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ABSTRACT 
 
Deep neural networks can learn deep feature representation 
for hyperspectral image (HSI) interpretation and achieve high 
classification accuracy in different datasets. However, 
counterintuitively, the classification performance of deep 
learning models degrades as their depth increases. Therefore, 
we add identity mappings to convolutional neural networks 
for every two convolutional layers to build deep residual 
networks (ResNets). To study the influence of deep learning 
model size on HSI classification accuracy, this paper applied 
ResNets and CNNs with different depth and width using two 
challenging datasets. Moreover, we tested the effectiveness 
of batch normalization as a regularization method with 
different model settings. The experimental results 
demonstrate that ResNets mitigate the declining-accuracy 
effect and achieved promising classification performance 
with 10% and 5% training sample percentages for the 
University of Pavia and Indian Pines datasets, respectively. 
In addition, t-Distributed Stochastic Neighbor Embedding (t-
SNE) provides a direct view of the extracted features through 
dimensionality reduction. 
 

Index Terms — Deep residual networks, deep learning, 
hyperspectral image classification 

1. INTRODUCTION  

The pixel-wise image classification lays a solid foundation of 
geoscience application and analysis pertaining to multiple 
kinds of remotely sensed data, including hyperspectral 
images (HSIs) [1]. The increase of spectral and spatial 
resolution of HSIs poses two major challenges exist for 
accurate HSI interpretation. First, the Hughes Phenomenon, 
which means the recognition accuracy decreases drastically 
with the increase of the dimensionality of training data, 
derives from hundreds of spectral bands [2]. Second, their 
high spatial resolution makes the recognition of small objects 
possible but increases the high correlation between 
neighbouring pixels. 

In the face of these challenges, recent studies have tried 
to apply supervised deep learning (DL) models to extract 
robust and discriminant features in the context of remotely 
sensed image classification [3, 4]. In 2016, convolutional 
neural network (CNN) was used to extract spatial features 
that integrated with spectral features learned from a 
embedding method [5]. The CNN model inherently takes 

spatial correlations of neighboring pixels into account, and 
the spatial features are complementary to the spectral features 
of hyperspectral imagery. However, the input of the CNNs 
are the three principle components of the original 
hyperspectral image, which means the input data still loses 
some spatial information.  

Furthermore, 3D CNNs were adopted to extract deep 
spectral-spatial features directly from raw HSI and delivered 
promising classification outcomes [6]. These models 
generate semantic maps from an end-to-end structure that can 
directly process raw HSIs without any hand-crafted feature 
extraction step, whereas, the classification accuracy of the 
CNN models decreases with the increase of layers. The recent 
application of DL models indicates a new trend in utilizing 
features learned by models, rather than hand-crafted features, 
for HSI classification.  

Since 2015, [7] proposed deep residual networks through 
connecting between every other convolutional layers for 
identity mapping and achieved state-of-the-art results for 
multiple computer vision tasks. Residual Networks can be 
regarded as an extension of Convolutional Neural Networks 
with skip connections that facilitate the propagation of 
gradients and performed robustly with very deep architecture.   

In this paper, therefore, we applied and investigated deep 
learning models for HSI feature extraction and pixel-wise 
classification using two widely studied datasets. Three major 
contributions of this paper are: 1) assessing the influence of 
depth and width of ResNets for HSI classification accuracy; 
2) validating the effectiveness of residual architectures and 
batch normalization strategy for mitigating the decreasing-
accuracy phenomenon; and 3) visualizing the distribution of 
learned representations in 2D projected spaces through a 
embedding method. 

2. RELATED WORK 

Deep learning models are composed of multiple layers of 
nonlinear neurons that can learn hierarchical representation 
out of large amounts of labelled images [8]. CNN is the most 
popular supervised deep learning network at present and has 
shown its deep feature extraction power in computer vision 
contests [9]. Typically, CNN models include convolutional 
layers, pooling layers, fully connected layers, and multiclass 
logistic regression layers. The most prominent characteristic 
of CNNs in contrast to other DL models is their special 
convolutional structure, which imposes sparsity inherently 
and reduces the number of parameters significantly. The 
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convolutional layers can be formulated as follows. 

                𝐇" = G 𝐅"&' ∗ 𝐇" + 𝐛"        (1) 

In Eqn. (1), 	𝐇" represents the output of the kth layer in the 
model, 𝐅"  is the kth convolutional filter banks, b"  denotes 
the bias of the kth layer, and 𝐺 •  is a rectified linear unit 
(ReLU). Given sufficient labelled data, CNNs can generate 
more accurate classification results than traditional machine 
learning methods. 

To regularize and speed up the training process, batch 
normalization layers can be inserted into the deep learning 
models to impose Gaussian distribution on intermediate batch 
features [10]. This technique allows deep learning networks 
to converge smoothly to an acceptable local minimum and 
does not require a delicate initialization setting of parameters. 
The batch normalization is defined as follows. 

       𝐗(1) = 𝐗(3)&4(𝐗(3))
567(𝐗(3))

         (2) 

In Eqn. (2), 𝐗(1) denotes the ith dimension of feature batch 𝐗, 
E(•)  represents the expected value and VAR(•)  is the 
variance of the features. 
Dimensionality Reduction (DR) plays a significant role in 
HSI visualization and classification [11]. The t-SNE, which 
constructs probability distribution over similar samples and 
preserves local structure of high dimensional data, is a 
dimensionality reduction method that can embed the HSI data 
into a lower dimensional space. The t-SNE results of each 
iteration are carried out by minimization of Kullback-Leibler 
(KL) divergence, which can be written as follows. 

              𝐾𝐿(𝑃| 𝑄 = 	 𝑝BClog	(
GHI
JHI
)BKC                        (3) 

In Eqn. (3), 𝑝BC represents the similarity of the ith and the jth 
samples,  and 𝑞BC denotes the corresponding similarity in the 
projected feature space. 

 

  
Fig. 2. Examples of CNN and ResNet models. CNN-4 (left), 

CNN-10 (middle), and  ResNet-10 (right). 

Table I. ARCHITECTURES OF DEEP LEARNING 
MODELS 

 Convolutional 
Layers 

Residual 
Blocks 

Conv-4 3  
ResNet-4 1 1 
Conv-6 5  

ResNet-6 1 2 
Conv-8 7  

ResNet-8 1 3 
Conv-10 9  

ResNet-10 1 4 
 

3. DEEP RESIDUAL NETWORKS 

Although CNN models have been used for HSI classification 
and achieved state-of-the-art results, it is counterintuitive that 
the classification accuracy decreases with the increase of 
convolutional layers after four or five stacked layers [6]. 
Inspired by the latest deep residual learning framework 
proposed in [7], this deteriorating issue can be solved by 
adding shortcut connections between every other layer and 
propagating the value of features. As shown in Fig. 1, the 
residual network can be formulated as follows. 

                	𝐗"M' = max{0, 	𝐗" + F(	𝐗",𝐖")}                  (4) 

In Eqn. (4), 𝑋X  is the output of kth unit, 𝑊X  is denotes the 
parameters of the residual structure. The stacked nonlinear 
layers aim to construct the function 	𝐹(	𝑋X,𝑊X)  instead of 
mapping the desired 𝑋XM' directly. Comparing to CNNs, the 
deep Residual Networks 1) are easier for optimization; 2) 
have more representative capacities; and 3) deliver higher 
recognition accuracy with deeper layers. 

 
Fig. 1. Basic residual blocks. Residual architecture without batch 

normalization (left) and with batch normalization (right). 

normalization 
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Fig. 3. Overall accuracy of CNN-4 and ResNet-4 with 8 

kernels using IN dataset with or without regularization. 

 

Fig. 4. Overall accuracy of CNN-4 and ResNet-4 with 8 
kernels using UP dataset with or without regularization. 

4.  EXPERIMENTAL RESULTS 

In this paper, as illustrated in Fig.2, we explored and 
evaluated ResNet models and their CNN couterparts with 
different numbers of convolutional kernels and different 
layers of depth for HSI classification by overall accuracy 
(OA) in two commonly used HSI datasets. Inspired by [12], 
we adopted the improved residual networks for HSI 
classification. Tabel I show ResNets and CNNs with kernel 
number of convolutional kernels from {8, 16, 24, 32, 40} and 
with layer range from {4, 6, 8, 10} that are employed. 

We used the Indian Pines (IN) and University of Pavia 
dataset (UP) datasets for evaluating the ResNets and CNNs. 
The IN dataset includes 16 land cover classes of a vegetarian 
area, and the UP dataset contains 9 land cover categories of 
an urban area. In the IN dataset, we adopted 10%, 10%, and 
80% of available annotated data for the learning, validation, 
and predicting of deep learning models, respectively. 
Similarly, in the UP dataset, we used 5%, 5%, and 90% for 
the same purposes. The input data of all deep learning models 
are 7×7×b HSI volumes, wherein b is the band number.  

Table II. OVERALL ACCURACY OF IN DATASET 
WITH 10% DATA FOR TRAINING 

 8 16 24 32 40 
CNN-4 .81 .87 .89 .92 .91 
CNN-6 .83 .86 .88 .88 .89 
CNN-8  .77 .85 .88 .87 .91 

CNN-10 .80 .84 .86 .86 .86 
ResNet-4 .88 .95 .94 .96 .96 
ResNet-6 .88 .94 .94 .95 .95 
ResNet-8 .90 .92 .94 .93 .94 

ResNet-10 .87 .90 .93 .93 .93 
 

Table III. OVERALL ACCURACY OF UP DATASET 
WITH 5% DATA FOR TRAINING 

 8 16 24 32 40 
CNN-4 .97 .97 .97 .97 .98 
CNN-6 .96 .96 .97 .97 .98 
CNN-8 .96 .96 .97 .97 .97 

CNN-10 .95 .97 .97 .98 .97 
ResNet-4 .97 .98 .99 .99 .99 
ResNet-6 .97 .98 .98 .99 .98 
ResNet-8 .97 .98 .98 .98 .98 

ResNet-10 .96 .98 .98 .98 .98 
 

4.1. The Influence of Batch Normalization 
As shown in Fig. 2, we applied a 10-layer ResNet and 

compared the model with the corresponding 10-layer CNN, 
the 4-layer CNN proposed in [6]. Given a small number of 
training data, we need regularization methods to prevent the 
learning process from overfitting. Thus, we trained CNNs and 
ResNets with or without batch normalization for each 
convolutional layers. As illustrated in Fig. 3-4, the deep 
learning models with regularization methods consistently 
generated higher classification accuracy than the original 
models. 
 
4.2. The Influence of Width and Depth 

To study the influence of model sizes, we tested ResNets 
and their corresponding CNNs with different width and 
depth. According to quantitative classification results in 
Table II-III, CNNs with deeper layer tend to have worse 
classification results. Moreover, the ResNets obtained 
superior classification performance to the CNNs. This means 
residual architectures alleviates the decreasing-accuracy 
phenomenon. Although this phenomenon still exists in 
ResNet models, the classification accuracies of which are 
more robust than their CNN counterparts.  

 
4.3. Classification Maps of CNNs and ResNets 

Fig. 5 and Fig. 6 illustrates the classification results of 
CNN-4 and ResNet-4 for IN and UP datasets, respectively. 
The classification maps of ResNets in both datasets are much 
smoother than those of CNNs.  
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Fig. 5. IN dataset, ground truth image, and classification maps 

of CNN-4 and ResNet-4 with 32 kernels. 

 
Fig. 6. UP dataset, ground truth image, and classification 

maps of CNN-4 and ResNet-4 with 32 kernels. 

 
Fig. 7. Visualization of extracted features learned from deep 

learning models for IN and UP datasets. (a)-(d) t-SNE results of 
CNN-4 and ResNet-4 for IN and UP datasets.  

4.4. HSI Visualization based on t-SNE 
We employed t-SNE method to visualize the learned 

representative features of CNN-4 and ResNet-4 with 8 
kernels for each convolutional layer. As shown in Fig. 7, the 
embedding of ResNets are more separable than CNNs. in 
both datasets. The perplexity for all four cases is 12. Within 
1000 iteration, the t-SNE in all four cases converge to stable 
states.   
 

5. CONCLUSION 
 
In this paper, we have used deep ResNets with different depth 
and width for spectral-spatial classification using two 
commonly used HSI datasets with 10% and 5% of the labeled 
samples as training data for IN and UP datasets, respectively. 
According to the experimental reports, we can draw three 
major conclusions. First, batch normalization enhances the 
HSI interpretation performance of both CNNs and ResNets. 
Second, the ResNets achieved very competitive classification 
results and increase the accuracy of their corresponding 
CNNs. And third, the ResNets have alleviated but not fully 
overcome the decreasing-accuracy effect.  

We have adopted t-SNE that projects the raw HSI data 
and extracted spectral-spatial features into a 2D plane to get 
a direct impression about feature representation. Figs. 7 
shows that the proposed ResNets have learned a more 

discriminative representation of HSIs than those of CNNs. 
Moreover, the deep learning models with wider architectures 
tend to deliver higher classification accuracy under the same 
regularization methods, but the increases are not obvious 
when kernel number is larger than 24. It is worth noting that 
the ResNets with 4 layers perform the best in both HSI 
datasets, owing to small numbers of training samples and land 
cover categories.  
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