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Dark-spot detection is a critical and fundamental step in marine oil-spill detection and monitoring. In this
paper, a novel approach for automated dark-spot detection using synthetic aperture radar (SAR) intensity
imagery is presented. The key to the approach is making use of a spatial density feature to differentiate
between dark spots and the background. A detection window is passed through the entire SAR image. First,
intensity threshold segmentation is applied to each window. Pixels with intensities below the threshold are
regarded as potential dark-spot pixels while the others are potential background pixels. Second, the density
of potential background pixels is estimated using kernel density estimation within each window. Pixels with
densities below a certain threshold are the real dark-spot pixels. Third, an area threshold and a contrast
threshold are used to eliminate any remaining false targets. In the last step, the individual detection results
are mosaicked to produce the final result. The proposed approach was tested on 60 RADARSAT-1 ScanSAR
intensity images which contain verified oil-spill anomalies. The same parameters were used in all tests. For
the overall dataset, the average of commission error, omission error, and average difference were 7.0%, 6.1%,
and 0.4 pixels, respectively. The average number of false alarms was 0.5 per unit image and the average
computational time for a detection window was 1.2 s using a PC-based MATLAB platform. Our experimental
results demonstrate that the proposed approach is fast, robust and effective.
l rights reserved.
© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Marine oil pollution, caused by discharges from ships, and leakages
from oil platforms and oil-tanker accidents, is a major threat to fragile
marine and coastal ecosystems. Efficient monitoring and early
warning are essential to prevent widespread damage from oil
pollution and to reduce its adverse impact on ecosystems. The
combined use of satellite and aircraft surveillance flights is a cost-
effective means of achieving this goal. Satellite monitoring helps
identify potential locations of oil pollution over large areas, while
aircraft patrols help verify actual oil spills and provide evidence to
apprehend polluters. The synthetic aperture radar (SAR)-equipped
satellites are often preferred to optical ones, as they are independent
of sunlight and not affected by clouds. The commonly used SAR
sensors for oil-spill monitoring include RADARSAT-1, ENVISAT and
ERS-2 (Brekke & Solberg, 2005; Topouzelis, 2008).

The detectability of oil spills using SAR sensors relies on the fact
that oil slicks dampen the wind-generated, short gravity-capillary
waves and reduce backscattering from the sea surface. This results in
dark regions on SAR imagery which contrast with the surrounding
water surfaces (Brekke & Solberg, 2005; Topouzelis, 2008). A major
problem is that other ocean phenomena may also generate dark
regions which are known as look-alikes. Examples are low-wind
areas, organic films, areas of wind-shadow near coasts, rain cells,
shear zones caused by currents, grease ice, internal waves, upwelling
zones, downwelling zones and eddies (Alpers et al., 1991; Hovland
et al., 1994). In addition, the visibility of oil spills on SAR imagery is
affected by thewind speed at the sea surface. Only in a certain range of
wind speeds, approximately from 2–3 m/s to 10–14 m/s, can oil spills
be detected by SAR sensors (Girard-Ardhuin et al., 2005).

Detection of oil spills from SAR imagery can be divided into three
steps: (1) detection of dark spots (suspicious slicks), (2) extraction of
features from the detected dark spots, and (3) classification of the
dark spots (oil spills/look-alikes) (Brekke & Solberg, 2005). This can
be done manually or automatically. In manual detection, a trained
operator has to go through the entire image, find possible oil spills and
discriminate between the oil spills and the look-alikes. Though a
trained operator is able to detect oil spills from SAR images with some
confidence, it is time-consuming. It is also labor-intensive given the
large number of SAR images that must be analyzed in a short period of
time for effective oil-spill monitoring. In addition, manual detection is
constrained by the knowledge and experience of operators, whose
results are subjective. Thus, studies have been undertaken to develop
fast, reliable and automated oil-spill detection systems (Nirchio et al.,
2005; Karathanassi et al., 2006; Keramitsoglou et al., 2006; Solberg
et al., 2007). Even with this work, there are still issues to be solved in
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each of the three steps identified above (Brekke & Solberg, 2005;
Topouzelis, 2008).

The work presented in this paper is focused on the first step which
is developing an automated approach for dark-spot detection. As a
preliminary task when detecting oil spills, dark-spot detection is a
critical and fundamental step prior to feature extraction and
classification. Therefore, unless an oil spill can be detected at this
first step, it can never be detected at a later step. Furthermore, the
accuracies of feature extraction and classification greatly rely on the
accuracy of dark-spot detection. In addition, dark-spot detection is
traditionally the most time-consuming of the three steps. Thus, an
efficient and effective dark-spot detection approach is essential for
developing automated oil-spill detection systems.

Several efforts have been made to mitigate this issue in the past
few years. The threshold-based algorithm is a common approach used
due to its computational efficiency. With global thresholding, a
universal threshold is used for the entire image. For example, in
Nirchio et al. (2005), the threshold is set as the normalized radar cross
section (NRCS) minus the standard deviation of the SAR image. In
Chang et al. (2008), the threshold is calculated by the moment-
preserving method (Tsai, 1985). With adaptive thresholding, the
threshold is selected locally, within the area of a moving window. For
example, in Solberg et al. (2007), the threshold that is set for dark
spots is ΔdBk below the mean value in a moving window. The value of
ΔdBk is calculated using the ratio of the standard deviation to the
mean value in the local window. The thresholding is combined with a
multi-scale approach and a clustering step to effectively separate dark
spots from the background (i.e., the surrounding spill-free water).
Other efforts to detect dark spots include the use of wavelets (Liu
et al., 1997; Wu & Liu, 2003; Derrode & Mercier, 2007), fractal
dimension estimation (Benelli & Garzelli, 1999; Marghany et al.,
2007), marked point process (Li & Li, 2010), segmentation-based
methods such as region merging (Karathanassi et al., 2006) and active
contouring (Huang et al., 2005; Karantzalos & Argialas, 2008), and
classification-based methods such as support vector machines
(Mercier & Girard-Ardhuin, 2006) and neural networks (Topouzelis
et al., 2008).

The previous methods detect a dark spot primarily through its
intensity feature; i.e., the intensity in a dark spot is usually lower than
the intensity in the background. However, two main difficulties occur
when using the intensity domain for detection: (1) SAR imagery is
highly speckled due to the constructive and destructive interferences
of the reflections from surfaces of objects. Intensity values may show
considerable variability, even in the neighborhood of a uniform region
(Oliver & Quegan, 1998) and (2) the contrast between dark spots and
the background can vary, depending on the local sea state, the type of
oil spill, and the resolution and incidence angle of the SAR imagery
(Topouzelis, 2008). These difficulties rule out achieving a robust and
fast processing approach for dark-spot detection. In most cases, speed
is sacrificed for robustness, or vice-versa in a few other cases.

The goal of the research reported in this paper is to develop a fast,
robust and effective automated dark-spot detection approach that is
adequate for practical oil-spill monitoring. A new approach called
spatial density thresholding is proposed for achieving this goal. Apart
from using the common intensity feature of dark spots, this approach
further employs a spatial density feature to enhance the separability
between dark spots and the background. The idea is to separate the
detection process into two main steps, intensity segmentation and
spatial density segmentation. A detection window is passed through
the entire image. In the first step, pixels within the window are
partitioned into two classes according to a certain intensity threshold.
Pixels with intensities below the threshold are regarded as potential
dark-spot pixels and the others are regarded as potential background
pixels. In the second step, the spatial density of potential background
pixels is estimated within the window. A spatial density threshold is
selected. Pixels with densities below the threshold are the real dark-
spot pixels, while the others with densities above the threshold are
the real background pixels.

To highlight the main contribution of this paper, we refer to the
whole approach as “spatial density thresholding”. To avoid confusion,
we refer to the algorithm used in the second step as “spatial density
threshold segmentation”. The power of using spatial features in image
analysis has also been noticed by other scholars; e.g., Byers and
Raftery (1998), Deng andManjunath (2001) and Comaniciu andMeer
(2002). An elaborate model for spatial clustering, similar to the
problem addressed in the second step, has been proposed by Pavan
and Pelillo (2007). However, due to the computational complexity of
their model, the methods described are not fast enough for efficient
dark-spot detection. In this paper, we also attempt to address the
theoretical reasoning behind the suggestion that implementing
spatial features can benefit SAR image analysis.

The paper is organized as follows: in Section 2, the fundamental
properties of SAR imagery are presented. Section 3 contains a
description of the principles behind the proposed approach and
details of each step in the dark-spot detection procedures. In Section 4,
the experimental results obtained using RADARSAT-1 ScanSAR
intensity images are analyzed and explained. Conclusions and
possibilities for future work are contained in Section 5.

2. Fundamental properties of SAR imagery

Different from other imaging systems, SAR imagery is produced by
backscattered microwave signals from the surface, which can be
exploited by interferometry. The classical SAR imaging model
assumes that a large number of independent point scatterers with
similar scattering characteristics occur within the resolution cell.
When illuminated by the SAR beam, every scatterer contributes a
backscattering wave with phase and amplitude change. The total
returned incidence microwave is a vector sum of each individual
microwave backscattered at each position, which is stated by Oliver
and Quegan (1998) to be:

Aeiϕ = ∑
N

k=1
Ake

iϕk = ∑
N

k=1
Ak cosϕk + i sinϕkð Þ ð1Þ

where Ak is the scattering amplitude and ϕk is the scattering phase at
position k. N is the total number of scatterers within the resolution
cell. For a uniform distributed ground target, scattering behaviors of
individual scatterers are identical. The amplitude of individual
scatterers Ak can be assumed to be identical at different positions
in the resolution cell. However, the scattering phase ϕk is very
different within the resolution cell and can be thought of as being
uniform in [π, −π]and independent of the amplitude Ak. Due to the
constructive or destructive interference, great random fluctuation in
the backscattered microwave energy can be observed as “salt-and-
pepper” texture even in a uniform region. This is referred to as speckle
noise in SAR imagery. Therefore, unlike system noise which occurs in
the digitizing of an image, speckle is not real noise but an electro-
magnetic effect due to interference.

3. Methods

3.1. Principles involved

The proposed approach is motivated by the nature of the pixels'
spatial distribution as observed in Fig. 1. Different symbols represent
pixels with different intensities. The triangles are pixels with low
intensities and the dark circles are pixels with high intensities. If the
triangles are uniformly distributed in the spatial domain (Fig. 1(a)),
we would deduce that the observed region is homogeneous (i.e., spill-
free water) and that the triangles are speckle noise. In Fig. 1(b),
however, triangles exhibit two types of spatial distribution. They



Fig. 1. Comparison of a homogeneous region and an inhomogeneous region. As
described in the text, different symbols represent pixels with different intensities.
(a) Homogeneous region. (b) Inhomogeneous region with a potential dark spot in the
dashed box.
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occur in locations where there is a high density of triangles, such as in
the area contained within the dashed box. They also occur outside the
dashed box where the density of triangles is much lower and
interspersed with the dark circles. In the first case, we would deduce
that the high density of triangles represents an area with low-
intensity pixels (i.e., an oil spill) while in the second case, the triangles
represent the low-intensity component of speckle noise generated
over the water surface. In other words, the triangles inside the dashed
box, where the density is high, are most likely to indicate the presence
of a dark spot, while the other triangles are part of the background
speckle noise.

How can the above observations help with developing an effective
dark-spot detection approach? The Bayes criterion for detecting a
dark spot states that (Oliver & Quegan, 1998):

P T jxð Þ = P x jTð ÞP Tð Þ= P xð Þ ð2Þ

where x is the intensity vector, P(T|x) is the posterior probability of
the dark spot given the intensity, P(x|T) is the likelihood probability of
intensity x given the dark spot is present, and P(T) is the priori
probability. Similarly for the background:

P B jxð Þ = P x jBð ÞP Bð Þ= P xð Þ ð3Þ

Themaximum a posteriori (MAP) criterion implies that a dark spot
should be considered present when:

P T jxð Þ
P B jxð Þ N 1 ð4Þ
from which

P x jTð Þ
P x jBð Þ N

P Bð Þ
P Tð Þ ð5Þ

If we assume the background and the dark spot are equally likely
to occur, Eq. (5) reduces to:

P x jTð Þ
P x jBð Þ N 1 ð6Þ

In this situation, the optimal threshold for separating the dark spot
from the background in terms of the MAP criterion is where the
likelihood functions of the dark spot and the background intersect (TI
as illustrated in Fig. 2). The probability of detecting a dark spot is the
area marked with dashed lines (a). The corresponding probability of a
false alarm in the background would be the area marked with solid
lines (b). When the likelihood functions of the dark spot and the
background are separate from each other, the dark spot can be easily
detected from the background by simply using an appropriate
intensity threshold. However, as discussed in Section 2, SAR imagery
is highly speckled and the dark spot may have different contrasts
relative to its background under different conditions. When the
likelihood functions become similar to each other, even the optimal
threshold TI would still result in a large number of false alarms.

However, if the spatial distribution of intensity is considered, the
dark spot and the background can be separated further. Before
addressing this idea in detail, it is necessary to clarify our terminology
to avoid any confusion. In this paper, pixels with intensities below the
intensity threshold TI are referred as “potential dark-spot pixels” or
“dark pixels.” Pixels with intensities above TI are referred as “potential
background pixels” or “light pixels.”

It can be deduced from Eq. (6) that the probability of occurrence of
a dark pixel in the dark spot (area (a) in Fig. 2) is higher than that of a
dark pixel in the background (area (b) in Fig. 2). Also, according to the
basic attributes of SAR imagery, described in Section 2, intensities are
uniformly distributed in a uniform region. Therefore, it can be
concluded that the spatial density of dark pixels is higher in a dark
spot than in a background area.

If the density of dark pixels is to be estimated, the false alarms can
be further separated from the real dark spots using Criterion 1:

“The dark pixels with densities above a certain threshold TD are
the real dark-spot pixels while the pixels with densities below the
threshold are the background pixels.”

Similarly, the density of light pixels is expected to be lower in a
dark spot than the density of pixels that occur in the background.
Therefore, if the density of light pixels is to be estimated, the real dark-
spot pixels that were incorrectly identified as potential background
pixels can be further separated from the background using Criterion 2:

“The light pixels with densities below a certain threshold TD′ are
the real dark-spot pixels while pixels with densities above the
threshold are the background pixels.”

As a result, the probability of detection of a dark spot increases,
while the probability of a false alarm decreases. Fig. 3(a) demon-
strates the decision rule for discriminating between the dark spot and
the background using Criterion 1 and Criterion 2, where the densities
of both dark pixels and light pixels have to be estimated.

It can be observed that the spatial domain is fully occupied by dark
and light pixels. Locations with high densities of dark pixels would
definitely have low densities of light pixels. Therefore, the density
estimation needs to be carried out only once (by estimating the
density of either dark pixels or light pixels) in order to have the dark



Fig. 2. Illustration of likelihood functions of a dark spot and the background. TI is the
optimal threshold for dark-spot detection according to the Bayes' rule. The area marked
with dashed lines (a) is the probability of detecting a dark spot and the area marked
with solid lines (b) is the probability of a false alarm in the background.
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spot and the background pixels further separated. This leads to
Criterion 3:

“Locations with the densities of dark (light) pixels above (below)
a certain threshold TD (TD′) are the real dark-spot pixels while the
other pixels are the background pixels.”

Fig. 3(b) demonstrates a new simplified decision rule for
discriminating between the dark spot and the background using
Criterion 3, where spatial densities need to be estimated only once.

A new approach for dark-spot detection is proposed based on the
principles described above. In this approach, a detection window is
Fig. 3. Decision rules for discriminating between a dark spot and the background.
(a) The decision rule (Rule 1) using Criterion 1 and Criterion 2. (b) The simplified
decision rule (Rule 2) using Criterion 3.
passed through the SAR image. First, an intensity threshold segmen-
tation algorithm is implemented for each window. Pixels with
intensities below the intensity threshold are regarded as potential
dark-spot pixels while the others are potential background pixels.
Second, the density of potential background pixels is estimated using
kernel density estimation within the detection window. A spatial
density threshold is selected and pixels with densities below the
threshold are regarded as the real dark-spot pixels while the others
are the background pixels. Third, an area and a contrast threshold are
further used to eliminate any remaining false alarms. In the last step,
the individual detection results are mosaicked to produce the final
result. A flowchart of the procedures is illustrated in Fig. 4.
3.2. Pre-processing

A 3×3 Gaussian filter with a standard deviation of 0.5 is used to
smooth the original image. This results in a more stable intensity
threshold and contrast threshold, which are discussed in the next two
sections. Next, the histogram of the original image is adjusted using a
piecewise linear transformation in order to enhance the contrast
between the dark spot and the background. The lowest 1% of all pixel
values are specified as 0, while the highest 1% are specified as 255. The
remaining pixel values are stretched within the range from 0 to 255
using a linear transformation.
3.3. Intensity threshold segmentation

Since no prior knowledge is available concerning the distributions
of the dark spot and the background pixels, it is not possible to find the
optimal threshold value using the Bayes' rule. Instead, we use the
thresholding algorithm proposed by Otsu (1979) to find an intensity
threshold that maximizes the ratio of the between-class variance to
the within-class variance. After the threshold is calculated, pixels with
intensities above the threshold are regarded as potential background
pixels while the others are potential dark-spot pixels.
Fig. 4. Flowchart of procedures used for dark-spot detection.
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3.4. Spatial density threshold segmentation

The density of potential background pixels within the detection
window is estimated using kernel density estimation. Kernel density
estimation, also known as the Parzen window technique in pattern
recognition literature (Fukunaga, 1990), is the most popular density
estimation method. Given n sample data points xi, i=1, ...,n on R
drawn from probability density f(x), its kernel density estimator
computed in the point x is given by:

⌣g xð Þ = 1
nt

∑
n

i=1
K

x−xi
t

� �
ð7Þ

where K(x) is the kernel function and t is the bandwidth. K(x) is
required to satisfy the following two conditions:

∫
R

K xð Þdu = 1 and K xð Þ ≥ 0 ð8Þ

The most widely used kernel is the Gaussian kernel which is given
by:

⌣g x; tð Þ = 1

n
ffiffiffiffiffiffiffiffiffiffi
2πt2

p ∑
n

i=1
e− x−xið Þ2 =2t2 ð9Þ

The only unknown parameter in Eq. (9) is the bandwidth t. The
optimal choice of t is crucial, since the performance of ğ as an
estimator of f depends on its value. The most widely used criterion of
performance for the estimator in Eq. (9) is the mean integrated
squared error (MISE):

MISE ⌣g
� �

tð Þ = Ef∫ ⌣g x; tð Þ−f xð Þ� �2dx
= ∫ Ef

⌣g x; tð Þ� �
−f xð Þ

� �2
dx + ∫Var

f
⌣g x; tð Þ� �

dx

ð10Þ

The first component of Eq. (10) is referred as point-wise bias and
the second component is referred as integrated point-wise variance.
Interested readers are referred to the survey of Jones et al. (1996) for a
better understanding on bandwidth selection techniques.

To the best of our knowledge, the nonparametric method via
diffusion mixing proposed by Botev et al. (2010) is probably the
fastest and most accurate approach for kernel density estimation. As
such, it is used in our study. It states that finding the optimal
bandwidth for Gaussian kernel density estimator in terms of MISE
criterion is equivalent to finding the optimal mixing time of the
diffusion process governed by:

∂
∂t

⌣g x; tð Þ = 1
2
∂2

∂x2
⌣g x; tð Þ; x∈R; t N 0 ; ð11Þ

with initial condition ğ(x; 0)=Δ(x)=empirical density. For addi-
tional mathematical details on the diffusion process and the solution
to Eq. (11), readers are referred to Lindeberg (1994) and Chaudhuri
and Marron (2000).

To find a universal density threshold for all conditions, the
estimated density is normalized using the following equation:

⌣g x; tð Þnorm =
⌣g x; tð Þ−min ⌣g x; tð Þ	 


max ⌣g x; tð Þ	 

−min ⌣g x; tð Þ	 
 ð12Þ

where max(ğ(x; t)) and min(ğ(x; t)) are the maximum and minimum
of ğ(x; t), respectively. The normalized density is then transformed to
the 8-bit range from 0 to 255. The selection of a density threshold is
based on the idea that, if a dark spot exists, then it must have a density
that is abnormal when compared with the background. Therefore,
after the transformation, the densities of the real dark-spot pixels are
expected to be concentrated in a narrow part of the 8-bit range, near
the beginning where values are low. The threshold can thus be set
accordingly. The 8-bit transformation is empirical. It wasmotivated by
benefiting the manual threshold selection at first, because we can
display the density map as an image and select the threshold visually
after the 8-bit transformation. Experiments show that the threshold
works well after the transformation has been performed. After the
density threshold is selected, pixels with densities below the
threshold are regarded as the real dark spots and pixels with densities
above the threshold are the real background pixels.

It is also possible to estimate the density of potential dark-spot
pixels instead of potential background pixels for spatial density
threshold segmentation. However, based on the extensive experi-
ments that we conducted, estimating the potential dark-spot pixels
was found to be a little less reliable for density threshold selection
than using potential background pixels.

3.5. Post-processing

During the detection process, as a result of incidental errors, some
regions may have been incorrectly detected as dark spots. An area
threshold TA and a contrast threshold TC are used to eliminate these
false targets. The average contrast of a detected dark region is given
by:

Ci =
uB−ui

σB
ð13Þ

where ui is the average intensity of the detected dark region i, uB is the
average intensity of the background, and σB is the standard deviation
of the intensity of the background. Only regions with an area above TA
and with an average contrast above TC are regarded as the real dark
spots. Holes inside the dark spot which are usually generated as a
result of errors will be considered as the dark spot as well.

4. Experimental results

4.1. Dataset

In order to test the reliability and efficiency of the proposed
approach, we obtained a test dataset from the oil-spill target database
of the Integrated Satellite Tracking of Pollution (ISTOP) program at the
Canadian Ice Service (CIS) of Environment Canada in Ottawa. ISTOP is
a satellite surveillance program for the detection of possible
discharges of oil resulting from marine transportation and offshore
production. The program is supported by the Canadian Space Agency,
Transport Canada, and the Canadian Coast Guard. In ISTOP, human
analysts at CIS detect high potential dark spots, which could be oil
spills (called anomalies), through manual interpretation of SAR
images. The images used in oil-spill monitoring at CIS are RADAR-
SAT-1 ScanSAR intensity data, with HH polarization and a spatial
resolution of 50×50 m. Sub-images within the vicinity of the areas
that contain anomalies were clipped to test the proposed approach.
The test dataset contains 30 images with 256×256 pixels, 22 images
with 512×512 pixels, 8 images with 1024×1024 pixels. This 60-
image dataset contains all potential anomalies detected under a
variety of sea conditions between 2006 and 2008. In addition to the
analysis procedures described in Section 3, any land areas visible on
the SAR images have to be masked beforehand with the aid of a vector
shoreline dataset.

4.2. Experimental methods

We applied our approach to all 60 test images using the same
parameters as follows: TD′=35,TA=100,TC=6.2. These values were
optimised by tuning the parameters during the experiments until the
best visual detection results were achieved. The detection window
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was selected to have a size of 256×256 pixels, which is considered to
be a suitable size for oil-spill detection based on our experiments.
False targets occupying large areas, such as low-wind areas, will not
be detected using this window size. The step size for movement of the
detection window is 224 pixels, with an overlap of 32×256 pixels
between two consecutive steps. A visual comparison between the
proposed approach and the well-known Otsu's thresholding approach
(Otsu, 1979) was undertaken using a sample of test images. As
described in Section 3.3, Otsu's thresholding is also used in the first
step of our proposed approach. By comparing our approach with
Otsu's approach, the ability of the spatial density feature to improve
dark-spot detection can be examined.

To quantitatively assess the accuracy of the detection results, a
reference dataset was produced by manual photo-interpretation. Due
to speckle noise and varying contrasts within dark spots, however,
manual interpretation can also be very difficult in certain circum-
stances. Thus, we checked the correctness of the computer-extracted
boundaries rather than doing on-screen digitizing of the dark spots.
Unless there was a reason to reject the result, we followed the
computer-extracted boundaries during digitization. The computer-
extracted boundaries were compared to the reference dataset. The
criteria adapted fromWiedemann et al. (1998)were used for accuracy
evaluation: commission error, omission error, and average difference.
The commission error is defined by:

COM =
AE−AEinRD

AE
ð14Þ

where AEinRD is the size of the computer-detected spots within a
certain distance of the manually digitized spots and AE is the size of
the computer-detected spots. Fig. 5 gives an illustration of the
commission error. The distance for measuring the commission error
is set as n=4 pixels. The solid lines are the computer-extracted
boundaries and the dashed line is the manually digitized boundary.
The grey area is the one within n=4 pixels of the manually digitized
spot and the shaded areas are the commission. Similarly, the omission
error is defined by:

OM =
AR−ARinED

AR
ð15Þ
Fig. 5. Illustration of the commission error.
where ARinED is the size of the manually digitized spots within a
certain distance of the computer-detected spots and AR is the size of
the manually digitized spots. The portions of computer-extracted
boundaries will be considered as matched, if they are within a certain
distance of the manually digitized boundaries. The average difference
expresses the average distance between the matched and the
manually digitized boundaries, which can be calculated by:

AD = ∑
NB

i=1
d EinRBi;Rð Þ=NB ð16Þ

where NB is the number of pixels on the matched boundaries and d
(EinRBi;R) the shortest distance between pixel i and the manually
digitized boundaries. As an additional evaluation measure, the
number of false alarms per unit image can also be used; it is given by:

ANFA =
NFA⋅NS

NI
ð17Þ

where NFA is the number of false alarms detected on the test image, NI

is the number of pixels in the test image, and NS is the number of
pixels in the unit image. The size of the unit image is set as 256×256
pixels. In addition, the computational efficiency of the proposed
approach can be measured by the average computational time for a
detection window.

4.3. Analysis of results

Two sample test images have been selected to illustrate the
results of the proposed approach at each step. Fig. 6(a) shows the two
test images after pre-processing. The image on the left contains a
dark spot while the image on the right displays a homogeneous
background. Fig. 6(b) shows the results of intensity threshold
segmentation. The white pixels are potential background pixels
and the black pixels are potential dark-spot pixels. As can be seen in
Fig. 6(b), the number of false alarms is very high in the background
after intensity threshold segmentation. Fig. 6(c) displays the results
of the normalized density estimation of potential background pixels.
Black indicates low-density areas, whilewhite indicates high-density
areas. As can be seen in the left image containing the dark spot, the
density of potential background pixels is generally higher in the
background than in the dark spot. Fig. 6(d) shows the results after
spatial density threshold segmentation. Of note is that the number of
false alarms is greatly reduced. Fig. 6(e) shows the final results after
eliminating regions below the area and contrast thresholds. The
extracted boundary of the dark spot (white line) is overlain on the
left image. Visual inspection shows the extracted boundary and the
real dark-spot boundary match quite well. In contrast, the right
image containing no dark spot displays a homogeneous surface. The
situation in the right image has often been neglected when two-
phase classification-based methods, such as active contouring
(Huang et al., 2005; Karantzalos & Argialas, 2008) and marked
point process (Li & Li, 2010). It is suggested that the two-phase
classification assumption is inappropriate for analyzing images
without dark spots.

To test the capability of the proposed approach for detecting
different types of anomalies, the whole test dataset was divided into
three groups: the well-defined versus the not-well-defined, the
linear versus the massive, and the homogeneous background versus
the heterogeneous background. Fig. 7 illustrates the results obtained
using spatial density thresholding on some typical examples. The
original images, after pre-processing, are displayed in the first
column. The second column shows the results obtained using Otsu's
thresholding. The results of spatial density segmentation and spatial
density thresholding are presented in the third and fourth columns,
respectively. Displayed in the first row is a well-definedmassive dark



Fig. 6. Results of the proposed approach at each step in the analysis procedures. (a) Test SAR images after pre-processing. (b) Intensity threshold segmentation. (c) Normalized
density estimation of potential background pixels. (d) Spatial density threshold segmentation. (e) Final results after post-processing.
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spot locatedwithin a homogeneous backgroundwhere the boundary
between the dark spot and the surrounding water is very clear. The
second row shows the detection of a not-well-defined massive dark
spot within a homogeneous background. In this case, the boundary
between the dark feature and the surrounding water is not well
defined. In the third row, a well-defined linear dark spot can be seen
located within a homogeneous background. Finally, the fourth row
shows the detection of a well-defined linear dark spot that occurs
within a heterogeneous background. As can be seen in Fig. 7(b), a
large number of false alarms occur on the images after Otsu's
thresholding. Moreover, most of the false alarms are interconnected
and difficult to remove using post-processing without affecting the
detection of the real dark spot. In contrast, the number of false
alarms is greatly reduced after spatial density segmentation (Fig. 7
(c)). Also, the false alarms become smaller and more separated
which makes them easier to eliminate with post-processing. Fig. 7
(d) shows the results after post-processing. The gray buffer is
generated by manually digitizing a line with layers of n=4 pixels.
The black line is the computer-detected boundary produced using
spatial density thresholding. Visual inspection shows that the
proposed approach achieves acceptable detection results under a
variety of conditions.

In Table 1, the results of the quantitative accuracy assessment
applied to the whole test dataset are displayed. The distance for
measuring commission error, omission error, and average difference
is set as n=4 pixels. The average commission error is 7.0% with a
standard deviation of 0.11. 75% of detections have commission
errors of less than 7.3%. In the worst case, a commission error of
58.6% was produced. The average omission error is 6.1% with a
standard deviation of 0.13. Again, 75% of detections have omission
errors less than 5.4%. In the worst case, a 55.3% omission error
occurred. The mean of average difference is 0.4 pixels with a
standard deviation of 0.46. In addition, the average number of false
alarms is 0.5 per unit image. The average computational time for a
detection window is 1.2 s on a PC-based MATLAB platform. The
processor of the PC that was used is an Intel Pentium dual-core with
a speed of 2.00 GHz and a RAM memory of 2.00 GB. Dark-spot
detection with a 512×512 image can be completed in about 11 s.
This is much faster than some of existing methods in the literature.
For example, it takes about half an hour for the marked point process



Fig. 7. Results of the proposed approach on some typical examples. (a) Original SAR images after pre-processing. (b) Otsu's thresholding. (c) Spatial density segmentation. (d) Spatial
density thresholding.
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to complete dark-spot detection on a 512×512 image using a PC-
based MATLAB platform (Li & Li, 2010). Also, it is reported by
Mercier and Girard-Ardhuin (2006) that it takes about a minute for
Table 1
Statistical values of the accuracy achieved by spatial density thresholding for the whole
test dataset.

Min Max Mean 75th
percentile

Standard
deviation

Commission error 0.0000 0.5857 0.0701 0.0728 0.1104
Omission error 0.0000 0.5530 0.0605 0.0541 0.1277
Average difference 0.0000 1.8470 0.3514 0.4169 0.4645
their support vector machine method to detect a 512×512image on
a 1.8-GHz Linux Laptop.

In Table 2, the accuracy assessment results for the different types
of anomalies are displayed. The distance for measuring commission
error, omission error, and average difference is set as n=4 pixels. As
can be seen, spatial density thresholding achieves better results on the
well-defined dark spots than the not-well-defined ones. The average
commission error for the former is 5.5% versus 10.8% for the latter and
the average omission error is 3.7% for the former compared to 12.1%
for the latter. In addition, the approach generates more omission
errors and fewer commission errors on linear dark spots than on
massive dark spots. The average commission and omission errors for
the linear dark spots are 9.4% and 10.5% compared to 5.4% and 2.9% for



Table 2
Mean values of the accuracies achieved by spatial density thresholding for different
types of anomalies.

Commission
error

Omission
error

Average
difference

Number
of cases

Well-defined 0.0552 0.0368 0.2838 43
Not well-defined 0.1078 0.1206 0.5224 17
Linear 0.0941 0.1053 0.4198 25
Massive 0.0540 0.0286 0.3025 35
Homogeneous 0.0546 0.0533 0.3140 54
Heterogeneous 0.2101 0.1257 0.6879 6
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the massive dark spots, respectively. Furthermore, the approach
produces poorer results in a heterogeneous background than in a
homogeneous background. With a heterogeneous background, the
average commission and omission errors are 21.0% and 12.6%,
respectively. In contrast, with a homogeneous background, the
average commission and omission errors are only 5.5% and 5.3%,
respectively.

It is necessary to further identify the situations where poor results
occurred and see why the spatial density thresholding approach failed
to work correctly in those cases. Fig. 8 illustrates two typical
examples. In Fig. 8(a), our approach failed because the dark spot is
too thin and the contrast in some sections is too low. Human operators
are able to delineate the border in Fig. 8(a) by incorporating their
knowledge of linear features into the decision. In Fig. 8(b), our
approach failed because the background is very heterogeneous. As can
be seen, there are two types of dominate intensities in the background
which cause spatial density threshold segmentation to fail. After
intensity threshold segmentation, both the dark spots and the
background display areas where the densities of dark pixels are
high. Thus, it is difficult for the proposed approach to discriminate
clearly between the dark spots and the background.
Fig. 8. Two examples of poor dark-spot detection. (a) Detection of a very thin dark spot.
(b) Detection of dark spots in a very heterogeneous background.
5. Conclusions

An important first step in oil-spill monitoring is the detection of
dark spots. In this paper, our analysis procedures have been focused
on the spatial domain, rather than on the more frequently used
intensity domain, and we have demonstrated the power of using a
spatial density feature for detecting dark spots in SAR imagery. A new
approach called spatial density thresholding was developed for
automated dark-spot detection. To verify the effectiveness of this
approach, we applied it to a test dataset containing 60 RADARSAT-1
ScanSAR intensity images which cover all potential anomaly cases
detected in the ISTOP oil-spill target database between 2006 and
2008. The same parameters were used for all the test images. For the
overall dataset, the average of commission error, omission error, and
average difference were 7.0%, 6.1%, and 0.4 pixels, respectively. The
average number of false alarms was 0.5 per unit image and the
average computational time for a detection window was 1.2 s using a
PC-based MATLAB platform. Using typical examples of oil spills,
comparisons were made between the spatial density thresholding
approach and Otsu's thresholding approach. Results demonstrated the
effectiveness of spatial density thresholding. To study the detectabil-
ity of different types of dark spots, we divided the test dataset into
three groups. Results showed that spatial density thresholding works
best when the dark spots are well-defined, massive or are embedded
in a homogeneous background. It is less effective when the dark spots
are not well-defined, linear, or are located within a heterogeneous
background. Overall, the experimental results demonstrate that
spatial density thresholding for dark-spot detection is fast, robust
and effective. It has the potential to be used for automated oil-spill
monitoring in an operational environment. Further research is
necessary to improve the accuracy of dark-spot detection when the
dark spots are not-well-defined, linear or are located in a heteroge-
neous background.
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