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Joint Enhancing Filtering for Road
Network Extraction
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Abstract— In this paper, we propose a task-oriented enhancing
technique for extracting road networks from satellite images.
By exploiting an approximate estimation of the potential road
edges for guidance, we developed a joint enhancing filtering
framework to generate a version of the input image that facilitates
road network extraction. First, an adaptive smoothing scheme is
designed to suppress the interference of noise or heavy textures,
such as residential areas or terrain boundaries. By combining
this scheme with the proposed novel anisotropic shock filter, the
edges of the potential road regions can be kept sharp and clear.
Through abundant experimental comparisons with state-of-the-
art filtering techniques and quantitative evaluations using data
from various satellite sensors, the performance of the proposed
approach is comprehensively evaluated. The experimental results
demonstrate that our system can address heavy high contrast
textures and provide a meaningful improvement in the feature
detection for road extraction.

Index Terms— Guided image filtering, joint enhancing filtering,
road network extraction.

I. INTRODUCTION

ROAD network extraction is a long-standing problem in
remote sensing image processing. High-quality automatic

road extraction results are valuable for the recognition of
vehicles, buildings, or other road-related objects, and are also
of great significance for reducing the effort required to acquire
transportation data.

Road network extraction has been attracting considerable
attention in the past decade. With the objective of achieving
high-quality and robust road network extraction, the authors
of existing studies addressed this problem from different
perspectives. However, literature review revealed that in most
of the studies, a common preprocessing step is involved to
allow the better extraction of the road features. Specifically,
Yuan et al. [1] employed a Laplacian of the Gaussian filter to
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approximately segment the road-like regions. Ünsalan et al. [2]
proposed a nonlinear median filtering for preprocessing to
avoid the undesired details in the image, Shi et al. [3] proposed
adaptive morphological operators to construct morphological
profiles (MPs), and Zang et al. [4] employed a Gaussian filter
together with a bilateral filter (BLF) to suppress false positive
detections. These studies imply a consensus that preprocessing
plays an important role in terms of achieving high-quality road
network extraction. However, most of the applied filters are
not associated with the targets, such as road-like structures, in
road network extraction. Thus, an interesting problem arises,
that is, whether it is possible to design more specific filters
for specific tasks.

On the other hand, the most recently developed structure-
aware [5]–[7] filtering techniques introduced new heuristics
for road extraction. Recently, more effort has been invested
in seeking a more flexible metric that suits structure-aware
smoothing, such as those using the oscillations of local
extrema [5], total variation (TV) with intensity gradients [6],
and patch-based local covariance on a batch of features [7].
These methods exhibit commendable strength in dealing with
structures free of a high/low contrast assumption, but the major
challenge of these filters is that sometimes it is difficult to
determine which structures are the most salient, which leads to
unpleasant artifacts. However, for a particular application, such
as road network extraction, the textures need to be smoothed
while the main structures need to be enhanced in order to
generate more accurate filtering results.

Inspired by these two types of methods, the objective of this
paper is to design a task-related enhancing filtering technique
that can be incorporated into road network extraction schemes.
For many road extraction methods, it is easy to acquire a road
structure measurement [3], [4]. By exploiting this approximate
estimation as guidance, we propose a joint enhancing filtering
framework to adaptively smooth textures, such as residential
areas or terrain boundaries, while keeping the potential road
edges sharp and clear. Benefiting from the explicit guidance,
our system is able to address heavy high contrast textures
and provide meaningful filter results for the feature detection
involved in road extraction. We evaluated our approach using
data from various satellite sensors and comprehensively com-
pared it with previous state-of-the-art filters. The experimental
results show that the proposed method can provide meaningful
improvement in the feature detection for road extraction. It is
also noted that, except the road network extraction, the major
contribution of this paper relies on a task-related filtering
framework, which can be easily extended to other remote
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sensing applications such as coastline detection or oil spilling
detection by simply replacing the explicit guidance.

II. RELATED WORK

In recent years, in many studies, the road network extrac-
tion problem has been investigated from different view-
points, and noteworthy progress has been made. In previous
surveys [8]–[11] and the most recent road extraction
studies [1]–[4], [12], we found an interesting tendency that
an increasing number of researchers prefer to include a pre-
processing filter in their systems, to guarantee better feature
extraction performance and high detection correctness.

Early road extraction studies were aimed at detecting roads
using their visual or geometric features. With the assumption
that road regions often appear as thin, low curvature, and high
contrast structures, various filters, such as morphological [13],
directional [14], and Kalman filters [15], were applied for
road line feature extraction [16], [17] or primitive line con-
nection [18]–[21].

Recently, road network extraction approaches have tended to
employ more complex systems to further improve the detection
performance, and more specific filters have been employed
to provide better feature detection. Poullis and You [12]
employed Gabor filtering for geospatial feature inference
classification. Based on this, followed by orientation-based
segmentation, in their method, road centerlines are extracted to
describe the road network. Considering the observation that the
pixels on the sides of the road boundaries have large responses,
while the pixels within the roads have small responses to the
Laplacian of the Gaussian, Yuan et al. [1] extracted roads
automatically by clustering the well-aligned pixels according
to a proposed locally excitatory globally inhibitory oscilla-
tor network. Ünsalan and Sirmacek [2] and Sirmacek and
Unsalan [22] utilized adaptive median filtering to eliminate
small noise terms and proposed a graph-based topology analy-
sis scheme to refine the road map in which spectral, shape, and
gradient features are combined to generate approximate road
primitives [2]. In the most recent road detection study [3],
a road centerline extraction scheme was developed, based
on a pretrained spectral–spatial classifier, which significantly
improves the detection robustness. It is worth noting that,
to suppress the interference of the undesired textures and
overcome the blur effect of feature descriptor mathematical
morphology (MM), general adaptive neighborhood-based MM
[23] was applied to form the MPs. Ziems et al. [24] proposed
a fusing scheme to combine the results of different models, in
which different road detection methods are employed. Benefit-
ting from its multimodel character, this approach presents an
impressive robustness and detection performance. By exploit-
ing various enhancing or smoothing filters, the methods in
these studies are able to provide a better performance than
those in which the extraction algorithm is applied directly to
the original remote sensing images.

On the other hand, the development of structure-aware
image processing techniques provides more interesting heuris-
tics for road network extraction. In early filtering techniques,
local intensity contrast was widely used for characterizing

dominant structures [25]–[29], of which the BLF proposed
in [25] is a classical example. BLF takes both the spatial and
intensity contrast into account, presenting several appealing
features for edge-aware processing. Following this idea, to
address the “halo”-free results, Farbman et al. [30] proposed
a weighted least squares optimization scheme to preserve
regions with large gradient magnitudes. Xu et al. [27] mea-
sured salient structures using the L0 gradient-based optimiza-
tion scheme. Li et al. [29] proposed a mix-domain filter,
combining a set of nonlinear filters on each pixel and syn-
thesizing the responses to obtain a globally optimized result.
However, local contrast-based smoothing methods suffer from
the major limitation that they possibly fail to smooth high
contrast textures. Thus, they are not suitable for handling
some challenging images with complicated textures, such as
residential areas, for road detection.

To resolve the limitation of contrast-based smoothing tech-
niques, various structure-aware filters have been developed
to address high contrast textures. Subr and Soler [5] uti-
lized local extrema distribution for the measurement of
structures and details, where the details are assumed to be
captured by the oscillations between local minima and max-
ima, and then, they employed empirical mode decomposi-
tion (EMD) to sandwich the underlying multiscale base layers.
Zang et al. [31] employed a space-filling curve to thread all the
image pixels in a 1-D sequence and computed local extrema
and envelopes in the curve instead of a 2-D image grid. Such
a domain reduction significantly simplifies the EMD process,
thus gaining an extremely fast performance for structure-aware
image smoothing based on local extrema. Inspired by the
classical TV model [32], Buades et al. [33] proposed the
local TV measurement to decompose an image into struc-
tures and oscillatory texture elements. Following this study,
Xu et al. [6] proposed relative TV (RTV) to measure the
structures of an image and obtain a plausible structure-aware
smoothing effect by solving a global optimization problem.
More recently, Karacan et al. [7] proposed patch-based local
covariances of some prescribed features for classifying salient
structures and textures. Using this metric, contrast-independent
smoothing results are easily obtained by computing the local
means of each pixel with the similarity as weights.

III. JOINT ENHANCING FILTERING

The proposed joint enhancing filtering utilizes the estima-
tion of potential road-like structures to guide the preprocessing
of the image, thus suppressing the interference of high contrast
textures while enhancing the road-like regions.

Fig. 1 shows the framework of our approach. The entire
system comprises two primary parts: the adaptive smoothing
part is aimed to smooth heavy textures, such as buildings or
residential areas while preserving potential road-like struc-
tures; the enhancement part is aimed to compensate for the
possible bluriness of the road areas, thus providing sharp and
clear road edges. Both parts are guided by an estimated road
structure model.

To handle the high contrast textures better, inspired by the
idea of image EMD [5], [34], the smoothing part is applied
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Fig. 1. Framework of our approach.

on the “maximum envelope” and “minimum envelope” of the
image (which are approximated by the maximum and mini-
mum filters in our approach). The results are then combined by
the proposed anisotropic shock filter scheme to further enhance
the road areas. The filtering results can then be employed to
generate more accurate road structure estimations, thus leading
to a better performance in an iterative manner.

A. Adaptive Image Smoothing Guided by
Road-Like Structures

1) Definition: In most studies on road detection [2], [3],
the image is filtered following a general weighted averaging
framework, i.e., the value of a filtered pixel is calculated by
averaging its neighbors:

I ′
p =

∫
q∈N(p)

Wp,q(I )Iq dq (1)

where p and q are pixel indexes, N(p) is the neighborhood
of pixel p, the weight function Wp,q(I ) is related to the
input I , and different forms of Wp,q(I ) provide different
filtering performances. Fig. 2(a)–(c) shows some examples.
Fig. 2(a) is the input from Geoeye satellite, which includes
heavy high contrast textures of the buildings; Fig. 2(b) is the
result of the classic Gaussian filter, where different structures
are smoothed to the same degree; and Fig. 2(c) is the result
of the most recently developed covariance filter [7], where the
textures are not sufficiently smoothed and the road edges are
not preserved well.

On the other hand, for road extraction, current
schemes [2]–[4] frequently provide approximate estimations
or feature descriptors of road-like structures, which are very

valuable for the preprocessing. Based on this observation,
inspired by the idea of guided image filtering [35], the
objective of the proposed adaptive smoothing technique is to
smooth the image by the guidance of the road-like structures

I ′
p =

∫
q∈N(p)

Wp,q(I, G)Iq dq (2)

where Wp,q(I, G) is a joint function composed of not only
the input image, but also explicit guidance.

2) Guidance Construction: Given the input image I ,
the guidance map of our approach, denoted by G, is based
on the aperiodic directional structure measurement (ADSM)
of I (the details of the construction of this measurement
are given in [4]). Specifically, the magnitude of each point
(corresponding to the pixels in the image) in the map, which
provides an intuitive description of the probability that each
pixel belongs to the road edges, is calculated by rescaling the
ADSM value to the range [0, 1]. The direction of each point
is defined by the direction of the minimum eigenvector of the
structure tensor centered at the corresponding pixel in image I ,
denoted by �ξ p.

Fig. 2(d) shows the visualized result of the magnitude of the
guidance map, which approximately represents the potential
road edges. Fig. 2(e) visualizes the direction field of the
guidance map generated using the line integral convolution
technique [36]. It can be seen that the road structures show
better consistency than do the textures.

3) Adaptive Image Smoothing: With this guidance, our
adaptive smoothing process can be formulated as

I ′
p = 1

K

∫
q∈N(p)

wg
p,q(σg, I )g(σd , G)Iq dq. (3)
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Fig. 2. Test examples of our approach. (a) Input from Geoeye satellite. (b) Result of classic Gaussian filter. (c) Result of the latest covariance filter.
(d) Visualized result of the magnitude of the guidance map. (e) Visualized direction filed of the guidance map. (f) Adaptive smoothing result of our approach.

Here K is the normalizing factor to guarantee the sum of the
weight equals 1. w

g
p,q(σg, I ) is the Gaussian kernel, which

encourages neighbors that are closer to the center pixel p to
have larger weights, and is defined as

wg
p,q(σg, I ) = exp

(
−|x p − xq |2

2σg
2

)
(4)

where x p and xq denote the coordinates of pixels p and q ,
respectively, and σg controls the shape of the filter kernel.
g(σd , G) is a function of the guidance G, and is formulated as

g(σd , G) = exp

(
−|〈�ξ p × �ξq〉| · |(G p − Gq)|2

2σd
2

)
(5)

where G p and Gq denote the magnitude of the guidance
map, and �ξp and �ξq are the minimum eigenvectors of the
structure tensor centered at pixels p and q , respectively. The
magnitude of the cross product |〈�ξ p × �ξq〉|, with range [0, 1],
decreases when two vectors align closely, i.e., the included
angle between them approaches 0 or π , and equals 1 as
the two vectors become orthogonal. This kernel is designed
to encourage neighbors that are similar (i.e., with similar
road probabilities and local directions) to the center pixel p

to have larger weights, and therefore, for the potential road
structures, the filter kernel is more likely to follow consistent
local directions, as shown in the zoomed-in patch of Fig. 2(e).
Fig. 2(f) shows our adaptive smoothing result, in which the
heavy textures are sufficiently smoothed, while the road-like
structures are well preserved.

B. Structure-Aware Enhancement via Anisotropic Shock Filter

The adaptive smoothing is aggressive, as shown in Fig. 2(f),
and the heavy high contrast textures are effectively smoothed.
To obtain the sharp edges, we propose an anisotropic shock
filter for deblurring of road-like structures. The earliest shock
filter is proposed in [37] as

I t = −sign(�I)|∇ I | (6)

where t counts the iterative evolution in the filtering process,
with initial condition I0(x, y) equal to the initial image
I(x, y). The underlying structures are sharpened at the zero
crossings of �I . As an improvement in the adaptivity of this
shock filter, Weickert [38] proposed a coherence-enhancing
shock filter, which replaces the Laplacian operator �I by the
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Fig. 3. Enhancing result of our approach. (a) Adaptive smoothing result. (b) Result of traditional shock filter. (c) Our enhancing result.

second derivative along the direction of the domain eigenvector
of the structure tensor �ξ = (c, s) as

I t = −sign(c2 I x x + 2cs I xy + s2 I yy)|∇ I |. (7)

The essence of the shock filter is that it creates isotropic
shocks to enhance the regions that are selected by a cer-
tain edge detector (determined by the sign(·) function).
A limitation of such a filter is that shocks may be constructed
in texture or almost smooth regions, resulting in maze-like
artifacts [39] [see the zoomed-in patch of Fig. 3(a)]. Drawing
up underpins of the shock filter, our approach is aimed to add
extra guidance to facilitate the creation of shocks with different
degrees, i.e., anisotropic shocks. Specifically, this scheme can
be formulated as

I t = f (G, E)|∇ I |. (8)

Guided by the potential road structures estimation G, the
function f (·) indicates not only where to create shocks but
also what degree of shocks should be created.

As noted in [40], the partial differential equation shown in
6 can be approximated by combining the erosion and dilation
operator [depending on the sign(·) function], and therefore,
our anisotropic shock filter is defined as

I ′
p = W (G p, E)D(Ip) + (1 − W (G p, E))E(Ip) (9)

where the adaptive smoothing result I is acquired as described
in Section III-A, D(I ) and E(I ) denote the dilation and
erosion versions of image I , respectively, and E is the edge
detector inherited from Weickert’s shock filter, calculated as
E = c2 I x x + 2cs I xy + s2 I yy . Using the guidance map G,
the degrees of shocks are measured by the weight function
[W (G p, E)], which is essentially based on the hyperbolic

tangent function

W (G p, E) = T

(
1 − G p · sign(E)

2

)
and

T (x) = (1 + tanh(λ(x − 0.5)))

2
(10)

where λ is a factor to control the enhancing degree, with
a larger value indicating sharper edges. In our experiment,
value of λ is set at 6.0, while it can be adaptively adjusted
for different cases in the typical range [2.0, 10.0]. The goal of
our scheme is to encourage the enhancement of potential road-
like structures while suppressing other regions, such as texture
or flatter structures. Specifically, for road-like structures, i.e.,
G p → 1, (9) is equivalent to

I =

⎧⎪⎨
⎪⎩

D(I ) if E < 0

E(I ) if E > 0

(D(I ) + E(I ))/2 if E = 0.

(11)

Therefore, shocks are created to enhance the structures, While
for regions with G p → 0, (9) is degraded to I = (D(I ) +
E(I ))/2, and no enhancement is applied.

Fig. 3 shows the enhancing result of our approach. Fig. 3(a)
is the adaptive smoothing result. Fig. 3(b) is the result of the
traditional shock filter; as shown in the highlighted patch,
complex maze-like artifacts appear in the smooth region.
Fig. 3(c) shows our enhancing result; as viewed in the zoomed-
in patch, the road-like structures are significantly enhanced,
while the artifacts are effectively removed.

IV. DISCUSSION

A. Iterative Scheme

The entire system is implemented in an iterative scheme,
and the iterations of the structure estimation and filtering
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Fig. 4. Road structure estimations with different iteration times. (a) Input
with heavy textures. (b) and (c) Road structure estimations after one to three
iterations of our approach.

process are separate. First, the enhancing results can be in turn
applied to generate more accurate road structure estimation,
as shown in Fig. 4, where Fig. 4(a) is the input with heavy
textures and Fig. 4(b) and (c) are road structure estimations
generated by the results after one to three iterations. As the
iteration progress, the textures are better suppressed and the
estimation is more accurate.

The iteration of the structure estimation is independent of
the filtering process, i.e., we first obtain a satisfactory road
structure estimation by several iterations (typically the iteration
number is set at 2 in our experiments), and then, use this
estimation together with the original input to obtain the final
enhancing result.

B. Parameter Settings

Most of the user specified parameters are set at empirical
values. Specifically, for the smoothing phase, with an input
image resolution of 4 m, the radius of N(p) in 3 is set at 10,
which is demonstrated sufficient large for most of the cases
at this resolution. As the increase of the image resolution, the
size of N(p) could decrease correspondingly. σg in 4 is set at
5.0. For the enhancing phase, λ in 10 is set at 6.0.

The major parameters to control the effect are the iteration
number of the filtering process and σd in 5. For the iterations,
our results show that one to three times are sufficient for most
cases. For the parameter σd , the typical values fall in the range
[5, 20], which is test appropriate for most of the cases at
resolution 4 m. We explored the output space of the proposed
approach; the corresponding results are shown in Fig. 5. Here,
we show examples of three typical values of the iteration

Fig. 5. Results of our approach with different parameters.

number and σd , and list nine images to show the manner in
which these two parameters affect the results. As the number
of iterations and σd increase, the results become more smooth
with fewer details, which implies higher correctness. However,
when the values of these parameters are set extremely high,
the results may suffer slightly decrease of completeness in
the following road extraction phase. As a result, to trade off
these two statistics of the results, settings of two iterations
together with σd ∈ [10, 20] are applied most frequently in our
experiments.

C. Time Performance

We implemented our approach based on C++ program-
ming on a PC with a 3.2-GHz Intel Core i5-3200 CPU and
4-GB RAM. The algorithm is very efficient and with linear
complexity O(kn) corresponds to the total number of pixels.
Specifically, for a million pixel image (size of 1000 × 1000),
the entire process of our approach takes about 5 s. On the other
hand, the system is highly parallelized, and the performance
on a quad-core PC increases approximately 250%.

V. RESULTS

Three groups of experiments conducted to evaluate the algo-
rithm comprehensively are described in this section. Specifi-
cally, we first present the filtering results of experiments based
on inputs from different sensors, such as GeoEye, Ikonos,
Pleiades satellites, and aerial image, where various terrains,
such as urban areas, rural regions and mountains, are involved.
On the other hand, we also evaluate the performance and
parameter setting of our system on images with different
resolutions. In Section V-B, we compare our approach with
the most recent structure-aware image filtering techniques
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Fig. 6. Results of various sensors. (a) Result of aerial image. (b) Result of Geoeye image.

to demonstrate the effectiveness of our approach. Then, in
Section V-C, experimental quantitative evaluations are pro-
vided to show how our approach affects current road network
extraction methods.

A. Evaluation Using Images From Various Sensors

To test the adaptiveness of our approach, we first conducted
an evaluation in which our method is applied to images
from four different sensors, consisting of aerial image, and
those from the Geoeye, Ikonos, and Pleiades satellites. The
resolution of the Ikonos image is 1 m, and the resolution of the
rest images is 0.5 m. Various terrains, such as urban, and rural
region, and mountain, are included. The corresponding results
are presented in Figs. 6 and 7. For the images from different

sensors, the potential interferences of road extraction are
sufficiently smoothed, while the road edges are well preserved.
It is also viewed that, despite the fact that the intensities of
the road regions in different images are various, the filtering
results are similar.

Specifically, in the case of the aerial image [Fig. 6(a)],
which includes several villages, the major challenge is to
preserve the narrow roads mixed in the residential area while
smoothing the buildings and trees, as shown in the highlighted
patch. In the city regions in the Geoeye image, heavy textures
are involved in both the green belt and the residential area.
These textures are sufficiently smoothed in the result of our
approach, as shown in the highlighted patch. For the Ikonos
image, the low spectral contrast roads (as shown in the
highlight area), which can easily be destroyed by previous
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Fig. 7. Results of various sensors. (a) Result of Ikonos image. (b) Result of Pleiades image.

filters, such as the Gaussian or BLF, are well preserved or
enhanced in our result. For the Pleiades image, the boundaries
of terrains and the narrow roads occluded by trees, which may
influence the quality of the road extraction result, are smoothed
and connected by our approach.

We also evaluate the performance of our approach on
images with different resolutions. As shown in Fig. 8, images
in the first row (from left to right) are taken from ZiYuan3
(with resolution 0.5 m), GaoFen3 (with resolution 1 m),
and Pleiades 1A (with resolution 0.5 m) satellites. The sizes
of these images are 15 872 × 18 653, 23 609 × 31 899, and
28 648 × 37 929, respectively. Images from the second to the

fourth rows are three examples corresponding to the ZiYuan3,
GaoFen3, and Pleiades 1A satellites. Here, the image from
Pleiades satellite are downsampled to 4 m to cover different
resolutions in the experiment.

In the first experiment, we aim to evaluate the performance
of the road detection method [4] on the inputs with (denoted
by “Y” in Table I) or without (denoted by “N” in Table I) our
filter as preprocessing. Specifically, three types of results are
presented, including the filtering results (with the parameter
settings σd = 25.0, Iterations = 2 for resolution 0.5 m;
σd = 20.0, Iterations = 1 for resolution 1 m; and σd = 10.0,
Iterations = 1 for resolution 4 m), as shown in the
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Fig. 8. Results of inputs with different resolutions. The first row (from left to right) is input images with resolutions 0.5, 1, and 4 m (which is generated
by downsampling the original 0.5-m image). Images in the first column of rows 2–4 are the typical samples corresponding to images with resolutions 0.5, 1,
and 4 m. Images in the second column are the filtering results of our approach. Road detection results of [4] on the original input and our filtering result are
shown in the third and fourth columns. The road networks are highlighted as red for visualization.

TABLE I

CORRESPONDING STATISTICS OF IMAGES WITH VARIOUS RESOLUTIONS

BY COMBINING WITH OUR FILTER (DENOTED BY Y) OR NOT
(DENOTED BY N)

second column; road detection results of [4] on the original
input image, as shown in the third column; and road detection
results of [4] on our filtering result, as shown in the last
column. The road networks are highlighted as red in the input
image.

Table I shows some quantified results, where both the
samples (which are denoted by XX_sample) and the whole
image (which are denoted by XX_all) are applied for testing.
The reference road network is obtained by ground survey.
It can be viewed that the correctness is significantly improved
for either the samples or the whole image, especially for the
resolution 1 and 4 m, where 15.01% and 15.37% improve-
ments are observed (for the whole image testing). On the other
hand, for the completeness, slightly decrease (about 0.29%) is
observed for resolution 0.5 m. While for resolutions 1 and
4 m, due to the enhancing scheme of our approach, such
values even receive small increasing, about 0.40% and 0.57%
improvements for 1 and 4 m are observed. The reason we
guess is that some of the occlusions are connected by our
filtering process.

On the other hand, we also evaluate how the parame-
ters affect the results for images with different resolutions.
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Fig. 9. Comparison with state-of-the-art structure-aware image smoothing methods using Geoeye image.

TABLE II

CORRESPONDING STATISTICS OF RESULTS WITH

VARIOUS PARAMETER SETTINGS

Here the whole images taken from ZiYuan3, GaoFen3, and
Pleiades 1A satellites along with six groups of parameter
settings are applied for testing, also the image from Pleiades
satellite are downsampled to 4 m, and the ground truths are
taken from ground survey.

The corresponding results are shown in Tables II and III; it
can be viewed that, when the iterations = 1, as the value of σd

increases, the completeness suffers just slightly decrease for
resolutions 0.5 and 1 m; however, for images with resolution
4 m, the completeness significantly decreases when the value
of σd changes from 20.0 to 25.0. For the correctness, as σd

changes from 20.0 to 25.0, such a measurement for resolu-
tions 1 and 4 m tends to be convergent, while for images with
resolution 0.5 m, such a measurement increases continuously.

TABLE III

CORRESPONDING STATISTICS OF RESULTS WITH

VARIOUS PARAMETER SETTINGS

Then, when applying two iterations, i.e., iterations = 2, the
completeness suffers apparently decreasing as σd increases for
images with resolutions 1 and 4 m. For images with resolution
0.5 m, as the increase of σd , the completeness does not change
much, while the correctness improves stably.

B. Comparisons With Typical Structure-Aware Image Filters

In this experiment, we conducted an extensive comparison
with previous state-of-the-art structure-aware image smoothing
methods, including those presented in [5]–[7] and [31]. Two
different types of images are used for testing: the Geoeye
image with heavy textures and the Pleiades image with occlu-
sions and shadows, as shown in Figs. 9 and 10. In the Geoeye
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Fig. 10. Comparison with state-of-the-art structure-aware image smoothing methods using Pleiades image.

image, a large number of high contrast buildings may lead to a
high false positive rate for road extractions, and previous filters
either destroy the road edges [5], [6] or cannot easily address
these heavy textures [5]–[7], [30]. Our result, in contrast,
shows the ability to smooth these textures while enhancing the
road edges. The Pleiades image is not relatively challenging;
however, as shown in the highlighted area, occlusions and
shadows occur in some of the road regions. In the results
presented in [30] and [7], the roads are to some degree
blurred, and the occlusions are not well addressed in the results
presented in [5], [30], and [6]. Our approach performs well
when occlusions are present; however, like other methods, it
fails to handle the cases where shadows occur (as shown in
the red rectangle in the right). For these cases, in future work,
the effectiveness of applying semantic information could be
investigated.

C. Integration With Most Recent Road Network
Extraction Approaches

The goal of the experiments described in this section is to
quantitatively evaluate the effectiveness of our approach. First,
the Geoeye image shown in Fig. 9(a), which is challenged
for various road extraction methods, is selected as the input.

The three most recent road extraction methods are imple-
mented for testing. Fig. 11 shows the corresponding results.
Fig. 11(a), (c), and (e) shows the road extraction results of the
methods in [2]–[4] separately. Due to the graph optimization,
the method in [2] is able to provide impressive detection
completeness; in contrast, by conducting a multistage false
filtering scheme, the results of [3] present high detection
correctness; the method in [4], by focusing on the structure
of potential road regions, can efficiently generate high-quality
detection results. Fig. 11(b), (d), and (f) shows the results by
combining the proposed joint enhancing filtering.

To quantitatively evaluate the extraction results, ground truth
data are manually generated, and classic measurements criteria
are applied [41], [42]

completeness = TP

TP + FN

correctness = TP

TP + FP

quality = TP

TP + FN + FP
(12)

where TP, FN, and FP denote true positive, false negative, and
false positive (corresponding to the green, red, and blue lines
in the images), respectively. Table IV shows the corresponding
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Fig. 11. Road extraction results by combining our approach and current road extraction methods. (a), (c), and (e) Road extraction results of [2]–[4] separately.
(b), (d), and (f) Results combining the proposed joint enhancing filtering.

statistics of the various methods with (denoted by “Y”) and
without (denoted by “N”) our filter. Specifically, the com-
pleteness measurements of the methods in [2]– [4] increase

by approximately 0.35%, 3.78%, and 3.14% respectively,
which is a fair result, while for the performance of correct-
ness, a significant improvement is observed (19.97%, 5.92%,
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TABLE IV

CORRESPONDING STATISTICS OF VARIOUS ROAD EXTRACTION
METHODS COMBINING WITH OUR FILTER (DENOTED BY Y)

OR NOT (DENOTED BY N)

TABLE V

CORRESPONDING STATISTICS OF [2] ALONG WITH CLASSIC

STRUCTURE-AWARE FILTERING TECHNIQUES: BLF [25],
RTV [6], RCF [7], AND OUR APPROACH

TABLE VI

CORRESPONDING STATISTICS OF [3] ALONG WITH CLASSIC

STRUCTURE-AWARE FILTERING TECHNIQUES: BLF [25],
RTV [6], RCF [7], AND OUR APPROACH

TABLE VII

CORRESPONDING STATISTICS OF [4] ALONG WITH CLASSIC

STRUCTURE-AWARE FILTERING TECHNIQUES: BLF [25],
RTV [6], RCF [7], AND OUR APPROACH

and 10.04% for the methods in [2]– [4]). Benefiting from this,
the overall road extraction quality of each method improved
by 18.52%, 8.52%, and 11.87%, respectively.

The proposed approach is also evaluated using a remote
sensing image, having a resolution 0.5 m, of Shaoshan City
recorded by the Pleiades-1A satellite. The size of the entire
image is 28 648 ∗ 37 929, and the reference is acquired by
ground survey. The experiment is similar to the evaluation
above (Table IV), where previous road extraction methods
(presented in [2]– [4]) together with classic structure-aware
filtering techniques, BLF [25], RTV [6], and region covari-
ances filter [7] (RCF), are employed for testing. The image
is divided into 1000 ∗ 1000 patches with 30% overlap. The
average statistics are shown in Tables V–VII. The table shows
the original results of the different road extraction methods,

and the remaining rows show the updated extraction results
when the methods are combined with the different filters.

The results in [2] show high completeness. The different fil-
ters decrease this measurement to varying degrees, specifically,
RCF leads to the greatest decrease, i.e., −5.03%, compared
with the original results, while our approach provides the
smallest decrease, −0.10%. On the other hand, for correctness,
BF provides the smallest improvement (+2.55%), while our
approach significantly increases this measurement (+18.97%)
and the overall detection quality (+15.80%). Compared with
the method in [3], BF and our approach provide positive gain
in the completeness, while RTV and RCF slightly decrease
this measurement. Then, for the correctness, each method
provides different degrees of improvement: 0.38%, 3.17%,
0.66%, and 10.81% are observed for BF, RTV, RCF, and
our approach, respectively. For the method in [4], since
a BLF-based preprocessing step is involved in the original
method, the row of “BF” is blank, and for the completeness,
only our result provides a positive gain, +0.58%, and for
the correctness, 6.48%, 3.57%, and 18.18% improvements are
observed for RTV, RCF, and our approach, respectively.

VI. CONCLUSION

In this paper, we presented a joint filtering framework
developed to generate a version of the input image that
facilitates the road network extraction. Using the proposed
adaptive smoothing scheme and anisotropic shock filter, our
system is able to smooth heavy high contrast textures while
keeping the structures of potential road edges sharp and clear.
Abundant comparisons and quantitative evaluations using var-
ious satellite sensors demonstrated that the proposed approach
can efficiently provide a meaningful improvement in road
network extraction.
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