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This article presents a spatial contrast-enhanced image object-based change detection
approach (SICA) to identify changed areas using shape differences between bi-temporal
high-resolution satellite images. Each image was segmented and intrinsic image objects
were extracted from their hierarchic candidates by the proposed image object detection
approach (IODA). Then, the dominant image object (DIO) presentation was labelled
from the results of optimal segmentation. Comparing the form and the distribution of
bi-temporal DIOs by using the raster overlay function, ground objects were recognized
as being spatially changed where the corresponding image objects were detected as
merged or split into geometric shapes. The result of typical spectrum-based change
detection between two images was enhanced by using changed spatial information of
image objects. The result showed that the change detection accuracies of the pixels
with both attribute and shape changes were improved from 84% to 94% for the strong
attribute pixel, and from 36% to 81% for the weak attribute pixel in study area. The
proposed approach worked well on high-resolution satellite coastal images.

1. Introduction

Remote-sensing change detection is the process of identifying differences in the state of an
object or phenomenon by observing it at different times (Singh 1989). It is one of the most
important applications for analysing multitemporal remotely sensed images. Change detec-
tion is also a meaningful tool for monitoring and managing natural resources and urban
development in a coastal zone because it can quantitatively measure the spatial variation
of relevant ground objects during a given period (Malthus 2003; Bontemps et al. 2008).
Furthermore, a shape-based approach has been introduced to change detection (Li and
Narayanan 2003). However, the most common approach has been to classify each image
pixel as an independent observation regardless of its spatial context (Marcal et al. 2005).
Unfortunately, this is fraught with the limitations imposed by pixel-based image analy-
sis. With the increasing spatial resolution of remotely sensed imagery, new applications in
coastal zones require the generation of change detection maps characterized by both a high
geometric resolution and the capability of properly modelling the complex areas present in
the scene (Bovolo 2009).
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Remote sensing has made enormous progress over the last few years from what has
been predominantly a per-pixel, multispectral (MS)-based approach to the development and
application of multiscale object-based methods (Hay et al. 2005). Blaschke (2010) gave an
overview of the development of object-based methods. Recently, the development of geo-
graphic object-based image analysis (GEOBIA or OBIA) has nevertheless provided a new,
critical bridge between the spatial concepts applied in multiscale landscape analysis. In the
segmentation process, natural complexity can be effectively explored using spatial analysis
tools based on the concept that landscapes are process continuums which can be partially
decomposed into objects or patches (Burnett and Blaschke 2003). Walter (2004) adopted
object-based classification and a geographical information system (GIS) to improve the
capability of change detection. Desclée, Bogaert, and Defourny (2006) detected forest land-
cover change using a statistic object-based method. Yu et al. (2006) found that using objects
as minimum classification units helped overcome the problem of salt-and-pepper effects
resulting from pixel-based classification methods. Tian and Chen (2007) proposed a frame-
work to find optimal segmentations for a given feature type using an image object-based
method. Object-based applications have been performed for mapping and change analy-
sis in mangrove ecosystems (Conchedda, Durieux, and Mayaux 2008) and in urban sprawl
areas (Durieux, Lagabrielle, and Nelson 2008). Im, Jensen, and Tullist (2008) introduced a
change detection method based on object/neighbourhood correlation by image analysis and
image segmentation techniques. Some unsupervised approaches have been presented based
on the comparison between features computed on homogeneous regions that are obtained
according to segmentation procedures (Hall and Hay 2003; Bruzzone and Carlin 2006).
Even if these object-based change detection methods are implicitly suitable to analyse high-
resolution images, they get the final change detection by pixel-to-pixel comparison, which
is not an effective region descriptor like object-to-object comparison. Partly, this is because
most of these techniques do not generate explicit object topology, nor even incorporate the
concept of an object within their analysis (Hay et al. 2003).

The relatively homogeneous and semantically significant groups of pixels produced
after multiscale segmentation have been designated ‘object candidates’, which are to be rec-
ognized by further processing steps and to be transferred into meaningful objects (Burnett
and Blaschke 2003). Considering the oversegmentation or the undersegmentation problem,
there exists a large matching gap between the theoretically hierarchical network of image
object candidates and real-world objects of a landscape. In many cases, the delineation of
relatively homogeneous areas is the basic method, and the common denominator of various
realizations of image object-based change detection is the objective to derive meaningful
objects. Moreover, the dominant landscape objects have their intrinsic scales and are com-
posed of structurally connected parts. In this article, the image object detection approach
(IODA) (Chen, Pan, and Mao 2006, 2009) is adopted to choose appropriate scales and
produce meaningful image objects from any possible image candidates, and to distinguish
intrinsic scale from any segmentation scale. The newly developed method is also an update
to the work presented in Chen, Pan, and Mao (2009) by the same authors.

2. Materials and methods

2.1. Related work

Multiscale segmentation is a procedure by which an image is precisely separated into mutu-
ally exclusive region sets by computing the defined heterogeneity. The criteria for stopping
the segmentation procedure are the degree of difference between two regions. These dif-
ferences are optimized in a heuristic process by comparing the attributes of the regions
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2456 J. Chen et al.

(Baatz and Schäpe 2000). Only one segmentation scale was set as the criterion in the seg-
mentation procedure. As may be known, there are various optimal segmentation scales
with respect to diverse intrinsic scales of ground objects in remotely sensed images. So,
the IODA method chooses the meaningful object candidates as image objects from whole
multiscale representations (Chen, Pan, and Mao 2009).

In the IODA, for MS remotely sensed images, the spectral mean distance (SMD) was
defined commonly to describe the distance of two adjacent candidates using their spectral
mean values, μd and μ′

d , for spectral band d:

SMD =
√∑

d

(μd − μ′
d)2. (1)

The combined standard deviation (CSD) which characterizes the homogeneity for each
candidate can be defined as follows:

CSD =
∑

d

wdσd , (2)

where wd is the user-defined weight for spectral band d, and σ d is its standard deviation of
candidate a. Here, the difference distinctive feature (DDF) was defined as follows:

DDF = SMD − CSD, (3)

where the DDF of candidate a is determined by the SMD and the standard deviation. The
minimum DDF (MD) is used in the measurement of the distinguishability of an object
candidate against its surrounded candidates at one segmentation scale:

MD = Min{DDF}. (4)

In the segmentation procedure, the pixel p belongs to a series of object candidates, along
with the increasing of scale s. Each candidate has its minimum distinctive, which makes up
the MD curve. The maximum distinctive feature (MDF) is defined as the maximum MD
from the initial scale to a given scale in the MD curve. The scale order is constructed by a
series of the original scale of ordinal MDF. For a simple object, the original scale at which
its meaningful image object formed must be in scale order, and this can be adopted as the
segmentation scale at the intrinsic scale (Chen, Pan, and Mao 2009).

2.2. Image object-based spatial change detection

The proposed approach was dependent on the homogeneous image objects yielded from
the IODA method (see Figure 1), which was based on the multiscale segmentation result;
scale order sequences for each pixel were then established. Subsequently, the nonsignificant
candidates were removed and the potential image objects in the MDF object candidate set
were retrieved from multiscale representations. As described above, the image object iden-
tification here was making heterogeneity of inter-neighbourhood image objects maximized
as well as the homogeneity of intra-image object individually.

According to the provocative question that Blaschke and Strobl (2001) raised, ‘What’s
wrong with pixels?’, an increasing dissatisfaction was identified with pixel-by-pixel image
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Figure 1. Four stages and seven steps in the IODA. Stage 1: ➀ multiresolution segmentation and
➁ its multiscale representation. Stage 2: ➂ DDF calculation for each object candidate. Stage 3: ➃
distinctive feature curve of object candidate evolution in the multiresolution segmentation and ➄ the
scale order sequences are set up based on each pixel. On one pixel, for example, there is a scalar
curve (a), a DF curve (b), and a scale order sequence (c), which are built up from curves (a) and (b).
Stage 4: ➅ potential image objects identification and ➆ the Case 1 objects, Case 2 objects.
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2458 J. Chen et al.

analysis. Under the assumption that the landscape of interest is a finite population of objects
(Bian 2007), the spatial information about these objects is integrated in the ultimate change
detection method. Considering the Shannon sampling theorem, we expected that an object
should be of the order of one-tenth of the dimension of the sampling scheme – the pixel –
in order to ensure that it would be completely independent of its random position and its
orientation relative to the sampling scheme (Blaschke 2010). Accordingly, image objects
larger than twice or three times the minimum needed by Shannon’s sampling theorem and
the pixels satisfying 3 × 3 pixels distribution were focused mainly in the application. These
image objects are called dominant image objects (DIOs). Spatial information of these DIOs
are included in the following image object-based change detection procedure.

The workflow of the image object-based change detection algorithm is shown in
Figure 2. Two temporal remotely sensed images were geo-corrected using in image reg-
istration mutually in image preprocessing. At the second stage, two parallel processes were
performed for traditional change detection based on spectral information and image object-
based spatial contrast-enhanced change detection, respectively. In the latter approach, both
images were segmented using the IODA. Then, the DIO presentation was identified from
the product of optimal segmentation and labelled with a unique reference number. Next, two
DIO sets from bi-temporal images were compared by the raster overlay function by using
their unique reference numbers. The corresponding image objects were recorded as shape
changed when they were detected as merged or split in the overlay function. Concurrently,

Time 1 Time 2 Image
registration

Optimal segment
DIOs presentation

Oversegment
traditional
change detection

Raster overlay
object-to-object comparison

Integrate the change of shape
into traditional change dectection

Spatial contrast-enhanced image
object-based change detection map

Figure 2. Workflow of the change analysis procedure. Two temporal images are registered first.
Then, both images are segmented using the IODA method. Next, the DIO presentation is filtered from
the product of optimal segmentation, i.e. the DIO sets from the two temporal images are compared
by the raster overlay function. The corresponding image objects are labelled when they are detected
as merged or split into geometric shapes.
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the typical change detection approach was performed through calculating the image object-
based average spectral data. At the third stage, the difference map that was created based
on object-to-object comparison with the change of shape as a result was integrated into the
result of traditional detected change using the spectral approach. Finally, the change map
was produced by enhancement of the spatial information of the image object.

The overlay function was executed by taking each DIO as a raster zone by using a
unique reference number. The image objects from two temporal images which merged or
split were divided into small parts in the overlay function. If the DIO from the former
image contained or intersected with more than one latter DIO and the intersected parts also
met the condition of DIO, we considered the situation as the split procedure of the former
image object. When the image object from the latter image contained or intersected with the
former DIOs, their intersected parts were taken as the DIO, and the merged state occurred.
Admittedly, there were both merging and splitting procedures when we compared with the
image objects from two temporal images. The merged or split state means that the change
of shape has occurred.

2.3. Integration of spectral and spatial information

Shape change means some or all parts of ground objects are changed. Other informa-
tion is also required for identification of the changed parts or for other regions where the
shape is not changed. Change detection algorithms in the remote-sensing literature can be
roughly divided into two categories (Yuan and Elvidge 1998; Mas 1999): preclassification
and postclassification change detection. Image object-based change detection adopting a
strategy of postclassification takes three steps: segmentation, classification, and compari-
son. Such high-resolution imagery presents a new class of change detection problems to
which existing remote-sensing techniques are not well suited. Classification techniques for
thematic labelling, based on spectral and textural attributes, cannot describe within-class
changes like new construction in cities, since the area is classified as urban before and after
such changes (Pollard et al. 2010). This meant that most were detected as changed areas
because of misclassification. In our approach, the segmented results were classified using
the supervised maximum likelihood classifier (MLC) method. The MLC is the most com-
mon supervised classification method used with remote-sensing image data and is based
on the Bayesian probability theory (Richards 1995). Then, the overall accuracy, the kappa
coefficient, producer’s accuracy, and user’s accuracy were calculated for each class. For
illustrating the performance of spatial change detection, the classes were divided into two
groups: high accuracy classes (above the overall accuracy) and low accuracy classes (below
the overall accuracy) in the case study. Therefore, the former classes were called obvious
classes and the latter classes were called unobvious classes. When the change happened,
the change among obvious classes or between obvious classes and unobvious classes was
assumed as a strong attribute pixel change. Only the change among the unobvious classes
was assumed as a weak attribute pixel change. Then, the strong or weak attribute pixel
change was enhanced by a shape changed result derived from DIOs. Therefore, the detected
results were divided into strong attribute pixel and shape change, strong attribute pixel
change only, weak attribute pixel and shape change, and weak attribute pixel change only.

2.4. Study site and data

Two high-resolution satellite images covering the same area were used in this study, which
were both 1024 × 1024 pixel subimages of an IKONOS scene (see Figure 3). The area rep-
resents a portion of the highly fragmented agro-waterfront landscape. IKONOS provides
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Figure 3. The image size is 1024 × 1024 pixels. The resolution is 1.0 m, generated by fusing the
MS bands of 4.0 m resolution and a PAN band of 1.0 m resolution. The left image (a) was obtained
on 17 April 2001 and the right image (b) was obtained on 25 April 2007.

16-bit MS data in blue, green, red, and near-infrared (NIR) channels at 4 m spatial resolu-
tion and a 16-bit panchromatic (PAN) channel at 1 m resolution. The used image resolution
is generated by fusing MS bands with the PAN band. Herein, the Gram–Schmidt spectral
sharpen function was utilized supported by sensor type. The auxiliary data include field
survey data and a topographic map. The study area is located in the Xiejiadao Peninsula,
Huangdao District, Qingdao City, between latitudes 35◦ 54′′10′ N and 35◦ 55′40′ N, longi-
tudes 120◦ 10′30′ E and 120◦ 12′00′ E. There are mudflats, aquacultures, boats, seawater
below the coastline, residential areas (including building and yard), ponds, and agrarian
fields above the coastline, and the agrarian fields are in different stages of planting. Two
images were acquired at different years and during the same season. The acquisition of for-
mer images was at 02:43 GMT, 17 April 2001 and the latter was acquired at 03:00 GMT,
25 April 2007.

3. Results

3.1. Result of change detection

The image registration procedure was carried out in the preprocessing, and the root
mean square error (RMSE) was 0.54 pixels. As a reference for change detection, the
land-cover change of the study area was identified in the vector layer (see Figure 4)
through image interpretation under the support of commercial GIS software (ArcGIS;
Esri, Redlands, CA, USA). The land-cover classification scheme referred to the stan-
dard used in Chinese offshore investigation and assessment, which was slightly different
compared to recent research (Teodoro et al. 2011). About half of the coastline had
been modified in a short period. Two of the three aquaculture areas also disappeared
during this period. The proportion of residential areas was increasing and almost simul-
taneously, the small ponds were changed either in part or as a whole. The agrarian
fields were changed not only into the other types but also changed with respect to
the planting and farming state. The result indicated that land-cover changed rapidly.
The change pattern was similar to the closer coastal area in East China (Liu, Liu, and
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International Journal of Remote Sensing 2461

Figure 4. Map of GIS-based change detection of the study area. The exploitation and development
lead to rapid changes in land cover in the coastal zone. The settlement extended and the aquaculture
area decreased meanwhile.

Tian 2005). The total area of the Xiejiadao Peninsula is 28.26 km2 and it increased
10.7% between 2001 and 2007, mainly from the tidal zone. Meanwhile, 11.0% of arable
land area decreased and the main cause of occupation was built-up and settlement
land.

In the postclassification change detection procedure, the segmentation scale was 30 for
both MS images. The result of segmentation was oversegmentation for most objects. The
overall accuracy of the 2001 image was 88.65%, and the kappa coefficient was 0.84.
The overall accuracy of the 2007 image was 84.59%, and the kappa coefficient was
0.79. Actually, the producer and user accuracies (see Table 1) of waterbody, cropland,
soil (reaped crop), woodland, and uncovered area were all larger than average. But the
accuracies of building, yard (area between buildings), road, and silt were less than the
average accuracy. The total accuracy of postclassification change detection without spatial
information supported was 73% (see Table 2). The strong attribute pixel change accu-
racy increased to 84% and the weak attribute pixel change accuracy decreased to 36%
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2462 J. Chen et al.

Table 1. Classification results of both images (%).

Water
body Crop Soil Building

Yard and
lane Road

Wood
land Silt

Uncovered
area

2007 Producer’s
accuracy.

97.99 96.87 74.53 61.8 45.86 69.39 93.75 39.18

2007 User’s
accuracy

98.78 99.96 99.45 40.06 38.86 51.96 72.58 100

2001 Producer’s
accuracy

96.37 94.37 92.14 75.01 40.52 83.9 81.9 64.64 85.94

2001 User’s
accuracy

99.94 97.45 98.9 76.23 37 49.35 96.95 36.29 93

Table 2. Change detection accuracy.

Type Overall accuracy Number of pixels

Strong change and shape 0.94 256, 037
Strong change only 0.68 161, 563
Weak change and shape 0.81 22, 452
Weak change only 0.26 101, 702
Strong change 0.84 417, 600
Weak change 0.36 124, 154
Total 0.73 541, 754

when the changed area was partitioned according to the classes. After integration with
spatial change information (see Figure 5), the pixels that were of weak attribute pixel
and shape changed occupied 22,452 pixels and its accuracy was 0.81. And the pixels
that were only weak attribute pixel changed occupied 101,702 pixels and its accuracy
was down to 0.26. In contrast, the pixels that are of strong attribute pixel and shape
changed occupied 256,037 pixels and its accuracy was up to 0.94, and the pixels that
were only strong attribute pixel changed occupied 161,563 pixels and its accuracy was
0.68. Furthermore, the result of change detection of the proposed approach has poten-
tial improvement in case more meticulous works are performed like relative radiometric
normalization.

3.2. Traditional change detection enhanced by spatial change information

The IODA had been applied on the hierarchical network of image object candidates with
the ultimate scale 800. Here, the DIOs had different segmentation scales with different
DDFs (see Figure 6). In the vector layer shown in Figure 4, most of the filtered DIOs
were anthrop-impacted ground objects. The proposed method has produced improved
results (see Table 2), but not all land covers benefitted equally. The image object detec-
tion results varied in the ability to reveal different ground objects (see Table 3). The
exhibitions of image object candidates were perfect, especially in residential areas and
agrarian fields. The changed inland aquacultures were detected well by the signal that the
merge and/or split of the corresponding image objects occurred (see Figure 6, below).
The land covers consisting of those image objects had a larger improvement in accu-
racy. In contrast, the changed aquacultures under the coastline were not detected ideally
because in the fused image their small or narrow border could not be protected from
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Figure 5. Difference map of supervised MLC; segmentation was performed before classification
with segmentation scale 30. The result of change detection was enhanced by spatial information.

merging with their surroundings because of the same materials. The image objects in
the areas where land cover was changed from agrarian fields to settlements were accept-
able although their ground object size was relatively small. However, the built-up areas
of the settlement could not be identified well because of their size, and they were not
considered as DIOs. The accuracy for land covers with those image objects improved
less. Many agrarian fields were detected as changed areas according to their changed
shape. Such a case meant that the planting and farming state would change the result of
IODA. The segmentation is relative to the accuracy of the classification (see Table 1).
The higher accuracy of classification indicated that the ground object could be iden-
tified from other classes, that also meant they were segmented from the surroundings
easily.

As a traditional preclassification method, the spectral change vector approach (CVA)
helped to determine whether there were any DIOs changed on the whole or whether there
were parts changed in the merge or split procedure (Johnson and Kasischke 1998). The
result of the image object-based change vector is clearer than the pixel-based result of the
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(a) (b)

Figure 6. The left image (a) is the DIO presentation of the earlier image covered with the red plots
of the DIO presentation of the latter image. The right image (b) is the DIO presentation of the latter
image covered with the red plots of the DIO presentation of the earlier image.

Table 3. Comparison between the interpreted ground objects and the DIOs segmented from bi-
temporal images.

Aquaculture
Coastal

aquaculture Pond Crop Soil Building Road
Wood
land Silt

2007 Interpreted 5 16 17 17 51 143 3 27 2
2007 Segmented 5 14 17 14 33 92 1 15 1
2001 Interpreted 15 10 3 41 48 98 2 3 2
2001 Segmented 14 3 3 39 4 73 1 1 1
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Figure 7. The left image (a) is the result of pixel-based CVA covered with red plots of shape
changed DIOs of early image and blue plots of shape changed DIOs of latter image. The right image
(b) is the result of object-based CVA of the result of overlay of DIOs.
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CVA method (see Figure 7). On comparison with the pixel-based CVA method, the image
object-based method avoids the ‘salt-and-pepper’ phenomenon. The false small polygon,
which usually emerged in the result without accurate geometric registration, did not emerge
when we used the concept of DIO. Generally, the larger value of the spectral change vector
indicates the changed region and the lesser value indicates unchanged parts. The result
of the proposed approach would be more significative in high-resolution remote-sensed
images, where the DIOs can be obtained. In the study area, the traditional change detection
method is still important in image object-based change detection. But the image object-
based change detection method adds more extra information on spatial information such as
merge or split.

4. Discussion

4.1. Changed shape means changed spectrum

Changed shape means either a merge or a split or both have occurred. It also indicates the
spectral difference in the parts of them. For multiscale segmentation, the spectral features
of two image objects f 1 and f 2 are considered to be similar when they are near to each
other. For an l-dimensional spectral space, the heterogeneity h is described as follows:

h =
√√√√∑

d

(
f1d − f2d

σfd

)2

, (5)

where d represents bands. These distances of f 1 and f 2 can be further normalized by
the standard deviation σ fd of the spectrum. There are several possibilities for describ-
ing the heterogeneity change before and after a virtual merge (a detailed discussion
is described by Baatz and Schäpe (2000)). Given an appropriate definition of het-
erogeneity, the growth in heterogeneity of a merge should be minimized. Obviously,
the adjacent pixels set belonging to the same class would be segmented together
before.

The derived criteria from multiscale segmentation can convey useful information con-
cerning the discriminatory capability associated with an adopted spectral space. If one
candidate can be separable from surrounding candidates, on the classification view it can be
reflected by the derived criteria of classification such as the maximum inter-class distance
and the minimum intra-class diversity. For each image candidate, there are three phases
passed from being a one-pixel object to being an undersegmented object at a relatively
large segment scale, along with the multiscale segmentation procedure. In the oversegmen-
tation phase, for each object candidate in the range of one image object, there must be one
or more neighbourhood candidates in the same image object. The spectral mean of the can-
didate can be considered as the sample’s mean x̄ and the variance of the candidate is the
variance of the sample’s standard deviation S. For innate merge, the sample’s means were
x̄1, x̄2 and standard deviations were S1, S2 before and the same statistics were x̄m and Sm

after merge. The DDF of two candidates which came from the same image object, the can-
didates were oversegmented, was relatively small in this phase. The optimal segmentation
phase followed the ending of the oversegmentation phase; there was a case where both the
candidate a and the candidate a′ belonged to the same image object. Apparently, the only
two bordering candidates would merge together at the optimal scale. This is related to the
spatial resolution of the image being used. The heterogeneity in the oversegmentation phase
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was less than in the optimal phase. Subsequently, it was in the undersegmentation phase.
When two candidates included more than one image object, and n and m were the sample
numbers of these two candidates, the merged candidate had the difference in feature as
follows:

S2 = S2
1 + S2

2 + nm(x̄1 − x̄2)2

n + m
. (6)

However, as is known, the variance of the candidate increased monotonously, so the DDF
tended to decrease. Two adjacent regions belonging to different classes were obliged to
merge together in the segmentation procedure. But they were not satisfying the condition
of optimal segmentation in IODA.

If DIOs existed and were neighbours together, they were considered to be belonging to
different classes. When the shape changed, the merge procedure indicated that two DIOs
separated in early time but did not separate in latter time. That also meant that two DIOs
did belong to two classes in former time but they belonged to the same class later. The
split procedure indicated that DIOs need to be classified into one class before but should
be classified into different classes later. That meant the shape of the image object could be
used in detection of the spectral change.

4.2. The meaningful image object is critical in using spatial information

In image object-based analysis, the pixel entities that are expected in remote-sensing images
can be related to real entities in the landscape. These regions are later related to geographic
objects through some object-based classification. To extract meaningful image objects,
users are required to focus on different intrinsic scales because all attributes of image
structure are almost highly scale dependent. Spatial information that we want to obtain
from the overlay function should be derived only from the image objects of intrinsic scales
but not of any general scales. Otherwise, it will lead to unreasonable results. This is why the
general result from traditional multiscale analysis cannot be adopted directly. And the opti-
mal segmentation and intrinsic scale identification are the predetermination of the image
object-based change detection.

Actually, these more important simple meaningful objects are the explicit homogeneous
objects, which have similar spectral characteristics yet differ from surrounding objects in
high-resolution remote-sensing imagery. In our study area, these objects included water-
bodies, residential areas, agrarian fields, and such anthropogenic-impacted ground objects.
Furthermore, the Shannon sampling theorem should be considered. In fact, if the border of
two ground objects or the size of the ground object is similar to the pixel size, the spectral
average of the image candidate will not be a real spectrum of a ground object because of
the problem of mixed pixels. Therefore, many man-made or anthropogenically influenced
objects are coincident with the defined term meaningful objects. The basic task of segmen-
tation algorithms is to merge image elements based on homogeneity parameters or on the
differentiation to neighbouring regions (heterogeneity), respectively. In other words, these
criteria can be explained as follows: in the segmentation procedure, the increased hetero-
geneity can be interpreted as a border between the segments, which has to be overcome for
merging. The higher this border is for a certain segmentation parameter combination, the
more stable is the result (Benz et al. 2004). As long as the scale is the best, meaningful
objects can be obtained. Furthermore, in many cases significant objects appear at different
scales of analysis of the same image.
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5. Conclusions

Image object-based change detection can be enhanced by spatial information in change
identification for both postclassification and preclassification approaches. Obviously, the
important information for understanding an image is not represented in a single pixel but
is embodied in meaningful image objects as well as their mutual relationships. The spa-
tial information of image objects is also an important cue to identify the change. In this
study, an image object-based method is presented to identify the changed areas using shape
difference of an image object between bi-temporal images of a coastal zone. We pro-
posed the concept and its definition of DIO. The DIO presentation was identified from
the results of optimal segmentation through the IODA. By using raster overlay analysis to
bi-temporal DIOs, the shape of image objects can be used to recognize the change evolu-
tion by knowing its merge or split procedure. The classes conducted in postclassification
change detection were divided into a strong attribute pixel group and a weak attribute
pixel group according to its accuracy. After integration with spatial change information,
the accuracy of both weak attribute pixel and shape change was 0.81, and the only weak
attribute pixel that was changed was decreased from 0.36 down to 0.26. In contrast, the
accuracy of both strong attribute pixel and shape change was increased from 0.84 up to
0.94, and the accuracy of only the strong attribute pixel change was 0.68. The improved
accuracy depended on the ability that the obtained DIOs revealed the different ground
objects. The present method would be more significant in high-resolution remote-sensed
images. The spatially unchanged information can reduce overdetected areas and the spa-
tially changed information can certify the judgement of change. By analysis of the three
phases of the image segmentation procedure, the IODA was considered as a rational way
to derive intrinsic image objects from a hierarchic candidate. Thereby, the typical spec-
tral difference based change detection between bi-temporal images was instead of spatial
change detection between ground objects based on the spectral difference which would
be compared in an optimal segmentation procedure. The latter can be helpful in avoiding
some spectral reflection corrections caused by many image acquisition conditions in typical
change detection processes.
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