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Abstract
Amending landslides inventories is immensely important to policy and decision makers alike. Sliding creates geometric 
shapes on the Earth’s surface. This study presents the utilization of LiDAR high-resolution digital elevation model (DEM) 
in the Alborz Mountains, Iran to refurbish the existing landslide inventory dataset by implementing the proposed algorithm. 
The method consists of the automated derivation of landslide geometry (length, width, and area) followed by classification of 
landslide types considering length, width and flow direction. This study has used the trapezoidal rule for numerical integra-
tion to develop the proposed algorithm. The landslides were then classified into four types (very long, long, very wide, and 
wide) based on slope, length, and width. This geometric classification of landslides is based on the geographical coordinates, 
slope angle (θ), length (L), and width (W), and further failure flow direction. A total of 95 landslides were updated from the 
existing inventory database. The proposed method was verified and evaluated by field observations; and 14 samples were 
tested to determine the relative error. The results demonstrated that the mean percentage relative error is 0.496% in length 
and width and 0.008% in area, related to the GIS analysis. The accuracy performance of determining the landslide’s type 
is 92%. The purposefulness of this algorithm is to increase the accuracy performance of landslides geometry analysis and 
automated measurements associated with the usual GIS platforms such as ArcGIS.

Keywords Landslide classification · Length · Width · Area · Computing techniques · Trapezoidal rule · LiDAR · Inventory 
map · MATLAB · Alborz Mountains

Introduction

Landslides, a natural hazards phenomenon, are common 
deformation scenarios on the Earth’s surface. This geomor-
phic process is significant in developing the geometry of 
landslides and can be used to determine landslide typology 
(Wu and Sidle 1995; Wehr and Lohr 1999; Watts 2004; Wu 

et al. 2008; Westen et al. 2008; Hattanji and Moriwaki 2009; 
Niculiţă 2015, 2016; Shirzadi et al. 2017; Wen et al. 2017; 
Pirasteh 2018). Characterization of topography and mor-
phology and classification of landslides requires knowledge 
of not only geologic and geomorphic processes and image 
interpretation, but also technologies such as LiDAR. In the 
last two decades, researchers have applied the high-reso-
lution DEM derived from LiDAR point clouds to improve 
landslide delineation (Su and Stohr 2000; Barlow et al. 2003; 
Ali et al. 2003b; Zhou et al. 2003; Sherrod et al. 2004; Ali 
and Pirasteh 2004, Su and Bork 2006; Ardizzone et al. 2007; 
Teza et al. 2007; Tian et al. 2008; Travelletti et al. 2008; 
Pirasteh et al. 2009, 2011, 2017; Pradhan and Pirasteh 2010; 
Jaboyedoff et al. 2012; Zare et al. 2013; Lyons et al. 2014; 
Yousef et al. 2015; Pirasteh and Li 2016, 2017; Petschko 
et  al. 2016; Gaidzik et  al. 2017; Golovko et  al. 2017). 
LiDAR-derived DEMs allow for the detailed exploration of 
morphology and geometry of landslides that could possibly 
be used for updating the landslide inventory (McKean and 
Roering 2003; Schulz William 2007; Petschko et al. 2016).
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A landslide inventory contains a collection of polygon 
shapes, types, lengths, widths, areas, locations, and other 
information related to landslides. With such information, 
landslides can be represented digitally in the GIS environ-
ment either manually of semi-automatically (Freeman 1991; 
Ali et al. 2003a; Malamud et al. 2004; Martha et al. 2010; 
Lyons et al. 2014). Landslide inventory and spatial analysis 
have played a significant role for decision makers in pre-
paring a loss-reduction plan as well as in establishing an 
early warning system. However, few studies have focused 
on the development of automated algorithms for geometry 
characterization and landslide classification (Ardizzone et al. 
2002; Malamud et al. 2004; Mondini et al. 2011; Lyons et al. 
2014; Niculiţǎ 2015, 2016). Characterization of landslide 
geometry depends upon various factors. For this reason, 
classification of landslides has been based on different dis-
criminating factors and is therefore at times very subjec-
tive (Varnes 1978; Hutchinson 1988; Cruden 1991; Dikau 
et al. 1996). However, some researchers have abstracted the 
shapes of the landslide to a rectangle to define the long side 
(i.e., length) and short side (width), instead of the factual 
shape of a landslide. The length of a landslide is defined as 
the length of the line from the crest to the end of the toe in 
the failure direction of a landslide area. The landslides are 
then classified based as either a long or a wide type upon 
the geometry (length and width) of the defined rectangle 
that covers the landslide (Niculiţǎ 2016). Moreover, most 
researchers have considered the failure direction as the 
length of a landslide with respect to engineering geology 
and have dealt with vector system, three-dimension, and 
dynamic system. Therefore, the failure direction is defining 
the length of a landslide. Although Taylor and Malamud 
(2012) assumed that all landslide shapes can be abstracted to 
a rectangle to define the long side [i.e., length (L)] and short 
side [width (W)] (Fig. 1), previous researchers developed 
semi-automated tools to measure the length and width of 
landslide polygons (Ardizzone et al. 2002; Malamud et al. 
2004; Yimaz 2010; Mondini et al. 2011; Lyons et al. 2014; 
Taylor et al. 2015; Niculiţă 2016).

In contrast, this study has used the numerical integral 
trapezoidal rule (NITR) to develop an algorithm for auto-
mated landslide geometric analysis and classification (Bur-
den and Faires 2011). The proposed approach includes deter-
mination and measurement of the length, width, and area; 
as well as the identification of the landslide type. The 2D 
scalar system for characterization of the landslide geometry 
is applied regardless of the failure direction, type of materi-
als, and speed of movement and type of materials.

This paper presented the proposed approach to automated 
landslide detection through determining the length, width, 
area, and type of landslide in a 2D, scalar, and static-based 
polygon covering the factual shape of the landslide. The 
approach is utilized to update the landslide inventory in the 

Alborz Mountains, Iran, where typical geomorphologic fea-
tures and various shapes of landslides exist. The 2D scalar 
static system is based on the projected geographic coordi-
nates system for representing the slope angle, length, and 
width of landslide polygons. The slope angle, which is the 
angle of the segment with respect to X-axis, is not a topo-
graphic slope. The LiDAR-derived DEMs along with field 
observations and remotely sensed images are used to support 
on screen manual digitization of landslide polygon in GIS 
environment and to update the landslide inventory.

The study area

The Alborz Mountains of Mazandaran Province in the 
north of Iran are parts of the Alpine-Himalayan sys-
tem. The study area (Fig.  2) is located in the Cen-
tral Alborz and from the north reaches to the Caspian 
Sea, and from the south–southwest goes to Tehran. 
It locates between 445438.111E–624039.018E and 

Fig. 1  Schematic drawings of long and wide cases of landslides 
with X-axis and Y-axis: a rotational slide—long type, b gully bank 
slides—long type, c translational slide-wide type, d flow—long type, 
and e river bank slide—wide type. (Source: Niculiţǎ 2016)
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4071833.357N–3970631.884N in UTM. The elevation 
of the study area varies between 92 and 5590 m from the 
mean sea level (MSL). The annual precipitation is above 
1000 mm, and seismically the study area is active and trig-
gers landslides. The updated inventory dataset contains 95 
landslides with minimum and maximum length of 5–900 m, 
respectively. The width of landslides varies from 8 to 800 m, 
and the area of landslides is from 9 to 610,000 m2. Various 
reasons such as high topography, seismicity, high precipita-
tion, the resistance of rock types, tectonic geomorphology, 
and slopes have caused landslides such as transitional, rota-
tional, compound flows, and rockfalls (Hungr et al. 2014).

Data process and method

The landslide inventory archives of the Alborz Mountains, 
Mazandaran Province (Fig. 2) and Google Earth images 
(dated in December of 2009, 2010, 2011, 2012, 2013, 2014, 
2015, and 2016) were used together in the present study for 
the analysis with the 5 m resolution LiDAR-derived DEMs. 
The Real Time Kinematic (RTK) Global Positioning System 

(GPS) SmartNet was also used during field observations to 
enable digital drawing of landslide polygons in ArcGIS 
using ArcBruTile tool. There are complex landslides and 
a single event in the inventory database of the study area. 
This landslide inventory contains 173 points and polygons 
representing landslides small to large in length, width, 
and area. To update the landslide inventory and to test the 
performance of the proposed algorithm, 20 cm resolution 
unmanned aerial vehicle (UAV) images covering the Cha-
lus District in the study area were also used and; integrated 
with the Airborne LiDAR point clouds with point spacing 
of 20 cm (Fig. 3) to support on screen manual digitization 
of landslide polygon in GIS environment. A total of 95 land-
slides were selected from the landslide inventory database to 
convert points into polygons based on screen manual digi-
tization of the landslide polygon in GIS environment using 
visual image interpretation techniques of high-resolution of 
UAV, Google Earth images as well as LiDAR-derived DEM; 
14 samples were used to test the proposed algorithm.

Materials move towards downslope, and the distance of 
the mass displacement in a landslide is usually greater than 
the width of the displaced material. This occurs especially 

Fig. 2  Study area
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for flows, but also for the majority of slides, and it means 
that the length is greater than the width (L > W). In some 
landslides, this phenomenon does not happen and we might 
have a smaller length than width (L < W). In the proposed 
method, the maximum distance of two points (i.e., the long-
est segment) in either X-axis or Y-axis in the 2D scalar sys-
tem is taken into account to discern the length and width of 
a landslide and to define the landslide type. The following 
section details the proposed methodology.

In engineering geology, the length of a landslide is 
defined as the length of the line from the crest to the 

end of the toe in the failure direction of a landslide area. 
However, the proposed approach assumes that a landslide 
polygon can be represented in a 2D static scalar system 
when required, instead of considering the failure direction 
as the length of the landslide to be represented in a 3D 
dynamic vector system. As such, landslide length, width, 
area, and type can be applied for determining the land-
slide geometry regardless of the failure direction, speed of 
materials movement, type of materials, and type of materi-
als movement (Varnes 1978; Picke 1988; Cruden 1991). 

Fig. 3  a Landslide polygons and UAV images, b selected landslide polygon in the proposed software package. Location: Chalus District
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Nevertheless, the following paragraph summarizes how 
the proposed algorithm and method work.

To determine a landslide type, the proposed algorithm 
and code runs searching process to determine highest and 
lowest points on the polygon with many iterations until it 
identifies the highest and lowest point of that particular 
polygon. The algorithm is designed and scripted in such a 
way that it considers the failure flow direction and slope 
down materials if analysts required. If not, an analyst can 
follow the 2D scalar static concept that means it works only 
with one digital elevation model (DEM) or x, y, z dataset 
of a landslide polygon in conjunction with considering the 
defined failure flow direction. The analyst can also use the 
3D vector dynamic concept that means the proposed algo-
rithm and code can run with additional scripts to consider 
DEMs of before and after a landslide, if data are available. 
However, the longest segment concerning the failure flow 
direction will be the length of a landslide. A perpendicular 
line concerning determining the highest and lowest point 
from the same polygon to the length of the landslide will be 
the width of the landslide. In addition to the above, the clas-
sification of a landslide polygon is based on the geographical 
coordinates, slope angle (θ), length (L), and width (W), and 
further failure flow direction. The following steps are con-
sidered when writing the code for developing the automated 
or semi-automated extraction of a landslide geometry:

(a) Input data;
(b) Find maximum and minimum X and Y with respect to 

the failure flow direction;
(c) Calculate d1 = (l1) and d2 = (w1) and their slopes with 

angle;

(d) Determine a landslide type;
(e) For a wide landslide, recognize top and bottom points 

and sort them into two separate matrices;
(f) Calculate the area under the top and bottom curves;
(g) Identify, measure, and determine width (Alpha angle 

between length and width);
(h) Calculate area and print output (type, length, width, and 

area);
(i) For a long landslide, recognize right and left points and 

sort them into two separate matrices;
(j) Calculate the area under right and left curves;
(k) Identify, measure, and determine width (Alpha angle 

between length and width); and
(l) Calculate area and print output (type, length, width, and 

area).

Numerical integral trapezoidal rule (NITR)

In this study, the trapezoidal rule was used to analyze landslide 
geometry and to classify landslides. The trapezoidal rule is a 
numerical analysis method that has been applied to approxi-
mate the value of a definite integral (Burden and Faires 2011; 
Zhao and Zhang 2014). The integral is approximated using n 
trapezoids formed by straight line segments between the points 
(xi − 1, yi − 1) and (xi, yi) , for 1 ≤ i ≤ n , as shown in Fig. 4. 
Each trapezoid in a landslide polygon is calculated by:

(1)

b

∫
a

f (x)dx ≈
Δx

2
(y0 + 2y1 + 2y2 +⋯ + 2yn−1 + yn).

Fig. 4  Each trapezoid is shown in a landslide polygon
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The NITR method was coded by matrix-based MATLAB 
language in several lines to run the computational process 
of a landslide and to determine the length, width, area, and 
type of landslide. The script code is available at http://www.
widm.ca upon request.

In this study, RTK SmartNet with 14–20 cm accuracy 
was used in ground truthing to collect ground control 
points (GCPs) for simulating landslide polygons. Then, the 
polygons were created both in the GIS platform using the 
measurement tools (Fig. 5) and in the proposed algorithm 
to calculate the length, width, and area and to identify the 
landslide of the polygons. This study used ArcGIS 10.4 ver-
sion to determine the boundary’ points of a landslide poly-
gon by moving curser manually on the screen visualization 
to identify the coordinates of each point on the polygon. The 
coordinates of each selected point was recorded in Excel that 
is to be used further in the proposed algorithm and MAT-
LAB. Later, the points in Excel with geographical coordi-
nate system (x, y) were introduced to GIS platform and the 
proposed algorithm to draw the polygon and to calculate the 
geometry of the polygon.

The proposed algorithm was tested and verified by Arc-
GIS platform and field observations as well. However, the 
GIS and other platforms are possibly not available to deter-
mine the length and width of a landslide automatically, and 
to classify landslide types automatically as well. In contrast, 
the proposed algorithm package performs these functions 
automatically. The following figure describes the procedures 
of automated computation of the landslide geometry and 
classification.

Geometric analysis and rules of classification

In the Alborz Mountains, variable shapes of landslides cause 
uncertainty in determining the length, width, area, and land-
slide type of a polygon. Instead of using the existing meth-
ods, this study develops automated computing approach to 
landslide geometry by taking advantage of LiDAR-derived 

DEMs, Google Earth images, and UAV images for analyz-
ing available landslides in the study area. The boundary of 
a landslide was determined by visual on screen digitization 
on the Google Earth and UAV images using image element 
techniques that are supported by field observations and 
inventory data.

To perform the automated calculation of segments in 
landslide polygons in this study, the rectangular coordinate 
system has the X-axis coincide with the east west direction 
and the Y-axis coincide with the north–south direction, in 
which the x-coordinates are referred to as latitude/northing 
and the y-coordinates are referred to as longitude/easting in 
the UTM with unit of meters (see Fig. 6). Polygons were 
converted to points using theArcGIS to measure the length 
and width. These points were then introduced to the pro-
posed algorithm as attributing data in a table containing x- 
and y-coordinates. The following steps describe the proce-
dure of computing length, width, and area by the proposed 
algorithm.

Step 1 To determine the Xmax (A) and Xmin (B) as well 
as Ymax (C) and Ymin (D) (Fig. 6) in scalar system. Points 
A(Xmax, YXmax), B(Xmin,YXmin), C(XYmax, Ymax), and D(XYmin, 
Ymin) are in the geographical coordinates system. The seg-
ment between points A and B is “d1” and the segment 
between points C and D is “d2”. The d1 is always in the 
favor of the X-axis and is considered to be x-coordinate or 
Latitude/Northing (m).

Step 2 To calculate AB(d1) and CD (d2) using the follow-
ing equations:

Step 3 To compare d1 and d2 and to determine which 
landslides are classified into long types or wide types. 
The following section describes the next step and explains 

(2)AB = d1 =

√
(Xmax − Xmin)

2 + (YXmax − YXmin)
2,

(3)CD = d2 =

√
(XYmax − XYmin)

2 + (Ymax − Ymin)
2.

Fig. 5  a A polygon in ArcGIS. 
b The same polygon in the 
proposed software package

http://www.widm.ca
http://www.widm.ca
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how this study classifies landslides based on the geometric 
features.

Furthermore, the automated classification of landslides 
was carried out in this study. Landslides were classified upon 
the d1and d2values with respect to the x- and y-coordinates 
as well as the slope angle (θ). Geometrically, the maximum 
distance between the two points can define the type of land-
slide aligning along either the X-axis or the Y-axis. If d1 is 
larger than d2, then the landslide polygon will be classified 
as the wide type and d1 will be the “length” of the landslide 
polygon. If d1 is smaller than d2, then the landslide poly-
gon will be classified as the long type. Figure 7 depicts the 
conceptual flowchart of the proposed landslide classification 
algorithm. This algorithm calculates both the maximum and 
minimum x-coordinates and y-coordinates of the landslide 
polygon. The maximum segment distance along the X-axis is 
determined the long side of the polygon, while the maximum 
segment distance along the Y-axis is determined the short 
side of the polygon. The algorithm also figures out these two 

distances. In other words, the algorithm computes the maxi-
mum and minimum Latitude/Northing (m) coordinates of 
points (x,y) from the landslide polygon in favor of the X-axis 
to estimate the “maximum horizontal segment distance”. 
It also computes the maximum and minimum Longitude/
Easting (m) coordinates of points coinciding with the Y-axis 
from the landslide polygon to estimate the “maximum verti-
cal segment distance”. The algorithm compares the maxi-
mum horizontal and vertical segments distance.

Following the previous steps, the fourth stage considers 
the amount of the slope angle (θ) to sub-classify landslides 
(Table 1).

To classify a landslide based on the proposed algorithm, 
long segment (d1) length, angle of slope with respect to 
x-axis, and failure direction were considered. The side which 
is close to horizontal is considered to be very wide and as it 
gets close to vertical is very long. The selection of degrees 
in angle is based on bisector angle (i.e., equal angle) and of 
division in angle between 0° and 90°.

Fig. 6  a A wide type landslide polygon in the x–y coordinate system. b Photo taken during the field observation in the study area. Location: 
Imam Zadeh Hasan, Mazandaran Province

Fig. 7  Flowchart of the proposed landslide classification method
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The slope angles can be calculated by:

where L is the length and W is the width of a landslide poly-
gon (see lines 38 and 39 of the code).

The slope is always defined as Δy/Δx. Slope L describes 
the drawn segment slope between Xmax and Xmin in scalar 
2D static system and slope W describes the slope of a drawn 
segment between two points that are with maximum y and 
minimum y.

Step 4 This step aims to determine the slope angle (θ) to 
sub-classify landslides (Table 1). The slope angle (θ), which 
is the angle of the segment with respect to X-axis, is not a 
topographical slope. If the slope angle (θ) is below 45°, then 
the landslide is classified as the wide type. If the slope angle 
(θ) is above or equal to 45°, then the landslide is classified 
as the long type (Table 1). For wide type landslides, there 
are two possibilities: (1) If the slope angle (θ) is below or 
equal to 22.5°, then the proposed algorithm identifies the 
landslide as the very wide type; or (2) If the slope angle (θ) 
is above 22.5° but below or equal to 45°, then the landslide 
is classified as the wide type. For long type landslides, there 
are two possibilities: (1) If the slope angle (θ) is above 45° 
but below or equal to 67.5°, then the landslide is classi-
fied as the long type; or (2) If the slope angle (θ) is above 
67.5° but below or equal to 90°, then the landslide is clas-
sified as the very long type. The upper and lower limits of 
the slope angle depend on the x- and y-coordinates (Fig. 8). 
In this study, the classification of landslides into the very 
wide type (0°–22.5°), very long type (67.5°–90°), wide type 
(22.5°–45°), and long type (45°–67.5°) was dependent on 
the angle indicating the inclination of a landslide to either 
x-axis or y-axis. In other words, the upper and lower limits 
of slope angle for the landslide classification rely on each 
section of the 2D space. xoy (Fig. 8) has an angle of 90° 
between each axis. Because the bisector in each region is 
45°, the criterion of this angle is the middle limit of 45° 
and it is evaluated by the proposed algorithm. Notably, this 

(4)Slope L =
(YXmax

− YXmin
)

(Xmax − Xmin)
,

(5)Slope W =
(Ymax − Ymin)

(XYmax
− XYmin

)
,

study implemented the scalar system to run the process. 
However, it is not important in which region of the Carte-
sian coordinate system a landslide polygon falls in. Also, in 
classification of “very wide (0°–22.5°) or long (67.5°–90°)” 
and “wide (22.5°–45°) or long (45°–67.5°)”, the criteria was 
the angle between the bisector to x-axis/y-axis, because this 
angle defines the closeness to the x-axis or y-axis which 
indicates the inclination of a landslide to either the x-axis or 
the y-axis (see code lines 38 and 39). The code is available 
upon request at s2pirast@uwaterloo.ca.

The final stage calculates the width and identifies the 
length of the landslide. Therefore, for determining d1, d2, 
the semi-automated calculation of length and width was cre-
ated. In this study, the landslide geometry was determined in 
the 2D scalar system where the maximum distance between 
points (i.e., longest length of a segment) in a landslide poly-
gon was considered. The proposed algorithm calculates and 
compares d1 and d2. The  d1 is the length of the landslide if 
d1 > d2, or the width of the landslide if d1 < d2. The algorithm 
can determine the longest segment when d1 is perpendicular 
to d2 (Fig. 9).

Automated calculation of area

Studying and classification of the shapes of landslide geom-
etry are at times highly subjective. In the Alborz Mountains, 
landslides’ shapes may be regular or irregular, which causes 
uncertainty in determining the length, width, area, volume, 
and type of landslide polygon. The geometry of landslides 
can be computed using different methods (Ghuffar et al. 
2013; Pirasteh et al. 2015; Niculitˇa 2016) and tools such 
as ArcGIS (http://suppo rt.esri.com/techn ical-artic le/00000 
6109). This study used geodata analytical computing and 
NITR to improve the precision of the measurement of 
landslide polygons extracted from LiDAR-derived DEMs, 
Google Earth images, UAV images using visual image inter-
pretation of photographic and geotechnical elements such 
as texture, shape, vegetation, and slope, and the available 
landslide inventory dataset.

To perform automated calculation of area, the proposed 
algorithm computes maximum and minimum projected 

Table 1  Classification of landslides by the proposed method

Type of landslide Slope angle (θ)

Long 90° ≥ LS > 67.5°
Very long 67.5° ≥ LS > 45°
Wide 45° ≥ LS > 22.5°
Very wide 22.5°  ≥ LS > 0°

Fig. 8  Each section of the 2D space of xoy

http://support.esri.com/technical-article/000006109
http://support.esri.com/technical-article/000006109
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geographical coordinates of points (Easting and Northing) 
of a polygon boundary from the input data in the scalar. 
Next, a line (long side segment) is stretched between the 
maximum and minimum values of the polygon predisposed 
in x-coordinate. If a landslide is a “Wide” type, then a 
curve is drawn above the line to coincide with the x-axis. 
The curve above the line is called “Top Curve” (A1). Also, 
the points under the line (long side segment) create another 
curve which is called a “Bottom Curve” (A2). The area below 
the stretched line (i.e., Bottom Curve) is computed using 

the NITR formula. The same process is followed for the 
“Bottom Curve” and the area under the line is computed. 
Then, the system begins to subtract the area of the top and 
bottom curves. The area of the polygon is calculated as fol-
lows (Fig. 10):

If a landslide is a “Long” type, then the polygon is divided 
into “Left Curve” and “Right Curve” coinciding with the 
Y-axis; and the area of “Right Curve” and “Left Curve” are 
computed separately. Therefore, the system begins to sub-
tract the area of “Right Curve” and “Left Curve”, and the 
area of the polygon is computed (Fig. 11).

Use of LiDAR‑DEM, UAV, and updating inventory 
dataset

In this study, 5 m resolution LiDAR-derived DEM was 
generated and represented in ArcGIS. The generated DEM 
derivatives such as slope were used to assist landslide clas-
sification along with field observations, UAV images, and 
Google Earth images.

(6)Ap = A1 − A2.

Fig. 9  a The longest segment of the landslide polygon. b Wide type and long type of landslides

Fig. 10  Schematic of a wide type landslide

Fig. 11  a A polygon sketched using the proposed model, b “Right Curve”, and c “Left Curve”
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The raw LiDAR point clouds were first converted into the 
LAS format. LiDAR-derived DEM was used in ArcGIS to be 
integrated with the existing inventory datasets, while Google 
Earth images were used for better visual interpretation of land-
slides. In addition, 20 cm resolution UAV images covering Cha-
lus District were used together with some field observations 
(Fig. 12) to identify new landslides, test the proposed algorithm, 
and update the landslide inventory map of the study area. Only 
some landslide polygons from the inventory database contain-
ing a total of 173 landslides were selected to test the proposed 
method. These polygons were converted into the points with 
x- and y-coordinates. These x- and y-coordinates were used to 
measure the long and short sides of the landslide polygon as 
well as to determine the landslide length, width, area, and type.

Validation

The performance of the algorithm was verified in ArcGIS 
and field observations in conjunction with the inventory 
dataset. The validation against the type of landslide was 
performed using the landslide inventory dataset of the par-
ticular study area of Chalus. Fifty-eight landslide polygons 
were selected from the study area for mapping. Fourteen 
actual and simulated polygons were selected to test the pro-
posed algorithm on determining and measuring the length 
and width. Twenty-five landslides were also selected from 
the landslide inventory dataset to determine the accuracy 
of extracted landslide’s type by the proposed algorithm 
(Table 2). The logic behind figuring out the width, length 
and area with the ArcGIS and the proposed algorithm in 

conjunction to the field observation measurements, and the 
inventory dataset is to check the relative error percentage 
and the reliability and accuracy of the proposed algorithm.

A polygon was selected and calculated in ArcGIS and 
in the developed algorithm using MATLAB, respectively. 
Other landslide polygons were also calculated in ArcGIS, 
ground truth (Fig. 12), and in the MATLAB by applying 
the developed algorithm, respectively, for the algorithm 
performance and relative error analysis. The proposed 
method was verified using field observations, measure-
ment tools, and the Real Time Kinematic (RTK) SmartNet 
system in ground truth (Fig. 13). Basically, the RTK tech-
nique is used to collect points with x,y,z and to measure the 
length and width of the segment on the ground truth for 
further geometric analysis in ArcGIS as well as the pro-
posed algorithm. RTK satellite navigation is a technique 
that has been used in this study to enhance the precision of 
landslide position data during ground truth measurement 
for simulation of the model. This RTK has derived from 
satellite-based positioning systems (global navigation sat-
ellite systems, GNSS) such as GPS. The percentage rela-
tive error was calculated by Kreyszig et al. (2011).

(7)
Relative error% =

[
|||
LArcGIS or ground measurement − Lproposed software

|||
/

AArcGIS

]

× 100,

(8)Relative error% =

[
|||
WArcGIS or ground measurement −Wproposed software

|||
/

AArcGIS

]

× 100.

Fig. 12  Field photo of a long 
type landslide in Haraz District, 
Mazandaran Province

Table 2  Landslide’s type validation

No. of selected 
landslides

Landslide in 
inventory dataset

Landslide in 
proposed algo-
rithm

Accuracy (%)

25 Known Extracted in this 
study

96
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Results and discussion
The results of this study form a response to the previous 
studies attempted by Taylor and Malamud (2012) and 
Niculiţă (2016). This study presented automatic landslide 
length and width extraction based on the NITR geometric 
processing of the landslide polygon and the geomorphomet-
ric analysis of LiDAR-derived DEMs.

The results of this study demonstrated that the proposed 
algorithm was able to automatically simulate, model, and 
determine the landslide length, width, and type which prob-
ably shows a promising approach in contrast to the existing 
GIS platform and algorithm delivered by Booth et al. (2009) 
and Niculiţă (2016). Both the long side and the short side 
of the landslide polygon can be measured automatically and 
the type of the landslide can be classified with the proposed 
method at an acceptable level. This investigation classified 
landslides into (a) long, (b) very long, (c) wide, and (d) very 
wide.

This study shows that the accuracy performance of the 
extracted landslide’s type is 96% (Table 2) when the author 
implemented the proposed algorithm for twenty-five selected 
and tested landslides from the landslide inventory dataset. 
Table 3 depicts the measurement and relative percentage 
error with ArcGIS and the proposed algorithm. The dimen-
sions of one of the selected polygon samples are 83.74 m 
in length and 69.30 m in width in ArcGIS, and 83.75 m 
in length and 69.31 m in width in the proposed algorithm 
in MATLAB, respectively. The calculated area of the 

selected polygon in ArcGIS is 3606.7 m2, in comparison 
with 3606.4 m2 in the proposed algorithm, respectively. The 
percentage relative errors were obtained = 0.496% in length 
and width, and 0.008% in area when using the proposed 
algorithm(Table 3a). Also, Table 3b depicts another exam-
ple of the comparative measurement and relative percentage 
error with ArcGIS and the proposed algorithm.

Also, the relative percentage error of measurement of a 
tested landslide length and width of the polygon is 0.011 and 
0.011, respectively (i.e., the proposed algorithm in MAT-
LAB vs. ArcGIS) (Fig. 14). Also, a ground truth sample pol-
ygon (Fig. 13) was simulated and measured using RTK tech-
nique. The relative mean error percentage of measurement 
for the landslide polygon tested in area is 0.496 (i.e., the 
proposed algorithm in MATLAB vs. ground truth measure-
ment) and 0.43 (i.e., ArcGIS vs. ground truth measurement). 

Fig. 13  a Ground truth measurement using RTK system, b schematic of a simulated polygon on the ground

Table 3  Measurement and relative percentage error

Geometry ArcGIS Proposed algorithm Relative error (%)

(a)
Length 83.74 m 83.75 m 0.01
Width 69.30 m 69.31 m 0.01
Area 3606.7 m2 3606.4 m2 0.008
(b)
Length 113.12 m 113.46 m 0.30
Width 101.34 m 99.64 m 1.67
Area 6976.91 m2 6988.20 m2 0.16
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These results showed that the developed algorithm can cal-
culate the length, width, and area of landslide polygons.

Moreover, this study indicated that the LiDAR-derived 
DEM (Fig. 15) plays an important role to support enhancing 
landslide on screen visualization to determine a landslide 
polygon boundary and to revise landslide inventory. This 
method also helps in determining the length, the width, and 
particularly the area of landslide polygons when integrating 
such DEM with the UAV and Google Earth high-resolu-
tion images. To support the output results, this study has 
compared the selected landslide to inventory data and the 
ground truth observations (Fig. 16). However, this study has 
not attempted a quantitative research on accuracy perfor-
mance of the output results. It would be suggested for the 
future works to compare a quantitative study on the output 
result by the proposed algorithm and available inventory 
data. Finally, the proposed method can semi-automatically 
determine and classify the landslide type from the landslide 
inventory database.

Conclusion and recommendation

This study has presented a method to define the landslide 
polygon in a 2D scalar Cartesian coordinate system. The 
landslides can be classified based on geographic coordi-
nates (x,y), long side or maximum distance of the segment 
in a landslide polygon, and slope angle (θ). This study has 
implemented geometric calculation and landslide classifica-
tion through NITR-based MATLAB coding. The study con-
cluded that the proposed method can discern the length and 
width of a landslide at a satisfactory level for any landslide 
polygon shapes. In general, we have regular and irregular 
shapes. Regular shapes are shapes such as rectangle, tri-
angle, and square. Regular shapes have sides that are all 
equal and interior (inside) angles that are all equal. Irregular 

shapes have sides and angles with any length and size. We 
have landslides that are in various shapes in nature. That is 
why, this study presumed they can be in regular shape such 
as a rectangle or they can have an irregular shape.

This study also concluded that use of the LiDAR-derived 
DEM together with UAV images and Google Earth images 
can possibly not only improve visual interpretation and rec-
ognition of landslides, but also increase the performance in 
measurements of landslide geometry when integrated with 
field observations. Therefore, this approach can be used to 
revise and update the landslide inventory in the study area. 
This study also identified that the majority of landslides in 
the study area are rhombic or hexagonal, trapezoid, and ori-
ented to the downslope direction of the hillslope. Also, this 
study found that the round-shaped landslides are associated 
with highly dense vegetation. The field observation showed 
that in a few cases, the material movement and displacement 
are towards the bed and strata dip direction of the rocks.

The findings of this study suggest that the flow direction 
or aspect value of mass displacement should be considered 
for determining landslide type in future studies. Also, the 
failure direction and slope direction in the 3D vector sys-
tem and dynamic environment (before and after a landslide) 
should be considered when determining the deformation, 
materials displacement, and flow direction. Given the fact 
that the algorithm developed in this study was not able to 
accurately identify the right direction or aspect value, a 
logic relationship should be defined. Further development 
is required for computing the volume of material displace-
ment using a high-resolution LiDAR-derived DEM and UAV 
images obtained before and after landslides.

However, this 2D scalar static approach possibly 
can be used in disaster planning and management and 
responses when required. The results of this research 
could also possibly motivate researchers to begin a new 

Fig. 14  Representing a landslide polygon automated calculation using a the proposed algorithm in MATLAB and b ArcGIS
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driving point in developing algorithms for automatic geo-
morphometric analysis of landslides in the GIS environ-
ment toward this future direction delivered by the UN-
GGIM (http://ggim.un.org/).

Code availability

The MATLAB stat code of the script which implements 
the algorithm is available at http://www.widm.ca and upon 
request at s2pirat@uwaterloo.ca.

Fig. 15  Landslide inventories 
on the DEM of the study area

http://ggim.un.org/
http://www.widm.ca
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