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This paper presents a novel geodesic active contour (GAC) model based on an edge detector for rapid
detection of water bodies from spaceborne synthetic aperture radar (SAR) imagery with high speckle noise.
The original edge indicator function based on gradients is replaced by an edge indicator function based on
the ratio of exponentially weighted averages (ROEWA) operator. Thus, the capability of edge detection and
the accuracy of locating edges are greatly improved, which makes the model more appropriate for SAR
images. In addition, an enhancing term is added to the original model’s energy function in order to boost
the strength for the contour’s evolution. An unconditionally stable additive operator splitting (AOS) scheme
and a fast algorithm for re-initialization of the level set function are adopted, which not only enhances the
model’s stability, but also speeds up the model’s convergence remarkably. The experimental results on sim-
ulated and real RADARSAT-1/-2 images show its efficiency and accuracy. 

1. Introduction

Water resources play an important role in envi-
ronmental, transportation and regional planning,
disaster management, industrial and agricultural
production. Detecting water bodies is the first step
for any planning, especially for Ontario, Canada,
where the land-cover is dominated by water bodies.
Earth observation data, including spaceborne syn-
thetic aperture radar (SAR) images, when used
jointly with in situ data, can provide an essential
contribution for the creation of inventories of surface
water resources, the extraction of thematic maps rel-
evant for hydrogeographical studies and models
(e.g., land cover, surface geomorphology) or for the
retrieval of (bio)geographical parameters (e.g., water
quality and temperature, soil moisture) [Shultz and
Engman 2000]. SAR data are suitable for mapping
water bodies, as the signal is principally sensitive to
moisture and to surface roughness. These data can be
preferred to optical imagery taking into considera-

tion the cloud penetration capabilities that are funda-
mental when mapping transient waters typically
associated to rainy periods. However, speckle noise
usually occurs in SAR images due to the nature of
coherent imaging. It makes feature extraction from
SAR image much more difficult than that from opti-
cal imagery. In order to eliminate the speckle effects,
a significant research effort has been devoted to the
design of effective segmentation methods over last
few decades. Among them, four types of the seg-
mentation methods have been commonly used,
namely, the edge-based scheme [Oliver et al. 1996;
Collins and Kopp 2008], the Markov random field
(MRF) model [Fjortoft et al. 2003], level set theory
[Shu et al. 2010], and the region merging / region
growing family of methods [Cook et al. 1994]. The
edge-based scheme aims to find transitions between
uniform areas, rather than directly identifying them.
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Cet article présente un nouveau modèle de contour actif géodésique (GAC, de l’anglais geodesic active
contour) fondé sur un détecteur de contours pour détection rapide des plans d’eau à partir d’images radar à
synthèse d’ouverture (RSO) spatioporté avec bruits de chatoiement élevés. La fonction originale d’indicateur
de contours fondée sur les gradients est remplacée par une fonction d’indicateur de contours fondée sur le
rapport d’un opérateur de moyennes pondérées de façon exponentielle (ROEWA). Par conséquent, la capa-
cité de détection des contours et l’exactitude des contours localisés sont grandement améliorées, ce qui rend
le modèle plus adéquat pour les images RSO. De plus, une modalité d’amélioration s’ajoute à la fonction
d’énergie du modèle original dans le but de renforcir la puissance de l’évolution des contours. On a adopté
un scénario de séparation d’opérateur additif (SOA) inconditionnellement stable et un algorithme rapide pour
la réinitialisation des surfaces de niveau, ce qui non seulement améliore la stabilité du modèle, mais accélère
aussi la convergence du modèle de façon remarquable. Les résultats expérimentaux sur des images simulées
et réelles RADARSAT-1/-2 démontrent son efficience et son exactitude. 
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The algorithms based on this technique generally use
an edge detection operator. However, it has been
shown that these edge-based detectors introduce a
bias and increase the variance in the estimation of
the edge position when the window does not have
the same orientation as the edge [He 2009]. The
MRF model presents many interesting properties
since it allows designing segmentation techniques by
taking into account the nature of the fluctuations in a
statically optimal way. However, the MRF model
introduces several parameters which cannot be easi-
ly determined automatically, and may lead to a diffi-
cult optimization problem. The narrow band level set
segmentation method presented by Shu et al. [2010]
uses thresholding combined with morphological fil-
tering to segment SAR imagery into land and water
followed by refining the segmentation results using
level set theory. The region merging methods, such
as the merge using moments (MUM) method [Cook
et al. 1994], use the statistical properties of adjoining
regions to merge similar regions. Although these
methods usually produce acceptable segmentation
results for large textured areas they do not perform
well for small targets. Besides, the choice of the
parameters can affect the final segmentation.

In recent years, segmentation methods based on
active contours have gained tremendous popularity
[Kass et al. 1988; Cohen 1991; Sethian 1996; Zhu
and Yuille 1996; Caselles et al. 1997; Osher and
Sethian 1998]. Active contours were initially intro-
duced in the form of snakes by Kass et al. [1998].
The method aims at segmenting an image by
deforming an initial contour towards the edge of the
object of interest. This is done by deforming an ini-
tial contour in such a way that it minimizes an ener-
gy functional defined on contours. Despite its suc-
cess, the original parametric active contour model
has two noticeable drawbacks. First, it depends on
the parameterization of the evolving contour and
thus is not geometrically intrinsic. Second, it cannot
naturally handle changes in the topology of the
evolving contour. These drawbacks were addressed
by the geodesic active contour (GAC) model
[Caselles et al. 1997]. In this model, the energy func-
tional is minimized as a geodesic computation in a
Riemann space. Also, the evolving contours are
embedded in a higher-dimensional level set function
[Osher and Sethian 1998]. This model can easily
handle segmentation of several objects, since its
level set implicit surface representation remains con-
tinuous even if the contours split. However, wrong
segmentation results may be produced when the
model is applied to SAR imagery. The reason may
be that the GAC model exploits a gradient operator
to detect edges and the edge map based on gradients

is disordered in SAR imagery. Classical differential
edge detectors are not well adapted to SAR imagery
since their false alarm rate depends on the mean
reflectivity: they usually detect more false edges in
the areas of high reflectivity than that of low reflec-
tivity [Touzi el al. 1988; Germmain and Refregier
2001]. Hence, edge detectors specifically for SAR
images have been developed. The common property
of these detectors is that they compute the ratio of
averages instead of the difference. Bovik [1988] and
Touzi et al [1988] defined filters which compute the
normalized ratio of averages (ROA). Fjortoft et al.
[1998] derived a filter from a stochastic image
model, whose expression is a modified version of
Shen and Castan [1992] - the ratio of exponentially
weighted averages is considered. In the framework
of statistical decision theory, Oliver et al. [1996]
determined an optimal filter, based on the likelihood
ratio (LR) principle. The ROA and LR operators use
the arithmetic mean for the estimation of local mean
values, which are optimal only in the mono-edge
case, whereas the ratio of exponentially weighted
averages (ROEWA) operator is optimal under a sto-
chastic multi-edge model and more appropriate for
SAR images. Recently, several researchers
[Chesnaud et al. 1998, 1999; Germain and Rfregier
2001; Martin et al. 2004] have developed several
active contour methods for edge detection or seg-
mentation of SAR imagery. Their results are promis-
ing, but the active contour model they used is para-
metric. As shown above, it is sensitive to the initial
condition and cannot naturally handle changes in the
topology of the evolving contour. 

In this paper, we propose a novel GAC model
based on the ROEWA operator [Fjortoft et al.1998]
under the criterion of energy minimization. The idea
is that the original edge indicator function based on
gradients is replaced by a new edge indicator func-
tion based on the ROEWA operator. Thus, the capa-
bility of detecting edges and the accuracy of locating
edges are greatly improved, which makes the model
more appropriate for SAR image segmentation. In
addition, a “balloon force” term is added to the ener-
gy functional of the original model in order to boost
the strength for the contour’s evolution. As a result,
the contour’s evolution takes less time and the sensi-
tivity to the initial contour is reduced. In the numer-
ical implementation of the model, an unconditional-
ly stable additive operator splitting (AOS) scheme
[Weickert et al. 1998] and a fast algorithm for re-ini-
tialization of the level set function [Felzenszwalb
and Huttenlocher 2004] are adopted, which not only
improve the model’s stability, but also speed up the
model’s convergence remarkably. The proposed
model shows good performance in dealing with two-
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class segmentation of SAR images. The remainder
of the paper is organized as follows. Section 2 briefly
reviews the background of the GAC model and
explains its unsuitability in SAR image segmenta-
tion. Section 3 describes the ROEWA operator and
the associated GAC model. Section 4 discusses the
numerical implementation scheme and the related
segmentation algorithm based on the proposed
model. Section 5 presents experimental results on
both simulated and real RADARSAT-1/2SAR
images. The performance evaluation is described in
Section 6. Finally, Section 7 concludes the study. 

2. Background

Let x be the abscissa, y be the ordinate, Ω ⊂ R2

be the image domain, u0 (x, y):Ω → R+ be a given
image, C be a planar contour with the length L(C)
and C(s) = (x(s), y(s)):[0, L(C)] → R2 be its arc-
length parameterization, where s denotes an arc-
length variable. The classical GAC model associ-
ates the contour C with an energy given by
[Caselles et al. 1997]

(1)

where ∇u0(C(s)) is the image gradient defined on
the contour, |∇u0 (C(s))| denotes the magnitude
(modulus) of the gradient. The edge indicator func-
tion g(r):[0, ∞) → R+ is a strictly decreasing func-
tion, such that g(0) = 1 and g(r) → 0 as, r →∞
where r denotes an arbitrary variable. According to
the calculus of variations and the gradient descent
method, we can obtain the evolution equation for
the contour C [Caselles et al. 1997]

(2)

normal. Eq. (2) is well-defined because an associ-
ated unique viscosity solution exists [Caselles et al.
1997]. Osher and Sethian [1998] introduced the
level set method to implicitly solve the contour
propagation problem and to deal with topological
changes. In the level set framework, the evolving
contour C is defined implicitly as the zero level set
of an embedding scalar function φ, such that C(t) =
{(x, y) : φ(x,y, t) = 0}, where t denotes a time vari-
able. By convention, we assign negative values to
the interior and positive values to the exterior of the
contour. According to the level set method, Eq. (2)
can be written in the level set form as follows
[Caselles et al. 1997]

(3)

3. Proposed Model 

3.1 ROEWA Operator 

The ROEWA operator, proposed by Fjortoft et
al. [1998], is based on a linear minimum mean square
error (MMSE) filter. In the one-dimensional (1D)
case, the linear MMSE filter can be expressed as 

f (x) = C exp {–ρ|x|} (4)

where C is the normalizing constant, ρ is the filter-
ing coefficient. In the discrete case, f(x) can be
implemented very efficiently by a causal filter f1(x)
and an anticausal filter f2(x)

(5)

where f1(x) = a·bx H(x) , f2(x) = a·b–x H(–x) , 0 < b
= e–a < 1 , a = 1 – b , H(x) is the discrete Heaviside
function. If x ≥ 0 equals to one, otherwise zero. 

Based on the linear MMSE filter, the ROEWA
operator can be defined as 

(6)

weighted averages, which can be obtained by 

(7)

where * denotes the convolution in the horizontal
direction and • denotes the convolution in the ver-
tical direction. With analogy to gradient-based edge
detectors, the magnitude of the ROEWA operator
can be defined as 

(8)

Figure 1 shows water boundaries extracted
from a RADARSAT-1 image using the ROEWA
operator. The edges found by the ROEWA operator
appear to be consistent with actual edges on the
whole. Consequently, the ROEWA operator may be
appropriate for detecting edges in SAR imagery. 
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C
t = g – g�n n

t = g � g

f x = 1
1 + b = f1 x + b

1 + b f2 x – 1 , x = 1, 2.…,N

rX max x, y = max
μX1 x – 1,y
μX2 x + 1,y ,μX2 x + 1,y

μX1 x – 1,y
rY max x, y = max

μY1 x,y – 1
μY2 x,y + 1 ,μY2 x,y + 1

μY1 x,y – 1

where is the mean curvature, n is the unit inward

where μX1, μX2, μY1and μY2 are the exponentially

�X1 x,y = f1 x * f y �u0 x,y
�X2 x,y = f2 x * f y �u0 x,y
�Y1 x,y = f1 y � f x u0 x,y
�Y2 x,y = f2 y � f x u0 x,y

rmax x,y = rX max
2 x,y +rY max
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3.2 GAC Model Based on the
ROEWA Operator 

Based on the ROEWA operator, the new energy
functional of the GAC model can be defined as 

(9)

where g is the edge indicator function based on the
magnitude of the ROEWA operator, which stops
the contour in the vicinity of edges 

(10)

where λ is a scaling constant. g is bounded to [0, 1],
and the more it approaches zero, the better it closes
to the edge. In the above functional, the second
term is a “balloon force” term to enhance the power
for the contour’s evolution. As a result, the speed of
the contour’s evolution is increased and the sensi-
tivity to the initial contour is reduced. a is a con-
stant that aims to keep the contour moving in the
proper direction, If a > 0, the contour deflates; oth-
erwise inflates. da is the area element and ω is the
region inside the contour C. 

The calculus of variations and the gradient
descent method provides the following evolution
equation for the contour C

(11)
According to the level set method, the evolution

equation with respect to the level set function φ is 

(12)

culation, we rewrite Eq. (12) as follows in terms of 

(13)

4. Implementation 

It is very difficult to directly solve Eq. (13). A
numerical scheme is usually adopted to obtain an
approximated solution. The first term div
(g∇φ/⏐∇φ⏐)⏐∇φ⏐in Eq. (13) is a parabolic term.
Although this regularizing term is indispensable for
the correct evolution, it makes the resulting partial
differential equation particularly stiff, numerically. If
we use a simple explicit method for numerically
evolving the contour, then instability incurs unless
very small time steps are applied (τ < h2 / 4, where τ
is the time step, h is the space step). To overcome
this shortcoming, we could use an implicit scheme,
which is unconditionally stable and thereby free of
the time step limitation. However, a system of equa-
tions needs to be solved at each time step, which is
complex and time-consuming. On the other hand,
the AOS scheme is not only stable but also easy to
implement. Therefore, we use this scheme to solve
the evolution equation numerically. 

4.1 Numerical Scheme 

The AOS scheme was introduced by Weickert et
al. [1998] as an unconditionally stable numerical
scheme for the nonlinear diffusion equation in the
form of ∂u0 / ∂t = div (g(|∇u0|)∇u0). Comparing it
with Eq. (13), we find that there are differences
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(a) (b)
Figure 1: Water boundaries extracted from a RADARSAT-1 image. (a) Original image; (b) edges detected by the
ROEWA operator.

g rmax = 1
1 + rmax

2 / 2

g rmax ds +
0

L C
g rmax da

t = div g � g

C
t = g � g – g,n n

t = g � � g

where � div � To facilitate the numerical

the property of the divergence div A = div A
+ A
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between these two equations and thus their results
cannot be directly compared. In fact, if we define the
level set function φ as a signed distance function
(using the Euclidean distance) 

(14)
where (x0,y0) is the point on the contour C (embed-
ded in the zero level set of φ) with the minimum
distance from the point (x,y), we obtain ⏐∇φ⏐ = 1.
Consequently, Eq. (13) becomes 

(15)

Eq. (15) can be solved numerically by the AOS
scheme in Weickert et al. [1998]. 

(16)
Because the edge indicator function g is defined on
the magnitude of the ROEWA operator and thereby
it is independent of the level set function, the opera-
tors A1 and A2 keep fixed during the whole evolution
process. It is favorable for the numerical calculation
of the GAC model. 

Let τ be the time step, h be the space step, and
(xi,yj) = (ih, jh) be the grid points, for, 1 ≤ i ≤ Nx, 1
≤ j ≤ Ny, (Nx and Ny are the pixel numbers in the
horizontal and vertical direction, respectively).

mation of φ(t, x, y). The level set function φ at the

the other hand, variables in the AOS scheme are
represented in the form of column vectors. Hence,

umn vector. If we scan the pixels lexicographically in
a row-major order and concatenate the results in each
row, we obtain a column vector φ with the size N = Nx

× Ny. The edge indicator function g can be also
changed to the corresponding vector. Based on the
above results, the AOS scheme for Eq. (16) is achieved
[Weickert et al. 1998; Goldenberg et al.2001]

(17)

The discrete expression of the matrix operators
Al (l = 1, 2)should be provided in order to fulfill the
calculation of Eq. (17). Assume that, Al = [al,ij]N × N,
then each element of this matrix is assigned by: 

(18)

where N(i) is the set of two neighbors of the pixel i
(boundary pixels have only one neighbor) in the
horizontal or vertical direction. Although the
expression forms of a1, ij and a2, ij are identical, the
actual values are totally different. In fact, N(i)
refers to two horizontal neighboring pixels for, a1, ij

i.e., i – 1 and i + 1; whereas for, a2, ij , N(i) is two
vertical neighboring pixels, i.e., i – Nx and i + Nx.
According to the formulation of Al (l = 1,2), one
can see that the matrix I – 2τAl is tridiagonal and
diagonally dominant and therefore can be efficient-
ly solved by the so-called Thomas algorithm
[Weickert et al. 1998]. 

4.2 Re-initialization of the Level
Set Function 

As mentioned above, it is necessary to keep the
level set function φ as a signed distance function
such that ⏐∇φ⏐ = 1 before applying the AOS
scheme. However, the level set function will devi-
ate from the signed distance function during the
evolution. To avoid this problem, φ should be re-
initialized to a signed distance function before each
iteration. There are several distance transform algo-
rithms for the level set re-initialization. One of the
most common approaches is the fast marching
(FM) algorithm proposed by Sethian [1996]. The
FM algorithm utilizes an efficient insert-sort proce-
dure based on heaps and has the complexity of O(N
log N), where N is the pixel number. Recently, a
new distance transform algorithm was proposed by
Felzenszwalb and Huttenlocher [2004] and used by
Papandreou and Maragos [2007]. It can rapidly re-
initialize φ to a distance function with the com-
plexity of O(N). Furthermore, their algorithm is
very easy to implement. Hence, we use it as the re-
initialization tool. The basic idea of this algorithm
is as follows.

Let Ω = {1,…Nx} be a 1D grid, and f : Ω → R
an arbitrary function on the grid. The squared
Euclidean 1D distance transform of f is given by

19

x, y =

– x – x0 2 + y – y0 2, if x, y is inside C
0, if x, y is on C

x – x0 2 + y – y0 2 if x, y is outside C

t = div g + g

t = A1 + A2 + g

n + 1 = 1
2 l = 1

2
I – 2 A l

– 1 n + g

al,ij =

gi + g j

2h2 , j N i

–
gi + g j

2h2k i
, j = i

0, else

By defining two matrix operators: A1 = x g x ,

A2 = y g y , we can rewrite Eq. 15 as

time n is discretized as a matrix ij
n

Nx x N y
. On

the matrix ij
n

Nx x N y
should be converted to a col-

Furthermore, let i, j
n = n � xi, y j be an approxi-
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difference equation. Usually, h = 1. In Eq. (17), τ is
the time step for the difference equation. We mention
that the choice of the time step is a compromise
between the accuracy and the efficiency. Choosing
larger step can speed up the evolution, but may also
cause errors in the edge location. Usually, the time
step τ should be less than 10.0. 

5. Results and Discussion

Two simulated and two real RADASAT-2 SAR
images were used to validate the segmentation
algorithm. The experiments were carried out with
MATLAB V7.4 on a PC with a Pentium IV 1.8
GHz CPU and 1 GB RAM. The kernel code for the
AOS scheme was implemented in C++. The param-
eters used in the experiments are as follows: b =
0.7, a = 1 – b = 0.3, λ = 0.1, h = 1, τ = 5 and the
“balloon force” parameter a is adjusted according
to the specific image. 

The algorithm was first applied to two simulat-
ed images. The purpose of this experiment was to
evaluate its capability of detecting edges and to
assess the accuracy of locating edges. The simulat-
ed images were obtained by multiplying an optical
image by a white exponential speckle noise. The
equivalent number of independent looks (ENIL) of
these images is 1. The dimensions of the images are
256 × 256 and 107 × 100 pixels, respectively. The
reflectivity contrast of the two simulated images is
41.5497 and 7.204 respectively. The initial contour
was represented by a rectangle close to the image
boundary. The parameter a was set to 0.68 for both

images. The algorithm took about 7.4 seconds and
3.7 seconds to produce the results. As shown in
Figure 3, the object edges are accurately located
and the circle regions are correctly segmented.
Consequently, the results demonstrate desirable
performance of the algorithm in the presence of the
image with multiplicative noise. 

Two RADARSAT-1 and five RADARSAT-2
images were used in this study. The ENIL of these
images is 1. The sizes of RADARSAT-1 image
extracts are 475 × 350 and 615 × 310 pixels, respec-
tively and the dimensions of all RADARSAT-2
images are 435 × 342 pixels. The equivalent look
number of all the image extracts is 1. The reflectivi-
ty contrast of the following RADARSAT-1 and -2
images are 62.0686, 27.0422, 19.8717, 23.3076,
14.4959, 21.5752 and 16.346, respectively. The ini-
tial contour was set to a rectangle very close to the
image boundary. The parameter a was set to 0.85,
0.80, 0.85, 0.80, 0.83, 0.90 and 0.90, respectively.
The execution time for RADARSAT-1 image pro-
cessing was about 13.9 seconds and 20.6 seconds
and for RADARSAT-2 image processing was about
12 seconds, respectively. Figures 4 and 5 show the
corresponding segmentation results, in which the
water regions are correctly segmented. The experi-
mental results demonstrate that the algorithm per-
forms well for real SAR images. Furthermore, the
computational cost is relatively low, so the algorithm
is a practical candidate for SAR image segmentation.
In addition, the settings for the initial contour are
almost identical for all images, which indicate that
the algorithm is not sensitive to the initial conditions
as is the classical Snakes algorithm. 
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(a) (b) (c) (d) 
Figure 3: Segmentation results of two simulated SAR images using our method. (a) Two original optical images.
(b) Simulated SAR images with initial contours; (c) Detected contours; (d) Segmentation results. 
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In order to evaluate the computing performance
of the proposed segmentation algorithm, we pro-
duced a series of different size test images. These
images were created from a single test scene by pixel
replication. The time taken by the algorithm to
process these data is shown in Table 2. 

6.2 Comparison
In order to demonstrate the effectiveness of the

proposed segmentation algorithm, we compared it

with a traditional edge-based algorithm on the basis
of watershed segmentation algorithm (see [Fjortoft
et al. 1998] for detailed implementation), which is
similar to our GAC model based on ROEWA
(MGAC) procedure. 

Figure 6 shows the edge-based segmentation
results for two RADARSAT-1 images. Quantitative
comparison of the performance of the two segmen-
tation algorithms is given in Table 3.

23

(a) (b) (c) 
Figure 5: Segmentation results of five RADARSAT-2 images using our method. (a) Original image extracts with
initial contours; (b) Detected contours; (c) Segmentation results.

G
eo

m
at

ic
a 

D
ow

nl
oa

de
d 

fr
om

 p
ub

s.
ci

g-
ac

sg
.c

a 
by

 D
r 

Jo
na

th
an

 L
i o

n 
06

/0
1/

11
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.





G  E  O  M  A  T  I  C  A

for SAR images, SPIE: SAR Data Processing for
Remote Sensing, vol. 2316, pp.92-103.

Felzenszwalb, P. and D. Huttenlocher. 2004. Distance
Transforms of Sampled Functions, Technical Report
TR2004-1963, Cornell Comput. Inf. Sci., Cornell
Univ., Ithaca, NY.

Fjortoft, R., A. Lopes, P. Marthon, and E. C. Castan.
1998. An optimal multiedge detector for SAR image
segmentation, IEEE Trans. Geosci. Remote
Sensing, 36(3), pp. 793-802. 

Fjortoft, R., Y. Delignon, W. Pieczynski, and F. Tupin.
2003. Unsupervised classification of radar images
using hidden Markov chains and hidden Markov
random fields, IEEE Trans. Geosci. Remote
Sensing, 41(3), pp. 675-686.

Germain, O. and P. Refregier. 2001. Edge location in
SAR images: performance of the likelihood ratio fil-
ter and accuracy improvement with an active
contour approach, IEEE Trans. Image Process.,
10(1), pp. 72-78. 

Goldenberg, R., R. Kimmel, E. Rivlin, and M. Rudzsky.
2001. Fast geodesic active contours, IEEE Trans.
Image Process., 10(10), pp. 1467-1475.

He, Z, Lu J, and G. Kuang G. 2009. SAR image seg-
mentation based on the global active contour model,
Progress in Nature Science, 10(3), pp. 344-360.

Kass, M., A. Withkin, and D. Terzopoulos. 1988. Snakes:
active contour models, Int. J. Computer Vision,
1(4), pp. 321-331. 

Martin, P., P. Refregier, F. Goudail, and F. Guerault.
2004. Influence of the noise model on level set acti-
ve contour segmentation, IEEE Trans. Pattern Anal.
Machine Intell., 26(6), pp. 799-803. 

Oliver, C.J., D. Blacknell and R.G. White. 1996. Optimal
edge detection in SAR, IEEE Proc. Radar, Sonar
Naving. 143(1), pp. 31-40.

Osher, S., and J.A. Sethian. 1998. Fronts propagating
with curvature-dependent speed: algorithms based
on Hamilton-Jacobi formulation, J. Computational
Physics. 79(1), pp. 12-49. 

Papandreou, G. and P. Maragos. 2007. Multigrid geo-
metric active contour models, IEEE Trans. Image
Process., 16(1), pp. 229-240.

Schultz, G.A., and E.T. Engman. 2000. Remote Sensing
in Hydrology and Water Management, Springer-
Verlag, Berlin, Germany.

Sethian, J. A. 1996. A fast marching level set method for
monotonically advancing fronts, Proc. National
Academic Science, 93(4), pp. 1591-1595.

Shen, J. and S. Castan. 1992. An optimal linear operator
for step edge detection, CVGIP: Graph., Models,
Image Process., 54(2), pp. 112–133.

Shu, Y. M., J. Li, and G. Gomes. 2010. Shoreline extrac-
tion from RADARSAT-2 intensity imagery using a
narrow band level set segmentation approach,
Marine Geodesy, 33(2&3), pp. 187-203.

Touzi, R., A. Lopes, and P. Bousquet. 1988. A statistical
and geometrical edge detector for SAR images,
IEEE Trans.Geosci. Remote Sensing, 26(6), pp.
764-773. 

Weickert, J., B. Romeny, and M. Viergever. 1998.
Efficient and reliable schemes for nonlinear diffu-

sion filtering, IEEE Trans. Image Process., 7(3), pp.
398-410.

Zhu, S.C. and A. Yuille. 1996. Region competition: uni-
fying snakes, region growing, and Bayes/MDL for
multiband image segmentation, IEEE Trans.
Pattern Anal. Machine Intell. 18(9), pp. 884-900. 

Authors
Dr. Gangyao Kuang received the B.Sc. and

M.Sc. degrees from the Central South University,
China, in 1988 and 1991, respectively, and the Ph.D.
degree from the National University of Defense
Technology (NUDT), China, in 1995. Since 1996, he
has been the Co-director of the Remote Sensing
Information Processing Laboratory at NUDT, where
he has being working on SAR signal and image pro-
cessing, automatic target detection and recognition,
information fusion, and various remote sensing proj-
ects. He is currently a Professor in the School of
Electronic Science and Engineering at NUDT. He is
the author/coauthor of over 200 papers and two
books. His current interests include remote sensing,
SAR image processing, change detection, SAR
ground moving target indication, and the classifica-
tion of polarimetric SAR images.

Dr. Jonathan Li holds the Ph.D. degree in geo-
matics engineering from the University of Cape
Town, South Africa and he is a full professor in the
geomatics program at the Department of Geography
& Environmental Management and heading a
Remote Sensing and Geospatial Technology
research group at the University of Waterloo,
Canada. He is also Adjunct Professor of York
University, Peking University, Wuhan University,
Tianjin University, Hehai University, Changan
University, Central South University and China
University of Geosciences. He has published over
150 publications including four co-edited books and
5 journal theme issues as well as more than 60 refer-
eed journal articles. His current research interests in
SAR remote sensing include SAR image segmenta-
tion, feature extraction, object classification and
RADARSAT applications in marine and coastal
environments such as marine oil spill tracking and
shoreline detection. Dr. Li is currently Vice Chair of
ICA Commission on Mapping from Satellite
Imagery and an Associate Editor of Geomatica.

Dr. Zhiguo He received the B.Sc., M.Sc., and
Ph.D. degrees from the National University of
Defense Technology, Changsha, China, in 2001,
2004 and 2008, respectively, all in remote sensing
information processing. His current research inter-
ests include SAR imaging processing, automatic
feature extraction from SAR imagery. o

25

G
eo

m
at

ic
a 

D
ow

nl
oa

de
d 

fr
om

 p
ub

s.
ci

g-
ac

sg
.c

a 
by

 D
r 

Jo
na

th
an

 L
i o

n 
06

/0
1/

11
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Sheetfed Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /RelativeColorimetric
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 99
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 225
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 225
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


