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Edge-Guided Multiscale Segmentation
of Satellite Multispectral Imagery

Jianyu Chen, Jonathan Li, Senior Member, IEEE, Delu Pan, Qiankun Zhu, and Zhihua Mao

Abstract—This paper presents a new approach to multiscale
segmentation of satellite multispectral imagery using edge infor-
mation. The Canny edge detector is applied to perform multispec-
tral edge detection. The detected edge features are then utilized
in a multiscale segmentation loop, and the merge procedure for
adjacent image objects is controlled by a separability criterion
that combines edge information with segmentation scale. The sig-
nificance of the edge is measured by adjacent partitioned regions
to perform edge assessment. The present method is based on a
half-partition structure, which is composed of three steps: single
edge detection, separated pixel grouping, and significant feature
calculation. The spectral distance of the half-partitions separated
by the edge is calculated, compared, and integrated into the edge
information. The results show that the proposed approach works
well on satellite multispectral images of a coastal area.

Index Terms—Edge detection, multiscale segmentation, object-
based image analysis, scale selection.

I. INTRODUCTION

HE multiscale segmentation method, initially named the

fractal net evolution approach (FNEA) [1], [2], which
provides a key technique for extraction of image objects,
is based on the fact that most image data contain object-
based information [3]. One obvious advantage is that objects
as minimum classification units help overcome the problem
of salt-and-pepper effects resulting from conventional pixel-
based classification methods [4], [5]. However, the procedure of
segmentation where pixels are linked to the objects necessarily
involves scale [6]. The importance of scale has been addressed
in applications such as object-based mapping of vegetation
parameters with hyperspectral imagery [7]. Landscape is a
complex system composed of a large number of heterogeneous
components with varying size and shape [8]. A certain scale
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used in segmentation does not yield a perfect partition of the
scene but produces either too many small regions (oversegmen-
tation) or too few large segments (undersegmentation). Thus,
a segmentation scheme was designed [9] in which objects were
generated at many different scales in order to determine optimal
scale parameters.

In some cases, researchers have tried to display the whole
scene in one layer. Burnett and Blaschke [5] developed a
methodology called as Multi Scale Segmentation/Object
Related Modelling (MSS/ORM) to simultaneously derive
objects at several levels of segmentation detail. Lang and
Langanke [10] showed a one-level representation that might be
sufficient and more straightforward. Hay er al. [11], [12]
developed an object-specific upscaling methodology.
Chen et al. [13], [14] tried to identify a meaningful image
object by calculating its difference distinctive feature in each
loop of MSS. The appropriate scale of observation is a function
of the type of environment and information that is being sought.
Scale selection is still very important and is a hot research
topic in object-based image analysis [15]. This paper proposes
an edge-guided MSS approach that performs unsupervised
scale selection in object-based analysis. The methodology is
integrated with edge detection and region extraction adapted to
uniform and/or weakly textured remote-sensed imagery.

It is well known that regions and edges are the two key
features in visual perception. Approaches based on region
and edge features are based on two fundamental observations
[16]: discontinuity and similarity. Technically, edge detection
methods place emphasis on discontinuity and locate the mean-
ingful intensity discontinuity by using spatial differentiation or
edge template operations. However, the edge detection methods
suffer from the fact that the edge pixels produced by the edge
detectors are discontinuous and seldom characterize a region
completely. Therefore, image segmentation is conceptually
based on similarity. In order to overcome the difficulties to
obtaining satisfying image partitioning results by using only
one segmentation method, cooperative approaches [17]-[19]
were based on combination and integration of several methods.
These techniques [20], [21] have been proposed to generate
a coherent and stable image representation in hierarchical or
multiscale image segmentation. The additional information
obtained from edge or regions [22]-[24] has been used to
eliminate the uncertainty [25], [26] of segmentation and object
evaluation [27], [28]. These complementary results tried to
fulfill the weaknesses of each of the different segmentation
methods. The methodology presented here therefore uses in-
tegrated edge detection and MSS, and is almost automatic
and unsupervised. This integration allows us to exploit the
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advantages of each method. The performance of this approach
has been experimentally demonstrated on coastal remote sens-
ing applications.

The rest of this paper is organized as follows. The mathemat-
ical foundation for developing the edge-guided MSS method,
including MSS and multispectral edge detection, is introduced
in Section II. The exercisable experiments are presented in
Section III. This forms a basis for the newly developed edge-
guided MSS method, and the details of the newly proposed edge
assessment approach are introduced in the subsequent sections.
The experimental results obtained using coastal satellite multi-
spectral images are presented and discussed in Section IV. In
addition, some conclusions are drawn in Section V.

II. TRANSFORM

The FNEA method is considered to be one of the effec-
tive region-based segmentation techniques. Technically, FNEA
composes of two fundamental components: the generation of
a multiscale representation and information extraction [2], [5].
The threshold used to control the segmentation procedure is a
combination of size and homogeneity. Given a definition for
image fractal homogeneity, the merging criteria for an adjacent
object pair is found by calculating the overall fusion value
f. Here, it is changed to F in order to satisfy the additional
condition G in our method as follows:

_JfiG<e
F={L9E 0

where G is the measure of edge information and ¢ is a user-
given edge criteria to complete the judgment of separability. G
is calculated from the result of the edge detector and can be
determined as the following function:

G =g(e-p) (2)

where e is the measure of edge strength and p works as a
correction parameter with regard to the significance of the
regions separated by it. Here, by judging the edge point in the
interior of object pair A, the function can be briefly specified as
follows:

gle-p) = le-plec|Al 3)
Moreover, f can be still represented as follows:

f =w- hcolor + (1 - w) . hshape (4)

where hcolor and hgnape are the spectral heterogeneity and
shape heterogeneity, respectively, and w is the user-defined
weight for spectral (against shape) within the range 0 < w < 1
(for more details, see [2] or [29]). The color criterion hcolor
is the weighted mean of all changes in standard deviations for
each channel ¢, as given in

hcolor
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where o, is the standard deviation and n.y; is the object
size. The shape criterion hghape consists of smoothness and
compactness, which can be computed by

hshape = Wempct * hcmpct + (1 - wcmpct) - Psmooth (6)

where wempet s the user-defined weight for the compactness
criterion with 0 < wempey < 1. Again, the change in shape
heterogeneity caused by merging is evaluated by calculating the
differences between the situation after and before the merge

h —-n lMerge
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where n denotes the object size, [ is the object perimeter, and b
is the perimeter of the bounding box of the object.

Edge strength e is obtained from the edge detector as a
measure of local discontinuity. The Canny edge detector [30]
is considered as a state-of-the-art edge detector. In addition, its
variation [31], which is particularly developed for multispectral
remote-sensed imagery, considered the problem of multidimen-
sional imagery in vector space. Let us consider the multispectral
image function C and the direction 7, which is defined by the
angle . While an intensity image function would only have one
component, a multispectral function C(x, y) forms a vector of
m scalars at each image position as follows:

Cl(z7y) cos
_ ¥
T = <sin<p) ' ®

.
The directional derivative of the vector-valued function C' again
gives a vector that consists of the directional derivatives of each

ﬁ(x, y) = e
Cm(z,y)

— —
component of C. The first directional derivative of C' can be
denoted in the following way:

or [ o3 VC -7
or 9Cy, VC’1 L
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C
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The matrix J containing the derivatives of each component
of 8’ is called the Jacobian matrix. A gradient-like solution
would then be obtained by determining that direction 7, which
corresponds to a maximum value of change. It turns out to be
mathematically attractive to define the magnitude of change
through the Euclidean length L of the vector J- 7 as follows:

=7 7)P=0-7)"-J-7)=7"-JT-J) 7.
(an
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Thus, by maximizing L? as a function of ?, the following
coefficients describing the symmetric 2 x 2 matrix J7.J is

JT~J<““ “12) where (12)

Q21 A22
ann =Ch, +-+C2,
az =Ci, +---+Cr,
a12 =C14C1y + - + CrnaCy

G21 =a12.

. T — . .
As it can be seen that the term r - (JT - J) r is equivalent
to the Rayleigh quotient of the matrix .J7'.J. Locally estimating
the direction and magnitude of the strongest change in a mul-
tidimensional image function can be regarded as an eigenvalue
problem. As long as the image function C is defined on two
spatial dimensions (x and y), there exist only two eigenvalues
A1 and Ao, where Ayax = max(|A1], [A2]) is given by

1
)\max =35
2

: ((au + age) + \/(an + agg)? +4a%2> . (13)

The direction of the corresponding eigenvector can be derived
from the eigenvector equation and the results in

/\max —ai )
a12

Here, the direction angle ,.x is used to compute the gradient
magnitudes in the z-direction and in the y-direction, which
would be utilized in the next Canny edge detection procedure.

Pmax = arctan ( (14)

Upon specifying values for ‘“high_threshold” and
“lower_threshold” in the algorithm, then

If (Amax > high_threshold)e = 1

Else if (Amnax < lower_threshold)e = 0

Else € = (Amax — lower_threshold)/(high_threshold —

lower_threshold).

Moreover, the edge strength e is adjusted by the local param-
eter p. The value of p is calculated by a half-partition structure,
which is separated by the edge. Then, the difference of the
partitioned regions can be calculated as follows:

d= Z (vlc - U2c)2

c

5)

where d is the spectral distance of two partitions 1 and 2
separated by edge and v is the mean value of partition for each
channel c. For each edge, let o1 and o be the standard deviation
of two partitions adjacent to the edge, where modification factor
of edge strength is assumed to be a parameter p.

If (d > max(o1,02))p =1
Else if (d < min(o1,02))p = 0.5
Else p = 0.75

The edge strength derived from the edge detector is adjusted
by the local parameter p.
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Fig. 1. Depiction of our approach for integrating edge detection and multi-
scale segmentation. The method mainly includes four steps: 1) application of
preprocessing-like dimensionality reduction and noise filters; 2) application of
the Canny edge detector to detect edges on the original multispectral image
or its processed results; 3) the performance of multiscale segmentation from a
minimum scale to a relatively large scale, where the merge of the image objects
relies on the edge strength between them; 4) the presentation of the potential
meaningful image objects in multiscale analysis.

III. EXPERIMENTS

The proposed approach (see Fig. 1) consists of four main
procedures: 1) preprocessing, including dimensionality reduc-
tion and noise filtering; 2) multispectral edge detection; 3) MSS
from minimum scale to a relative large scale; and 4) multiscale
presentation of the homogenous candidates or potential mean-
ingful image objects. The result of edge detection performs
a controlling function in the MSS procedure as a substitute
for scale. The edge detector plays an important role in edge-
guided MSS. The algorithm used in our experiments follows a
detection scheme, which was proposed by John F. Canny. The
Canny edge detector works in a multistage process.

The scheme includes the following.

1) Calculating Apax and @max: For each component of
imagery, the performance includes: 1) computing the
directional derivatives with Gaussian smoothing and
2) calculating ai1, age, aj2, and ao; using gradient
magnitude.

2) Extracting directional magnitude values: Edge magni-
tude values have to be projected and obtained in the
z-direction and the y-direction at each image position
based on A, ,x and ¢ ax. This information is used in edge
linking.
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3) Nonmaximal suppression: The process is applied to iden-
tify the local maxima. Only pixels with edge strength
larger than their two adjacent pixels in the gradient di-
rection are identified as edge candidates. Nonmaximal
suppression results in one-pixel wide edge segments.

4) Edge linking: The hysteresis tracking process is further
applied with thresholds in which all candidate edge pixels
below the lower threshold are labeled as nonedges, and
all pixels above the low threshold that can be connected
to any pixels above the high threshold through a chain
of edge pixels are labeled as edge pixels. Each edge
segment should be labeled for the following parameter
p estimation.

The gradient magnitude of a Gaussian smoothed image is
not a means to separate two ground objects ideally. It would
be adjusted by a local parameter p. Thus, a classification-
based approach was proposed to optimize the edge detector
for image segmentation in remote sensing applications. This
research focused on edge partitioning two spatial adjacent
homogeneous objects, which belong to different classes. Based
on labeled edge segments obtained in edge detection, a half-
partition structure is constructed by a loop consisting of three
steps (see Fig. 2): a monotone increasing or decreasing edge
identification, a separated pixels selection, and a significant
feature calculation. In this way, this paper presents a new
algorithm to measure the significance of the edge using the
pixels of partitioned regions instead of the pixels in the range
of the template of the edge detector token as a filter. The edge
detection procedure was improved by estimating the difference
of adjacent regions in two steps: the horizontal significance
process and the vertical significance process. Each significance
process can be described as following pseudocode:

{

Construct line half part by scanning point on each line;

Link line half part into half-partition by edge labeling;

Calculate the amount, mean and deviation on each half-
partition;

Compute the spectral distance of half-partitions by each edge
segment;

Set the values on each edge point;

Estimate local parameter using the significance of each edge
point.

}

In the FNEA method, the objects are regions under a certain
scale from image segmentation. They are generated by one or
more criteria of homogeneity in one or more dimensions, re-
spectively. When there are more than two neighborhood objects
fulfilling the merge condition, a region-growing question arises
on how to select the best fitting image fractal pair to merge. This
should involve searching the whole scene and performing one
merge in each repeated loop. The solution adopted in FNEA
is a local mutual best fitting region-growing strategy. Further,
the scale controlling the segmentation result is enhanced by
satisfying edge condition GG. Here, we constrict the merge
procedure by the additional condition of the strength of the edge
between them.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 50, NO. 11, NOVEMBER 2012

I
1
Vary parameter !

\ 4

Canny edge detection

Local parameter estimation

? :
1
The labelled edges [+ '* Monotone edge identification E
P !
I 1 '
"""""""""" I '
! 1
i Separated pixels selection !
TR E i
| Edgeassessmentusing "—’, ! Y .
1 (] '
ogs )
| halfpartitionstructure | Significant feature calculation | !
__________________ i
i
1
v I
1
1
1
1
1
1

Fig. 2. Edge assessment and local parameter estimation using a half-partition-
structure-based approach that consists of three steps: One monotone increasing
or decreasing edge identification, separated pixels selection, and significant
feature calculation, which follows after a typical edge detector algorithm.

For calculating edge condition G, it should determine the
number of edge points on the border between two adjacent
regions. Ideally, the description of an image from edge and
region primitives must be identical. In practice, the differences
are important, and it rarely obtained equivalent descriptions
from these two primitives. This duality and complementarity
can be expressed in four different ways [32]: 1) the regions
are situated in the interior of close contours, and consequently,
there are no edge points in the interior of a region; 2) a real
edge point must be situated on or at the proximity of a region’s
boundary; 3) a region’s boundary is naturally closed, and an
edge boundary should also be closed; 4) an edge cannot be
situated in the interior of a region and must be situated on the
totality of the common border between two regions. Accord-
ingly, in application, the size of the image object should be
larger than the minimum required fulfilling Shannon’s sampling
pixels, and the distribution of pixel of image object at least fits
the 3 x 3-pixel kernel. On the basis of these rules of duality,
it can account the edge strength by using once assumed merge:
Let U (o) as set of object pair in segmentation procedure. By
calculating the interior edge point in the assumed merged object
Objyferge OF pair of obj; and its neighbor obj,, U(0) can be
divided intoU'(0) and Ug(o). For each pair d € Ug(o), it meets
g(0) <e,and F' = f. Then

scale = min_scale;
While size of (Ug(0)) > 0 and scale < max_scale
{
scale+ = Ascale;
MSS performing in Ug(o);
update Ug(0);
}
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Fig. 3.

SPOTS multispectral image (Red: band4; Green: bandl; and Blue:
band2) and results at the scales 20, 30, 50 and 100, respectively. The final
segmentation is the result of proposed method. The original and segmented
images are 1024 x 1024 pixels. The grayscale value of the result indicates the
scale of the segmentation (similarly hereinafter).

Here, the scale is mainly used to determine the sequence of
merges in terms of the increase in A scale, and it is not a key
limitation to prevent merging in the procedure.

IV. RESULTS AND DISCUSSION
A. Data set

A 1024 x 1024-pixel subimage of the Satellite pour
I’Observation de la Terre (SPOTS) scene acquired on May 7,
2005 is shown in Fig. 3. The area represents a portion of the
highly fragmented agro-waterfront landscape. SPOT 5 provides
an 8-bit multispectral data in red, green, near-infrared and
far-infrared channels at 10-m spatial resolution and an 8-bit
panchromatic channel at 5-m resolution. Only the multispectral
data have been tested and assessed in image segmentation in
this paper. This image is used to test the developed algo-
rithms and to assess the performance of the edge detection
process in this paper. IKONOS, QuickBird2, and Worldview
satellite multispectral images of a coastal area were also used
(see Fig. 4).

Fig. 4. Multispectral image of IKONOS, QuickBird2, and Worldview and
results by application of proposed method (The original and segmented images
are both 800 x 800 pixels.)

B. Edge-Restricted MSS

The result of the proposed approach, as well as results with
specified scale, is shown in Fig. 3. Generally, in MSS, a varying
scale would be applied to find different types of ground objects
with diversity of size and spectral properties. This approach
requires a complex designed schema with the aid of masking.
In comparison, our approach yielded a single segmentation
result, guided by edge information and contained variant scales
according to real ground objects. That was, the measure of
homogeneity, which given by the segmentation scale, was not a
criterion to separate real ground objects basically. The proposed
method also has been applied in to three images that were
obtained from different sensors and depict typical landscape
of coastal area. The scales of regions when they emerged were
indicated by the gray value (see Fig. 4). They were also survived
and restricted with respect to diverse sizes of ground objects
through the whole segmentation procedure, which a relative
large scale was set in.

The existing edges prevented regions from being underseg-
mentation. The size of the image object reflects the real patch
of the area by the detected edge. The size of segmented result
of agrarian field has been observed larger than the size of
residential area. In addition, the scales of image regions show
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Fig. 5. Detected edge of multispectral image and its constricted multiscale
segmentation result. Canny edge detection procedure. Upper (detail): Sigma of
the Gaussian filter is 0.4, the ratio of the high threshold is 0.7, and the ratio of
the low threshold is 0.3. Below (coarse): Sigma of Gaussian filter is 0.4, the
ratio of high threshold is 0.8, and the ratio of low threshold is 0.5.

TABLE 1
NUMBER OF PLACES WHERE DETECTED EDGES INTERSECTED
IMAGE OBJECTS (OBTAINED FROM NORMAL MSS)

Segment Scale Objects Average Size Intersection by edge
5 1555 307617 837
10 1671 63998 4498
15 952 28432 6843
20 480 16464 6882
25 207 10937 6010
30 99 7819 5043

that there were two types of ponds. The distribution of the scales
of our results is more rational compared with the one-scale
segmentation result. The detected edges helped to choose the
meaningful scales of image objects from the whole multiscale
representation. The artificial determination of segmentation
scale is avoided. The optimal scale selection in multiscale
analysis is reduced to the operation of edge detection. The
results (see Fig. 5) of edge-guided MSS of two level details
of the detected edge (i.e., detail and coarse) still contained
variant image objects. When we overlaid the detected edge with
the normal segmented result of the multiscale, there were a
large number of intersections between the image objects and
detected edges (see Table I). It reveals that the discontinuity
and the similarity are not the absolute opposite conception. The
segmentation results based on two conceptions are near but not
equal.

The scale distribution in this paper shows that there is a
double-humped structure of scale of ground objects in this
highly fragmented agro-waterfront landscape (see Fig. 6). On
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tation scale in normal multiscale segmentation (corresponding to gray images
in Fig. 3).

the contrary, the scale structure of one certain scale segmenta-
tion result does not reflect this kind of distribution (see Fig. 7).
When the small segmentation scale has been implemented, then
the most large ground objects retained over segmentation, and
it has not conveyed the advantage of segmentation. The larger
scale poses a long tail phenomenon, which means that the
smaller scale ground objects keep under segmentation. The re-
sult of our method reflects the real structure of scale distribution
of ground objects. On that regard, our approach can overcome
the limitation that existed in single-scale segmentation.

C. Edge Assessment by Half-Partition Structure

The Canny edges reflect the pixel difference in a short
designed range, which is determined by the template of the
filter. Nevertheless, this does not really reflect the true spectral
difference between these two pixel sets that were separated by
edges. The edges by which the separated partitions belonging
to different classes are more expected. Considering that, there
should be a mechanism to determining interclass and intraclass
edges. As most classification methods for remote sensing data
are based on the statistical parameter evaluation, with the
assumption that samples obey the normal distribution. Based
on this hypothesis, this paper assumed that one partition was a
sample of one class. At that point, the separated partitions were
considered as an approximate estimate of real objects. Each de-
tected edge is coupled with one edge (or boundaries of image)
in its left side and restricted a set of pixels as its left partition. In
the same way, it restricted its right partition (see Fig. 8). Thus,
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Fig. 8. Edge point and its neighbor edge point can divide a scanning line into
several segments. The blue line segment is the left pixels, and the green line
segment is the right pixels. In the edge detection procedure, the edge points are
linked into the edge, the left pixels are merged into the left partition, and the
right pixels are merged into the right partition.

it would face the problem as follows. If we followed edge-point
loop clockwise or counterclockwise, the right partition would
become the left partition and the left partition would become
the right partition at the edge corner. Avoiding this situation,
the edges should break in their turn and keep their monotone
increasing or decreasing status. Therefore, each scanning line
of imagery was divided into several segments, and the segments
linked to the same region were regarded as a part of same class.

We dealt with edge information by calculating the mean and
the deviation of half-partition limited by two neighbor edges
provided by the Canny operator, and then, the pixels in the
line segment between each edge couples would divide into two
partitions: the left half-partition associated to the left edge and,
meanwhile, the right half-partition associated to the right edge.
The spectral distance of each partition and its neighborhood was
compared mutually, which was used to further determine the
significance of the edge that departed them. Through this way,
the separability of edges would be enhanced by the spectral
distance of the class sample instead of its inherent property of
gradient magnitude from using a fixed threshold in the edge
detection procedure. According to the image classification in
remote sensing, this meant that the significance of meaning-
ful edge could be assessed by calculation of the separability
between those two classes essentially. If the mean and the
deviation of the both sides of an edge was similar, it meant that
the edge would be given a lower significance.

V. CONCLUSION

In this paper, a new edge-guided MSS has been recom-
mended, trying to perform unsupervised scale selection in
object-based analysis. The proposed approach includes four
main implementation steps. The merge procedure of two adja-
cent regions in MSS is constricted by an additional condition
of the strength of edge information between them. The per-
formance of the approach was experimentally demonstrated in
coastal remote sensing applications. The result of new method
reflects the real structure of scale distribution of ground objects
in complex areas such as a highly fragmented agro-waterfront
landscape. This successfully avoids the shortcoming that exists
in one certain scale segmentation result. Edge information is
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calculated after the application of the Canny edge detector on
multispectral imagery extended from monochrome edge detec-
tion. As edge performs a controlling role in the segmentation
procedure as a substitute for scale, the optimal scale selection
in multiscale analysis is reduced to the operation of edge
detection.

This paper has also described a new way to measure the
significance of the detected edge and to discover the meaningful
edges by means of half-partition structure. This is performed
and constructed through three algorithms including monotone
increasing or decreasing edge identification, separated pixels
selection, and significant feature calculation. The half-partitions
are regarded as approximate estimates for the sample of class.
The spectral distance of separated partition and its neighbors is
calculated and compared, which is used to further determine the
significance of the edge departed them. Thus, the edges derived
from global upper and lower threshold would be adjusted by a
local parameter identified by the separability of regions.
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