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Ground filtering for airborne lidar data is a challenging task for the generation of
digital terrain models (DTMs) in wooded mountain areas. To solve this problem, this
article, based on cross-section-plane (CSP) analysis, presents a CSP-based stepwise
filtering strategy that can automatically separate terrain from non-terrain points. The
filtering strategy consists of four main computing steps: (a) ‘split’ – the raw lidar data
are partitioned into 3D cells, in each of which multi-directional CSPs are generated at
multiple directions; (b) ‘filter’ – the potential terrain points are selected for each CSP
according to lidar data characteristics, such as multi-returns, intensity, and height; (c)
‘detect’ – the initial terrain points are detected for each CSP by exploring distances and
slopes between nearby points; and (d) ‘adjust-and-refine’ – the terrain points are
extracted from all initial terrain points of all CSPs by a merging-or-intersecting strategy
and a five-point refinement. The extensive experiments using three lidar data sets
demonstrated that the CSP-based stepwise filtering method is capable of producing
reliable DTMs in densely forested mountain areas.

1. Introduction

Compared to traditional techniques, such as field surveys and photogrammetry, light
detection and ranging (lidar) has proved an effective method for rapidly generating digital
terrain models (DTMs), often termed ‘ground filtering’ (Pfeifer et al. 1999; Pfeifer and
Mandlburger 2008; Meng, Currit, and Zhao 2010). However, separating terrain from non-
terrain points in a lidar point cloud is a challenging task, especially in a wooded
mountainous area with complex terrain variations (Liu 2008; Mongus and Zalik 2012).
Related work about filtering algorithms of lidar point clouds can be found in the literature
(e.g. Sithole and Vosselman 2004; Pfeifer and Mandlburger 2008; Li and Guan 2010;
Meng, Currit, and Zhao 2010; Briese 2010; Bartels and Wei 2010). Several important
issues need to be considered in a filtering process, including input data, iterative char-
acteristics, lidar penetration, pre-processing steps, neighbourhood types, and other key
factors. In the following paragraphs, we roughly classify the existing filtering algorithms
into several categories based on the characteristics of filtering algorithms.
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Assuming that terrain is a continuous or piecewise continuous surface, surface-based
methods select seeds from point clouds to calculate an initial parametric surface, and
iteratively search new ground points only if those points meet certain data-derived thresh-
old parameters (e.g. the difference in elevation, slope) (Kraus and Pfeifer 1998; Axelsson
2000; Pfeifer, Stadler, and Briese 2001; Sohn and Dowman 2002). However, these
surface-based algorithms require considerable computation times (Seo and O’Hara
2008). As morphological filters provide a quantitative description of a geometrical
structure based on structuring elements, they are sensitive to the size of the morphological
structuring elements (Wack and Wimmer 2002; Kilian, Haala, and Englich 1996; Zhang
et al. 2003; Zhang and Whitman 2005; Chen et al. 2007; Pfeifer and Mandlburger 2008).
Although morphological filters are conceptually simple and can be easily implemented,
the interpolation of point clouds leads to a significant loss of information and causes
errors in the results (Axelsson 1999). Slope-based methods perform a filtering operation
using slope or difference in elevation between two points. If the slope or difference in
elevation exceeds a certain threshold, the higher point is classified as an object over the
ground surface (Vosselman 2000; Vosselman and Maas 2001; Sithole 2001; Roggero
2001; Shao and Chen 2008). However, these slope-based filters are unsuitable for steep
terrain, and are especially unreliable in the cases of steep, forested areas (Liu 2008).

A set of segmentation-based and clustering methods, popular techniques in land-use and
land-cover classification, have been gaining popularity in the filtering of lidar data
(Nardinocchi, Forlani, and Zingaretti 2003; Sithole and Vosselman 2005; Tovari and
Pfeifer 2005; Filin and Pfeifer 2006). These methods segment point clouds into a number
of segments with a local neighbourhood analysis and subsequently classify the segments by
different classification strategies (e.g. region-growing) with respect to similarity measures,
such as differences in elevation, normal vector similarity, and distances of points to a plane.
The segmentation-based filtering methods are less affected by noise because they work on
rasterized data and deal with larger entities (i.e. they are not based on individual points or
pixels). However, they are usually carried out on fairly flat ground surfaces, and their
accuracies decline with increasingly steep terrain (Pfeifer and Briese 2007; Pfeifer and
Mandlburger 2008; Liu 2008). Recently, machine-learning approaches such as the support
vector machine (Lodha et al. 2006) and conditional random field (Lu et al. 2009) have been
applied to lidar point clouds. Although these machine-learning methods might obtain
promising filtering results, the selection of training samples is one of the critical issues in
terrain filtering. In order to select training sets that must be representative of the whole lidar
data, human interactions are required, resulting in unreliable classification results.

In recent years, statistical filtering algorithms have been explored, such as skewness
balancing (Bartels and Wei 2010), and a predictive Kalman filter and Bayesian framework
(Bretar and Chehata 2010). The skewness balance-based filter is an unsupervised, para-
meter-free classification algorithm for object and ground point separation in airborne lidar
data (Bartels and Wei 2010). However, prior to the use of skewness balancing, some
conditions such as the minimum number of ground points have to be satisfied. In addition,
the skewness balance-based filter is unable to filter out attached objects such as buildings
on slopes, bridges, and ramps. The predictive Kalman filter and Bayesian framework is
unable to preserve crests and flanks in mountainous landscapes. Moreover, in the case of
dense vegetation, the filtered terrain is locally smoothed.

Because most of the aforementioned methods involve iterations, they are computa-
tionally intensive and time consuming, which causes serious problems for processing a
massive volume of lidar data. Thus, a scan-line technique was proposed to identify ground
points by elevation or slope profiles (Sithole 2001; Meng et al. 2009). Shan and Sampath
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(2005) filtered out ground points by applying a scan-line-based one-dimensional (1D) and
bi-directional labelling filter to lidar data in urban areas. Meng et al. (2009) extended the
bi-directional filter to a multi-directional filtering strategy. Although, these algorithms
delivered unreliable filtering results when handling complex terrain surfaces such as steep
slopes, super building structures, or break-lines, the 2D profile-based algorithms can deal
with lidar data efficiently.

Currently, it is challenging to extract ground points from lidar points in mountainous
areas covered with dense vegetation because of fewer lidar points hitting the surface of the
Earth or because of large height differences over small horizontal distances (Kobler et al.
2007). Raber et al. (2002) created digital elevation models (DEMs) using an adaptive lidar
vegetation point removal process based on multi-return lidar characteristics. Hyyppä et al.
(2000) suggested that the accuracy of DTMs is related not only to flight plans and
misalignment but also to terrain slopes and vegetation density. Therefore, according to
implicit data characteristics (e.g. point density, multi-return) and terrain features to be
processed, knowledge-based filtering strategies have been exploited to create rules from
training data sets (Brenner 2000; Zhou and Troy 2008). Apart from geometric informa-
tion, information from the same sensor or other information from sensors can be
employed to improve automation and filtering accuracy (Pfeifer and Mandlburger
2008). Through statistical analysis, features of investigated areas are highlighted to
automatically determine filtering thresholds.

To generate DTMs in steep forested areas, this article presents a robust stepwise
filtering algorithm that first analyses lidar data by multi-directional CSPs that are similar
to 2D profiles for efficiently processing lidar data. With the CSPs, we then take into
account lidar data characteristics, such as intensity, height, and multi-returns, to remove
unwanted non-terrain points, followed by a slope-based scheme for identifying terrain
points. A post-process is finally necessary to refine the identified terrain points. The
remainder of the article is organized as follows. The next section provides the concept
behind our CSP-based algorithm. Then, our filtering algorithm will be presented in
Section 3, addressed by split, filter, detect, and adjust-and-refine. This is followed by a
presentation and discussion of the results obtained from three lidar data sets in Section 4.
Finally, Section 5 concludes the article and suggests future research directions.

2. CSP

A CSP is a useful way to observe and analyse inner structures of 3D spatial objects. The
difficulty or complexity of a 3D object can be decreased by slicing it into a number of 2D
CSPs at multiple directions. We can analyse and synthesize information from 2D CSPs to
achieve a representation of a 3D complex object. Habib, Chang, and Lee (2009) checked
all possible directions to detect occluded points for the classification of lidar data. Thus,
usage of CSPs makes it possible to view geometric characteristics within complex
unstructured 3D raw point clouds in detail.

The output of a lidar system is a collection of geometrically irregular or unstructured
3D raw point clouds. The term ‘unstructured’ in this context means that spatial relation-
ships between points are not clearly presented. A large quantity of point clouds leads to
interpolation difficulties in manual interaction and data inspection. Therefore, profiling a
whole set of lidar data into a number of sections with the certain widths or lengths at
given directions is an effective way for quality inspection. Figure 1(a) shows a range
image of a mountain area, while Figures 1(b)–(e) show four CSPs observed from direc-
tions A, B, C, and D for the bold blue dashed lines shown in Figure 1(a). These CSPs
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show detailed information about local topographic variations and relief of the mountain
area, indicating that the lidar information observed from multi-directional CSPs can
enhance the possibilities of separating terrain from non-terrain points.

3. CSP-based method

In this article, the objective is to analyse a large quantity of 3D point clouds via a 2D CSP
perspective and identify terrain points in steep forested areas. The proposed filtering
method can be seen as a stepwise procedure for interpreting lidar data. The method
includes the following four main steps.

(1) Split: Partition the raw lidar data into 3D cells and generate multi-directional
CSPs for each cell at multiple directions.

(2) Filter: Select potential terrain points for each CSP regarding lidar data character-
istics, such as multi-returns, intensity, and height.

(3) Detect: Detect the initial terrain points for each CSP by exploring distances and
slopes between nearby points.

(4) Adjust-and-Refine: Merge or intersect all initial terrain points of all CSPs for each
cell, and apply a five-point method to the merged or intersected terrain points for
the improvement of filtering quality.

The rest of this section describes our method step by step. Sections 3.1–3.4 detail the
generation of terrain points via four main steps: split, filter, detect, and merge/intersect-
and-refine, as shown in Figure 2.

3.1. Split

It is critical to deal with a large-scale lidar data set and identify interesting objects
automatically. To manage such data efficiently, we split the whole lidar point data set P
into 3D cells. After loading a large volume of point cloud P, we calculate a
bounding box, the maximum and minimum along X-, Y-, and Z-axes (Xmax, Xmin;
Ymax; Ymin; Zmax; Zmin), according to all points in P. The size of the cells is user-defined

3,373,800 m 228.3 m

101.9 m

3,373,300 m

3,372,800 m

513,000 m 513,500 m 514,000 m

(a) An mountainous area
(d) A cross-section plane seen form C direction

(b) A cross-section plane seen form A direction (c) A cross-section plane seen form B direction

(e) A cross-section plane seen form D direction

Figure 1. Range image of a mountain area (a), and CSPs from directions A (b), B (c), C (d), and
D (e).
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(e.g. wlength, wwidth, wheight); and the number of the cells along X-, Y-, Z-axes (Nx,Ny,Nz)
can be defined as

Nx ¼ INTððXmax � XminÞ=wlengthÞ
Ny ¼ INTððYmax � YminÞ=wwidthÞ
Nz ¼ NTððZmax � ZminÞ=wheightÞ

:

8<
: (1)

Based on the assumption that the lowest point in a local neighbourhood has a higher
possibility of being a terrain point, we do not partition the lidar data in the Z-axis, that is,
wheight = ðZmax � ZminÞ and Nz = 1. We define wlength = wwidth = w to obtain uniform cells
Vi;jði ¼ 0; 1; 2; :::;Nx; j ¼ 0; 1; 2; :::;NyÞ along the X- and Y-axes.

Assume that we project all points of each cell Vi;j onto four cardinal directions (φ = 0°,
45º, 90º, and 135º, 0º � φ < 180°), respectively. Correspondingly, we can obtain four
CSPs, S

0
mðm ¼ 1; 2; 3; 4Þ, for each cell, as shown in Figure 3. We find that CSPs at

different directions exhibit different representations of the same 3D complex object. For
example, by a simple slope-based filtering scheme, we can successfully identify more true
terrain points on S

0
1 than those on S

0
2 because a mix of tree and terrain points on S

0
2 are

often treated as an upward slope by most filtering methods.

3.2. Filter

For each of the CSP data, S
0
m, we attempt to filter out non-terrain points using lidar data

characteristics, such as multi-returns, intensity, and height variances. Although last-returns
of a pulse are not always reflected from the ground, first- and middle-returns of the pulse
are mainly reflected from vegetation (see Figure 4). Therefore, we remove first- and
middle-returns from lidar data and just retain single-returns and last-returns. Also, lidar

Figure 2. Flow chart of our CSP-based stepwise filtering algorithm for separating terrain from
non-terrain points.
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intensity information can be used to extract planimetric features and serve as ancillary
input for lidar data processing after radiometric calibration because intensity is related to
the reflective properties of targets as well as the light used (Donoghue et al. 2007). For
example, in the range of the near-infrared spectrum (~900–1500 nm) vegetation and soil
have distinct reflective characteristics in densely wooded mountain areas. Height var-
iances, the height differences between lidar points and the mean point, are also used to

Single returns

Multiple returns

Middle returns

Last returns

First returns

Figure 4. Description of discrete multiple returns.

Figure 3. Illumination of four CSPs of each cell: (a) splitting lidar data, (b) a CSP S
0
1 at 0°, (c) S

0
2

at 45°, (d) S
0
3 at 90°, and (e) S

0
4 at 135°.
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discriminate terrain and non-terrain points. As Wang and Glenn (2009) have noted,
comprehensive utilization of spatial and spectral information is better than using either
alone. Therefore, we use multiple returns, intensity, and height variance to remove non-
terrain points and reduce processing time to a certain extent.

As shown in Figure 2, the filter for each of the CSP data, S
0
m, is detailed as follows.

Step 1: A point vi (vi 2 P, i = 1, 2, 3,…, I (I is the number of lidar points in P) is
classified as C

0
on-t (candidate terrain points) if it is single- or last- return; otherwise

point vi is labelled as C
0
off-t (candidate non-terrain points) if it is first- or middle-

return:

"vi
if ðvi is single-=last-returnÞ; C

0
on-t

else; C
0
off-t

�
: (2)

Step 2: Denote Boff and Bon as the maximum boundary of C
0
off-t and C

0
on-t, respectively.

According to Equation (3), we calculate height (HVj
on) and intensity variances

(IVj
on) for each point cj (cj 2 C

0
on�t, j = 1, 2, 3,…, J, J is the number of lidar points

in C
0
on-t) in the data set C

0
on-t, where, Hj and Ij are the values of elevation and

intensity for the point cj, respectively.

HVj
on ¼

P
ðHj � �HonÞ2

J �Hon ¼
Pm
j

Hj

J

IVj
on ¼

P
ðIj ��IonÞ2
J �Ion ¼

Pm
j

Ij

J

8>>><
>>>:

: (3)

Step 3: If the number of C
0
on-t (J = 0) is larger than zero, proceed to the next step;

otherwise, delete C
0
on-t.

Step 4: If the number of C
0
off-t is not equal to zero, proceed to Step 5; otherwise, move

to Step 6.
Step 5: Points cj 2 C

0
on-t, whose heights range beyond Boff , are removed, and then

proceed to the next step.
Step 6: Points cj 2 C

0
on-t, whose height variances HV

j
on and intensity variance IVj

on are
both larger than the height variance threshold HVthreshold and the intensity variance
threshold IVthreshold, are removed. This means that there are too many points
reflecting from the tree canopy, not from the ground because of dense vegetation.
Otherwise, move into the next step. The determination of HVthreshold and IVthreshold

is automatic and dependent on the lidar points. In the article, we assume that the
lowest points are on the terrain, and randomly select couples of the lowest points
from the investigated cell and its neighbour cells to form an initial terrain data set.
HVthreshold and IVthreshold are calculated from the initial terrain points.

Step 7: Points cj 2 C
0
on-t are sorted by their distances to the Z-coordinate, and are

rearranged to a scan line to move into the next detect step.

3.3. Detect

The points left in C
0
on-t for each S

0
m are further processed to separate terrain from non-

terrain points (see Figure 2). The algorithm assumes that the lowest point in a neighbour-
hood is a ground point. The detect procedure is detailed as follows.
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Step 8: We segment the scan line with a given segment width wSP, as can be seen in
Figure 5. The segment width wSP is estimated by using the covered length of the
CSP, the number of points, and the number of user-defined minimum points in each
segment:

wSP ¼ Vl

I
UN of min; (4)

where I is the number of terrain points for each cell, which is related to the cell size (w)
and point density, Vl is the covered length of a CSP, and UN of min is the number of user-
defined minimum points in a segment cell. For example, if w is 10 m, the point density is
4 points/m2, and Vl at 145° direction is

ffiffiffi
2

p
w, wSP is about 0.35 m if we attempt to keep 10

points in each grid cell.
After segmenting the scan line, the lowest points in each segment, as shown in

Figure 5, are picked up as seed points to create an initial terrain point data set Gm
on-t (gl,

gl 2 Gm
on-t, l = 1, 2, 3,…, L, L is the number of lidar points in Gm

on-t), and removed from

C
0
on-t. The algorithm iteratively classifies terrain points via a triangulated surface model.

Step 9: For each point cj 2 C
0
on-t, the minimum distance Dc

j to the nearest triangle node
and the slope Ac

j are calculated, respectively, as shown in Figure 6.

g2

ci

ci ∈ C'
on–t

g3
g5

g4
D i

c

A i
c

g2,g3,g4,g5, ∈ G
'
on–t

m

Figure 6. Illumination of terrain point collection.

X

initial terrain point

Y

WSP

160

155

150

145

140

135

130

125

Z

Figure 5. Segmentation of a CSP with a given segment width wSP, and the lowest points in each
segment are picked up as initial terrain points.
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Step 10: If a point cj meets the distance difference and slope criteria with two
nearest points gl 2 Gon-t, that is D

c
j >Dthreshold and Ac

j >Athreshold, this point will be
added to Gon-t. The process is iterative until no point meeting these criteria
remains.

3.4. Adjust-and-refine

Having dealt with multi-directional CSPs S
0
mðm ¼ 1; 2; 3; 4; :::Þ for a 3D cell, we achieve

the final filtering results (Gon-t) by merging or intersecting all multiple filtered terrain
point data sets

Gm
on-tðm ¼ 1; 2; 3; 4; :::Þ as Gon-t ¼

G1
on-t¨G2

on-t¨G3
on-t¨G4

on-t¨:::
or
G1

on-t˙G2
on-t˙G3

on-t˙G4
on-t˙:::

8<
:

In practice, whether the merging or intersecting strategy is applied to the filtered results is
dependent on the terrain features and the point density. If the investigated terrain is
continuously undulating (i.e. few break-lines exist), the intersecting strategy is preferred
as it keeps the terrain relatively continuous and smooth. Otherwise, the merging strategy
should be used since several different directions of CSPs can retain abruptly undulating
features. If the point density is high, the intersecting strategy is primarily considered to
generate DEMs because there are enough points to represent the detailed terrain
characteristics.

To further remove non-terrain points from the filtered results, a five-point refinement
method is used regarding the spatial relation of an investigated point and its neighbours
(see Figure 7) by the following rules.

● If Point P is below Line Segment P2P4, Point P is retained as a terrain point (see
Figure 7(a)), otherwise, proceed to the next step;

● If the horizontal slope α1 of Line Segment P1P2 is opposed to the horizontal slope
α3 of Line Segment P4P5, Point P is retained as a mountainous ridge point, as
Figure 7(b) shows; otherwise, proceed to the next step;

● If both of the slope differences Δ1(|α2 – α1|) and Δ2(|α2 – α3|) are smaller than the
slope threshold Δα (according to the experiments, Δα is generally set as 10–15°,
less than Athreshold), Point P is retained as a terrain point; otherwise, it is removed
from the terrain points.

P
2

P
2

P
4

P
5

P
5

P
4

P

P

(b)

(a)

P
1

P
1

α1 α2 α3

Figure 7. Five-point method for the refinement of the filtered results.
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Through the five-point refinement method, the misclassified terrain points are
eliminated.

4. Results and discussion

4.1. Data sets

Three data sets have been used in this article to assess the proposed CSP-based stepwise
filtering method. The first two sets were collected in the multi-return mode by a Leica
ALS50-II mounted on a helicopter. Data sets I and II were acquired in Taishan, Shandong,
eastern China, in October 2004 and in Sichuan, southwestern China, in May 2008,
respectively. Although both of them are wooded mountain areas with dense vegetation,
Test-site I is relatively smooth compared to Test-site II. Thus, Test-site I is used to test
whether the proposed filtering algorithm is robust enough to deal with wooded mountain
areas. For the accuracy assessment, error computation for DTM generation is completed
by comparing with the well-known Terrasoild® point cloud processing software suite. To
extend the test to denser vegetation and more complex terrain areas, Test-site II is used to
validate the proposed method. The last data set comes from the International society for
Photogrammetry and Remote Sensing (ISPRS) Commission III/WG3, which provides
eight study sites with both first and last returns in urban and rural environments. We select
these 15 sites to further test our filtering algorithm and compare the algorithm with other
filtering methods evaluated by ISPRS. All processing is implemented by VC++ in
Microsoft Visual Studio 2005®.

4.2. Test-site I

Figure 8(a) shows a shaded relief map of a digital surface model (DSM) of Test-site I.
The flying height ranges from 1100 to 1300 m above the ground, with a ground speed of
about 100 km h–1 and a laser divergence of 0.22 mrad. The specifications of the
instrument state that the vertical measurement accuracy is ±15 cm, and the horizontal
accuracy is ±35 cm in either direction for the given flying height, that the field of view
(FOV) is 45°, and that currently available systems offer pulse repetition frequency
values between 90 kHz and 150 kHz with a density of about 1 point/m2. We select a
representative mountainous area for testing. The white square shown in Figure 8(a)
depicts an undulating terrain with an area of 1 km2. Figure 8(a) depicts a close view of
the test site. There are a total of 1,224,513 points with the ground elevation ranging
from 101.9 m to 228.33 m.

4.2.1. Sensitivity analysis

Table 1 lists all parameters and their thresholds used in this work. Among them, the
thresholds of intensity and height variance in the filter step, HVthreshold and IVthreshold, are
calculated automatically according to the characteristics of the investigated ground fea-
tures. In this work, one of the key parameters, w, is used to control cell size. The
thresholds D and A are two other important criteria for DEM generation in the detect
step. Thus, we conducted a series of experiments to test how these three parameters
influence the accuracy of a lidar-derived DEM using 15 sets of thresholds.

The selected thresholds are shown in Table 2. To assess the filter performance, terrain
and non-terrain points are manually classified with the help of the Terrasolid® software
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suite as the reference data set. As Kobler et al. (2007) and Silthole and Vosselman (2004)
suggested, the manual filtering could be seen as the best possible classification method
given no additional information because human eyes can observe filtering errors easily.
Therefore, this method is suggested for validation and comparison of filtering algorithms.
In this article, we use a kappa coefficient as a measure of overall agreement of an error

Table 1. Parameters and their thresholds used in the article.

Parameters

No. Name Explanation Threshold value

1 w The cell size for splitting To be investigated
2 HV Height variance in the filter step HVthreshold (Automatic)
3 IV Intensity variance in the filter step IVthreshold (Automatic)
4 wSP The segment size Depending on point density and w
5 D Distance criterion in the detect step Dthreshold (to be investigated)
6 A Slope criterion in the detect step Athreshold (to be investigated)
7 Δα Slope difference criterion in the adjust-and-

refine step
Less than Athreshold, and 5~10

3,374,636.9
(m)

3,372,800.01
(m)

3,370,963.12
(m)

3,372,800
(m)

3,373,300
(m)

3,373,800
(m)

512,846.3 (m) 515,763.99 (m) 518,195.39 (m)

228.33 (m)

101.90 (m)

514,000 (m)513,000 (m) 513,500 (m)

521,113.08 (m)

(b)

(a)

Figure 8. Test-site I: a mountain area with a smoother terrain.

International Journal of Remote Sensing 937



matrix. The kappa coefficient, introduced to the remote-sensing community in the early
1980s (Congalton and Mead 1983), has been recommended by Rosenfield and
Fitzpatrick-Lins (1986) as a standard of accuracy assessment. Unlike the overall accuracy,
the ratio of the sum of diagonal values to the total number of cell counts in the error
matrix means the kappa coefficient also takes non-diagonal elements into account.

Table 2 shows that the kappa coefficients vary only a little from Tests 1 to 3, Tests 4 to
6, and Tests 7 to 9 with the fixed cell size w and distance difference threshold Dthreshold.
Figure 9(a) shows that the slope parameters are insensitive to the results. Notice that the
distance difference parameters would be more sensitive than the slope parameters. This is
due to the distance equations of points to a plane actually constraining the slopes. In
practice, we can find that the Athreshold of 30° is suitable for many terrain types. Figure 9(b)
shows that the kappa coefficients increase with the increase of Dthreshold from 0.5 m to
1.0 m, while they subsequently decrease with the Dthreshold changed from 1.0 m to 1.5 m.
Thus, Dthreshold of 1.0 m is favourable for the test areas. Figure 9(c) shows the sensitivity
of the cell size to the filtering results. Notice that the quality of DEM decreases as the cell
size w increases. Figure 11 shows the shaded relief maps of DEMs with three different cell
sizes: 10 m, 15 m, and 20 m.

We find that the smaller the cell size is, the more details the terrain features of the
mountain area are retained (see Figure 10). Meanwhile, filtering errors are also increasing,
especially non-terrain points misclassified as terrain points. Figure 10(a) shows that some
detailed terrain features are smoothed when using a relatively larger cell size (e.g. 20 m).
However, as shown in Figure 10(c), there are a few errors in the relieved DEM when
w = 10 m. Compared to these two examples, filtering results demonstrate that using the
cell size of 15 m can retain terrain features, but also remove non-terrain points to the
maximum extent. However, if a mountain area is covered by very dense vegetation, it is
difficult to find terrain points. We then may have to enlarge the cell size to find points
hitting on the ground. Figures 11(a) and (b) show a part of the filtered results of a CSP
and a close view of the part identified by the black circle. As shown in Figure 11(b), the
terrain is well maintained.

Table 2. Parameters and kappa coefficients of the CSP method.

Test no. Cell size (m) Dthreshold (m) Athreshold (deg) Kappa

1 10.0 0.5 30 0.8413
2 10.0 0.5 45 0.8398
3 10.0 0.5 60 0.8402
4 10.0 1.0 30 0.8507
5 10.0 1.0 45 0.8471
6 10.0 1.0 60 0.8427
7 10.0 1.5 30 0.8135
8 10.0 1.5 45 0.8140
9 10.0 1.5 60 0.8077
10 15.0 0.5 30 0.7820
11 15.0 1.0 30 0.8134
12 15.0 1.5 30 0.7865
13 20.0 0.5 30 0.7628
14 20.0 1.0 30 0.6856
15 20.0 1.5 30 0.7139
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Figure 9. Error comparisons with three parameters: (a) a group of tests for sensitivity of the slope
threshold; (b) a group of tests for sensitivity of the distance threshold; and (c) a group of tests for
sensitivity of the cell size.

(a) (b) (c)

Figure 10. DEMs with different cell size: (a) 20 m; (b) 15 m; and (c) 10 m.
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4.2.2. Multiple features

To evaluate contributions of lidar data features (e.g. multi-returns, height variance, and
intensity information) on separating terrain from non-terrain points, we randomly select
several small parts of Test-site I, as shown in Figure 12, to test whether these ancillary
features can assist in the improvement of filtering accuracy. Table 3 shows the compara-
tive results. In the filter step, each sample’s non-terrain points, accounting for an average
15% of all total lidar points, are filtered out. Compared to the filtering results without the
filter step, kappa coefficients for the filtering result with the filter step are increased
obviously. This experiment therefore demonstrates that geometric and spectral information
pertaining to lidar points can improve the filtering quality.

(a) (b) (c) (d)

Figure 12. Small examples of Test-site I: (a) Sample 11; (b) Sample 12; (c) Sample 13; (d)
Sample 14.

Table 3. The performance of multi-features.

With multi-features

Data No. points Filtered non-terrain points Kappa (%) Without multi-features kappa (%)

Sample 11 185,467 27,031 0.8012 0.7924
Sample 12 214,289 30,257 0.7912 0.7784
Sample 13 301,498 40,159 0.8327 0.8213
Sample 14 357,497 56,377 0.7932 0.7845

513,200 m

200 m 180 m

170 m

513,380 m 513,260 m
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Raw LiDAR points
Filtered ground points

513,290 m

Figure 11. A close visual inspection from a profile: (a) the filtering results from a profile; and (b) a
close visualization of the black circle in (a).
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4.2.3. Effects of the number of CSPs on filtering accuracy

For each cell, we can generate a number of CSPs at multiple directions ranging from 0°
to 180°. In this section, to assess the effect of the number of CSPs on filtering accuracy,
we conduct a set of experiments by applying Δφ to lidar data. For example, if Δφ = 0°,
we project all points at only one CSP at φ = 0°; if Δφ = 30°, six CSPs at φ = 0°, 30°, 60°,
90°, 120°, 150°. Table 4 presents the filtering results using different numbers of CSPs.
We find that kappa coefficients slightly grow with the number of CSPs increasing from
one to five. Our algorithm shows a good filtering performance when Δφ is between 45°
and 30°, that is four or six CSPs for both merging and integrating strategies. The
philosophy behind this phenomenon is that CSPs at multiple directions provide much
useful information to cross-validate filtering results. However, the filtering accuracy
decreases when Δφ is below 30°, indicating that a smaller Δφ (a larger number of CSPs)
can be counterproductive. In this study, we apply four cardinal directions (0°, 45°, 90°,
and 135°) to each cell of lidar data.

4.2.4. Overall performance

To assess the overall performance of our stepwise filtering scheme, we compare it with the
progressive TIN (triangular irregular network) densification method implemented in the
commercial Terrasolid® software suite. Several parameters are involved in the progressive
TIN algorithm, including the maximum building size, iteration angle, and iteration dis-
tance. Although the proposed method includes six parameters listed in Table 1, only three
parameters play essential roles in the classification procedure. The other parameters’
thresholds are determined automatically based on the lidar point statistical characteristics:
the cell size, the slope, and distance. The cell size in this study is similar to the maximum
building size of the progressive TIN densification. Therefore, we keep the same values for
both of them. As previously discussed, the cell size, slope, and distance thresholds are
15 m, 30º, and 1 m, respectively. We keep the same values for the maximum building size,
iteration angle, and iteration distance of the progressive TIN. Figures 13(a) and (b)
describe our filtering results. Figures 13(c) and (d) are filtering results represented by
the progressive TIN algorithm. Note that the progressive TIN densification smooths and
removes some significant terrain characteristics, while our CSP-based stepwise filtering
method can better retain terrain characteristics.

Table 4. Effect of the number of CSPs on filtering accuracy.

Test no. Number of CSPs (0° � φ < 180°) Merge Intersect

1 1 (Δφ = 0°) 0.6934 0.6934
2 2 (Δφ = 90°) 0.7202 0.7341
3 3 (Δφ = 60°) 0.7411 0.7588
4 4 (Δφ = 45°) 0.7929 0.8043
5 5 (Δφ = 36°) 0.8093 0.8134
6 6 (Δφ = 30°) 0.8011 0.8026
7 9 (Δφ = 20°) 0.8034 0.7994
8 12 (Δφ = 15°) 0.7755 0.7893
9 15 (Δφ = 12°) 0.7134 0.7446
10 18 (Δφ = 10°) 0.6332 0.7087
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4.3. Test-site II

Figure 14 illustrates Test-site II, covering an area with dimensions of about 435 m by 426 m.
The ground elevations range from 101.9 m to 228.33 m. As shown in Figure 14, the terrain
changes abruptly. There are a total of 183,847 points in data set II with a density of 1 point/m2.

Besides the error matrix with classified ground truth data, a visual inspection by
constructing a TIN model manually (Meng, Currit, and Zhao 2010) is also used for
accuracy assessment when ground truth data are unavailable. Figures 15(a) and (b) are
filtered results of Test-site II shown from different perspectives. According to the experi-
ment results of Test-site I, we keep thresholds of the cell size, slope, and distance as 15 m,
30°, and 1 m, respectively. A visual inspection confirms that the filtering results retain
terrain features quite well, and that almost all vegetation is removed successfully. For
example, ridges and valleys are still kept, though they are covered by dense vegetation,
which results in an insufficient amount of ground information from poor lidar penetration.

513,140 m

Filtering results of Terrasolid
Raw lidar points
Filtering results of the proposed method

140 m
140 m

50 m
50 m

E
le

va
tio

n

E
le

va
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n

513,240 m 513,420 m 513,540 m
(a) (b)

(c) (d)

Figure 13. Comparison between progressive TIN and the proposed filtering method: (a) and (b)
two filtered profiles obtained, (c) filtered DTM obtained by progressive TIN method and (d) by the
proposed filtering method.
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Our proposed filtering scheme provides a precision option for users because there are
multiple filtering results for a 3D cell. Thus, users can merge or intersect the filtered
results based on their requirements and point density. Figure 16 shows the intersecting and
merging filtering results. As shown in Figure 16, the DTM obtained by the merging
strategy is smoother than the one obtained by the intersecting strategy. Among the total of
183,847 raw points, statistics show that 43,030 points are classified as terrain points by
the intersecting strategy, while 59,064 points are classified as terrain points by the
merging strategy. Both strategies retain the terrain characteristics.

4.4. ISPRS data

ISPRS collected the raw lidar data using an Optech ALTM scanner, and manually
generated 15 reference sites from sites 1–7 (http://www.itc.nl/isprswgiii-3/filtertest/

Figure 15. Illustration of filtering result of Test-site II from different views.

Figure 14. Test-site II.
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index.html). A description of the characteristics of the study sites can be found in Sithole
and Vosselman (2004). Sites 1–4 represent urban landscapes, while sites 5–7 represent
rural landscapes (forest sites). The point density for the city and forest sites are roughly
0.67 and 0.18 points/m2, respectively. We apply our CSP-based filtering algorithm to the
15 urban and forest study sites and calculate the ground filtering accuracy. We keep
w = 15 m, Athreshold = 20°, and Dthreshold = 1 m for city sites 1–4, which are fairly flat city
terrain with few steep slopes. Rural sites 5–7 contain more drastic surface changes with
lower point density than the city sites. We use w = 20 m, Athreshold = 45°, Dthreshold = 1.5 m,
and Δφ = 45° (that is, four CSPs). Figure 17 shows the comparative filtering results with
eight other published ground filtering methods that were tested by ISPRS on the same
data sets. The average kappa coefficients of our filtering algorithm are 0.6243 and 0.7886
for city and forest sites, respectively. Compared to the performance of eight other
algorithms, the CSP-based filtering algorithm generates promising results for forest test
sites – it is the second best performing algorithm, although it achieves an unsatisfactory
filtering performance for urban areas. Figure 17(b) shows that the kappa values for the
CSP-based algorithm and the other three filtering algorithms (e.g. Elmqvist, Axelsson,
and Pfeifer) on each site. Large and irregularly shaped buildings, or some buildings with
eccentric roofs on the ground surface are a major problem for ground filtering, which
causes a dramatic drop in kappa value in samples 21–24. The proposed CSP-based
algorithm is capable of capturing the main ground terrain for forest sites where vegetation
and buildings along steep slopes, such as samples 51 and 52, are a major challenge for
most of the aforementioned filtering algorithms.

5. Conclusions

As one of the important issues in lidar applications (e.g. automatic DTM generation and
feature identification), many ground filtering methods been have developed to tackle the
difficulties of separating terrain from non-terrain points. However, the problem has not
been fully addressed, especially for densely wooded areas. The CSP approaches provide a
promising alternative by analysing multiple CSPs at different directions instead of directly
estimating values within a neighbourhood. This enables multiple directional observations

Figure 16. TIN illustration of filtered results obtained by (a) intersecting CSPs and (b) merging
CSPs.
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to identify more subtle surface differences in the local environment. We present a
CSP-based stepwise filtering algorithm to explore the ability of a multi-directional CSP
approach to use the implicit characteristics of lidar data along different directions. From a
computation perspective, this approach includes four main steps: split, filter, detect, and
adjust-and-refine to separate terrain from non-terrain points in wooded mountain areas.

The performance of the presented method was tested on not only two test sites
covered by dense vegetation (Test-site I and Test-site II), but also an ISPRS data set
including 15 study sites. In the case of Test-site I, the impact of filtering parameters on the
quality of DTM has been analysed. Results show that the filtering performance is sensitive
to the cell size. Specifically, the filtering accuracy decreases with the increase of the cell
size. However, in densely vegetated areas, the cell size might be enlarged because the
majority of lidar points are reflected from the upper canopy of vegetation rather than from
the ground. Comparative experiments with the progressive TIN densification demonstrate
that our method is capable of preserving more terrain features. The results of Test-site II
also confirm that the CSP-based stepwise filtering method handles the lidar point cloud
well in steep, densely vegetated areas. The test on ISPRS data demonstrates that our
algorithm generates promising results for forest test sites by comparing the results to eight
other filtering algorithms using kappa coefficients.

(a)

(b)

Figure 17. Kappa averages on 15 sites: (a) kappa values by sample site for nine filters, and (b)
three best filters selected for comparison with our filter.
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Our future work intends to further extend this approach and validate it with more real
point cloud data sets, focusing on the following two aspects: (a) developing the algorithm
so as to be threshold-free and independent from both lidar data format and point density,
(b) efficiently dealing with lidar data in urban areas by dividing the space of the object
into dynamic sizes to detect large and irregularly shaped buildings.
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