomparison of the assimilation perfor-
mance between AMSR-E and SMOS, the CDFs of three satellite
products (AMSR-E/NSIDC, AMSR-E/LPRM, and SMOS) are
(locally) estimated based upon the same sampling length by
extracting the AMSR-E data only at the SMOS overpasses (a
nearest sampling in time). However, note that the (temporally)
complete AMSR-E retrieval series are used in the assimilation
because applications would not intentionally throw away useful
observational information and degrade the potential of satel-
lite products. The rescaled observation error stdevs for SMOS
and the two AMSR-E products are typically similar (locally),
varying between 0.02 and 0.11 m3/m3 across the validate sites.

Fig. 5 shows the mean soil moisture skill (averaged across the
validation sites) corresponding to the assimilation of AMSR-E
and SMOS retrievals over 1 January 2010 to 4 October 2011.
The results further reveal the impact of the satellite retrieval
skill upon the assimilation estimates for both surface and root
zone soil moisture. For the retrieval skill, SMOS soil moisture
(anomaly R = 0.43) is significantly higher than the NSIDC
product (anomaly R = 0.21) and the LPRM product (anomaly
R = 0.27). The mean open-loop skill is 0.26 for surface soil

Fig. 5. Soil moisture skill (anomaly R over 1 January 2010 to 4 October 2011)
averaged across all validation sites for the satellite retrievals, the open-loop
model, and the assimilation estimates. The satellite retrievals and the corre-
sponding assimilation estimates are derived from the AMSR-E/NSIDC product
alone, AMSR-E/LPRM product alone, SMOS product alone, combination of
NSIDC and SMOS, and combination of LPRM and SMOS. Error bars indicate
the 90% confidence intervals for the average values.

moisture. After assimilating the three products separately, the
mean skill values for surface soil moisture are increased to 0.49
(SMOS), 0.34 (NSIDC), and 0.43 (LPRM). For the root zone soil
moisture, the NSIDC, LPRM, and SMOS products lead to gains
of 0.12, 0.19, and 0.24 in the mean model skill, respectively.

Furthermore, since the two sensor systems have different
overpasses, we also perform the combined assimilation of
instantaneous soil moisture retrievals from the two instruments.
The NSIDC and LPRM retrievals are assimilated jointly with
the SMOS data into the model (i.e., AMSR-E/NSIDC + SMOS
and AMSR-E/LPRM + SMOS in Fig. 5). For the joint assimi-
lation, the AMSR-E and SMOS retrievals are used to update the
model simulations at their respective observation times (1:30
A.M./P.M. for AMSR-E and 6:00 A.M./P.M. for SMOS). Their
respective observation error stdevs (rescaled) are utilized in
the joint assimilation experiments. The skill for the combined
AMSR-E and SMOS retrieval series (anomaly R = 0.34 for
NSIDC + SMOS; anomaly R = 0.36 for LPRM+SMOS) is
significantly higher than the AMSR-E product alone (anomaly
R = 0.21 for NSIDC and anomaly R = 0.27 for LPRM), but is
lower than the SMOS product alone (anomaly R = 0.43) (see
Fig. 5). Consequently, the assimilation skill (for either surface or
root zone soil moisture) from the joint assimilation of AMSR-E
and SMOS is higher than that from the assimilation of AMSR-E
alone (especially for the NSIDC + SMOS assimilation), but
is not superior to that from the SMOS alone assimilation. The
joint assimilation of AMSR-E and ASCAT soil moisture could
produce slightly better skill improvement (not statistically
significant) than assimilating either of them [8]. This happened
probably because AMSR-E and ASCAT soil moisture retrievals
were derived from X/C-band measurements and exhibited
similar observation skills. However, our results indicate that
the combined assimilation of passive X-band (AMSR-E)
and passive L-band (SMOS) products, relative to the L-band
retrieval alone assimilation, does not necessarily yield the
greater skill improvement. Note that we did not account for the
possible presence of error cross correlation between SMOS and
AMSR-E products during the rescaling of satellite products.
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Fig. 6. Site-based soil moisture skill (anomaly R) for (left) the AMSR2 re-
trievals and (right) the SMOS retrievals.

This may limit the performance of their joint assimilation
[43]. Nevertheless, the impact of cross-correlated observation
errors is expected to be marginal in this work since SMOS and
AMSR-E products are assimilated at different overpass times.

V. AMSR2 VERSUS SMOS

As a complementary work to the AMSR-E versus SMOS
comparison, this section compares the contributions of AMSR2
and SMOS retrievals, through data assimilation, to the MESH
model soil moisture estimates. The assimilation period is from
1 January 2013 to 31 December 2013. We match the satellite
retrievals (either AMSR2 or SMOS) and model CDFs based
upon one year (year 2013) of soil moisture data. The AMSR2
retrieval CDF is estimated using only the AMSR2 data extracted
at the SMOS overpasses (a nearest sampling in time). However,
the (temporally) complete AMSR2 retrieval series are still used
in the assimilation. The rescaled observation error stdevs for
AMSR2 and SMOS products are typically close (locally), rang-
ing from 0.02 to 0.11 m3/m3 across the validation sites. Based
upon the data availability, the soil moisture skill (anomaly R)
values are computed for 23 out of 30 validation sites shown in
Fig. 1. The soil moisture anomalies are obtained by deducting
monthly means from the daily time series.

A. Soil Moisture Skill for Individual Sites

Fig. 6 shows the AMSR2 and SMOS retrieval skill from
the 23 individual validation sites. The retrieval skill for SMOS
soil moisture typically exceeds or at least matches that of the
AMSR2 product. This is consistent with the dependence of satel-
lite soil moisture retrieval capabilities upon the microwave fre-
quency. The L-band measurements (SMOS) are more sensitive
to changes in soil water content than the X-band measurements
(AMSR2). Although the two instruments are not in agreement
in terms of the magnitude of the retrieval skill, the (spatial) cor-
relation between the two sets of retrieval skill is very high. Note
that the retrieval skill is calculated using only the days with
available retrievals. Since the AMSR2 and SMOS systems have
different observing frequencies, the two sets of satellite retrieval
skill are obtained based upon different data sequence lengths.
We also computed the AMSR2 retrieval skill using the SMOS
sequence length (by temporally resampling AMSR2 data to the
SMOS observation times) and found negligible changes in the
AMSR2 retrieval skill.

Fig. 7. Site-based surface soil moisture skill (anomaly R) for (top) the open
loop model, (middle) the assimilation, and (bottom) the skill improvement
ΔRA−M : (left) AMSR2 and (right) SMOS. ΔRA−M is denoted by an open
symbol if the open-loop skill and the assimilation skill are not significantly (5%
level) different from each other.

Fig. 7 shows the AMSR2 versus SMOS comparison, in terms
of the surface soil moisture skill for the assimilation estimates
and the skill improvement ΔRA−M . The counterpart of Fig. 7
for root-zone soil moisture is provided in Fig. 8. Overall, the
assimilation of either AMSR2 or SMOS improved the model
soil moisture skill for both the surface and root zone layers.
Due to the spatial variability of the satellite retrieval skill and/or
the open-loop model skill, the assimilation performance also
varies across the validation sites. In contrast with their evident
difference in retrieval skill (see Fig. 6), the assimilation soil
moisture product skill (and thus the skill improvement ΔRA−M )
obtained with the two sets of retrievals is in good agreement for
17 out of 23 validation sites (see Figs. 7 and 8).

However, the assimilation product skill does not always ex-
ceed the open loop model skill. Negative ΔRA−M sometimes
occurred, especially for the AMSR2 assimilation. In the present
work, the model input error parameters are not online (adap-
tively) tuned. Synthetic experiments have revealed that the as-
similation soil moisture estimates are generally not sensitive
to the specified input error parameters [20]. However, when a
severe underestimation of observation error occurs, the assimi-
lation estimates may be even worse than the open-loop model.
This could be the reason for the occurrence of negative ΔRA−M

in Figs. 7 and 8. For the retrievals of very low or even negative
skill, which generally reflect poor satellite observations, their
real errors could be severely underestimated by the input error
parameters, thus causing negative ΔRA−M .
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Fig. 8. Similar to Fig. 7, but for root zone soil moisture.

Negative ΔRA−M is severer in root zone (see Fig. 8) than
for the surface layer (see Fig. 7). This is because the poorly
specified observation error variances have a stronger impact
on the assimilation estimates of root zone soil moisture than
on surface soil moisture estimates [44]. We also investigated
the variance of the normalized innovations, which is defined as
the innovations (satellite observation minus model background
residuals) divided by the square root of the sum of the model
forecast error covariance in observation space and the mea-
surement error covariance [5]. The variance of the normalized
innovations is typically much larger than 1 in the presence of
negative ΔRA−M . This means that the corresponding assimila-
tion may not operate optimally and the assimilation estimates
may be significantly affected by the nonlinearities in the system.
To avoid this problem, online quality control routines and online
adjusting of input errors parameters [44] need to be added to the
assimilation system, which is outside the scope of this paper.

B. Mean Soil Moisture Skill

The averaged soil moisture skill values are presented in
Fig. 9. As expected, the mean retrieval skill for SMOS soil
moisture (anomaly R = 0.45) is significantly higher than that
of AMSR2 product (anomaly R = 0.27). The mean open-loop
skill is 0.42 for surface soil moisture and 0.50 for root zone
soil moisture. After assimilating the AMSR2 and SMOS prod-
ucts, separately, the mean skill values are increased to 0.51
(AMSR2) and 0.54 (SMOS) for surface soil moisture, and to
0.55 (AMSR2) and 0.59 (SMOS) for root zone soil moisture.
On average, the assimilation skill (and thus the skill improve-
ment ΔRA−M ) is only marginally sensitive to the increase in

Fig. 9. Mean soil moisture skill (anomaly R). The satellite retrievals and
the corresponding assimilation estimates are derived from the AMSR2 product
alone, the SMOS product alone, and the combination of AMSR2 and SMOS.
Error bars indicate the 90% confidence intervals for the average values.

the retrieval skill. This could be attributed to a relatively high
open-loop skill because the same increase in the retrieval skill
typically leads to a weaker improvement in the assimilation skill
for a high open-loop skill than for a lower open-loop skill [41].

We also perform the combined assimilation of instantaneous
soil moisture retrievals from AMSR2 and SMOS. For the joint
assimilation, the two set of retrievals are added into the model
simulations at their respective observation times (1:30 A.M./P.M.
for AMSR2 and 6:00 A.M./P.M. for SMOS). Their respective
observation error stdevs (rescaled) are still utilized. The mean
retrieval skill for the combined AMSR2 and SMOS is 0.38,
which is between the AMSR2 product skill and the SMOS
product skill (see Fig. 9). The joint assimilation of AMSR2
and SMOS increases the mean model skill from 0.42 to 0.54
for surface soil moisture and from 0.50 to 0.58 for root zone
soil moisture. On average, the combined assimilation of two
sensor products, relative to the SMOS alone assimilation, does
not further improve the model soil moisture skill.

VI. CONCLUSION

The assimilation of satellite soil moisture has been an active
research area. In this study, the 1D-EnKF is used to assimilate
the two AMSR-E retrieval products, NSIDC and LPRM, as well
as the AMSR2 retrievals into the MESH model, in comparison
with the assimilation of SMOS soil moisture. The following
conclusions can be drawn from this work:

1) Overall, the assimilation of X-band retrievals (AMSR-
E/AMSR2) leads to superior soil moisture skill, relative to
either the open-loop model skill or the retrieval skill. The
AMSR-E/LPRM assimilation typically yields larger skill
improvement ΔRA−M for both surface and root-zone soil
moisture than the AMSR-E/NSIDC assimilation does.

2) The assimilation of L-band retrievals (SMOS) typically
resulted in greater ΔRA−M than the assimilation of X-
band products (AMSR-E/AMSR2), although the sensitiv-
ity of the assimilation to the satellite retrieval capability
may become progressively weaker as the open-loop skill
increases. Note that the vegetation conditions could also
impact the assimilation performance comparison between
the X-band and L-band soil moisture products. In this
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work, the Great Lakes basin (the study domain) has a rel-
atively dense vegetation condition (as compared to those
areas with lower vegetation biomass, such as the Southern
Great Plains) and may favor the advantage of L-band soil
moisture product.

3) Unlike the dual assimilation of passive X-band and active
C-band soil moisture products, the joint assimilation of
passive L-band and passive X-band soil moisture retrievals
does not necessarily yield the best skill improvement.

4) The skill improvement ΔRA−M , as is well-known, typi-
cally increases with the retrieval skill and decreases with
increased open-loop skill, showing a strong dependence
upon ΔRS−M .
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