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Overlaying 2D vector maps onto 3D digital 
elevation models (DEMs) communicates 
information about the topography and 

landscape objects in a convenient, easily under-
stood form. So, quickly rendering vector maps in 
3D landscapes is an important goal in spatial-

decision VR applications, such as 
land-use planning with comput-
erized models.

Level-of-detail (LOD) terrain 
models decrease the complex-
ity of 3D spatial object repre-
sentation and are often used 
with high-resolution landscape 
visualization to achieve high- 
performance rendering. How-
ever, in these models, changing 
the virtual observer’s point of 
view often requires terrain sur-
face reconstructions, and the 
overlay process should make the 

corresponding adjustments in real time. Further-
more, different applications might use different 
LOD terrain models, and many overlaying meth-
ods are developed ad hoc and are hard to adapt to 
general situations.

Maintaining valid, consistent topology in vec-
tor map data is a prerequisite to obtaining correct 
results for queries and spatial analysis. However, 
owing partly to the intrinsic complexity of sim-
plifying vector maps while maintaining consistent 
topology, few studies have tackled this problem in 
a real map context, working with multiple object 
types such as lines and polygons while achieving 
computational efficiency.

Here, we show how we construct LOD vector map 
models that can rapidly overlay large-scale vector 
maps on multiresolution terrain models. Our ap-
proach doesn’t generate perceivable cracks or alias-
ing artifacts and is independent of LOD DEMs. 
Performance isn’t affected by the DEM dataset; 
it’s related only to the vector maps’ complexity. 
To generate the vector maps, we developed a map 
simplification algorithm that avoids changes to the 
original topological connectivity. This algorithm is 
also applicable to other tasks, such as vector data 
progressive transmission.

Vector Map Simplification
Our study focuses on polyline simplification be-
cause most map features are represented as lines 
or as polygons made up of lines. (For a look at 

Real-time rendering of large-
scale vector maps over terrain 
surfaces requires displaying 
substantial numbers of 
polylines and polygons. The 
proposed approach simplifies 
such maps, permitting more 
efficient rendering and 
reducing latency in the display 
and manipulation of a virtual 
environment.
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other map simplification research, see the related 
sidebar.) We first split each polyline into monotone 
pieces. Then, we simplify the resulting subpoly-
lines through the rendering processes of graph-
ics hardware. Finally, we connect the simplified 
subpolylines to produce the vector map. Besides 
avoiding intersections and self-intersections, this 
algorithm can perform better than conventional 
geometric techniques.

Generating Monotone Subpolylines
A polyline l is monotone if a line ld exists such 
that any line ls perpendicular to ld has at most 
one intersection with l (see Figure 1). A monotone 
polyline doesn’t intersect with itself. Its simpli-
fied version will still be monotone and won’t self-
intersect either.

To get monotone pieces, we first connect each 
pair of successive vertices to form vectors. Then, we 
define the angle formed by the vectors 

�
p  and 

�
q . If 

the angle determined by counterclockwise rotation 
from 

�
p  to 

�
q  is less than 180 degrees, we use that 

value. If it’s greater than 180 degrees, we subtract 
360 from it and use that value instead. So, both 
angles lie in the range (-180°, 180°].

ld

l

ls

Figure 1. A monotone polyline. Line ls, perpendicular 
to line ld, intersects with the polyline only once, so 
the polyline is monotone.

Many researchers have investigated map simplification. 
The Douglas-Peucker algorithm, one of the most 

popular line simplification methods, can keep impor-
tant geometric characteristics of original lines.1 Mahes 
Visvalingam and J.D. Whyatt’s line simplification algorithm 
removes the vertices forming the smallest “effective area” 
triangles.2 Zhiyuan Zhao and Alan Saalfeld proposed a 
sleeve-fitting algorithm that runs in linear time.3 Wenzhong 
Shi and ChuiKwan Cheung evaluated several geometric line 
simplification methods and found that the Douglas-Peucker 
algorithm produced the most accurate results.4

However, all these methods can introduce topologi-
cal errors such as intersections between lines and self-
intersections. The algorithms must include restrictions for 
avoiding such errors.

To address this issue, Regina Estkowski and Joseph Mitchell 
described a heuristic method for simplifying parallel lines with-
out intersections—in cubic time in the worst case.5 Leonidas 
Guibas and his colleagues pointed out that the problem of 
computing a minimum-link approximation of a simple poly-
gon while preventing self-intersections is NP-hard.6

Andrea Mantler and Jack Snoeyink presented a Voronoi 
diagram algorithm that can maintain topological relation-
ships.7 Their method first divides a complex polyline into 
a collection of safe sets. It then simplifies each safe set by 
using a single line segment or a standard polyline simplifi-
cation algorithm such as the Douglas-Peucker algorithm. 
This method’s time complexity for computing a Voronoi 
diagram is O(nlogn) and for computing safe sets is O(n).

Nabil Mustafa and his colleagues also implemented a 
Voronoi-diagram-based algorithm to perform dynamic 
view-dependent simplification of large geographical maps.8 

By using graphics hardware, they achieved high computa-
tional efficiency and avoided intersections among the out-
put lines. However, the frame buffer resolution limits that 
algorithm’s precision, and it can’t avoid self-intersections.
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For a polyline l = (v0, v1, …, vn), we define the edge 
angle qi associated with edge v vi i+1  by the angle 
from v v0 1  to v vi i+1 . V. Chandru and colleagues 
have proved that l is monotone if and only if its 
edge-angle sequence {q0, q1, …, qn–1} satisfies (qmax - 
qmin) < 180, where qmax = max(q0, q1, …, qn–1) and 
qmin = min(q0, q1, …, qn–1).1 So, starting with q0, we 
compute the edge angles in sequence and update 
qmax and qmin simultaneously. If (qmax - qmin) ≥ 180 
degrees at qi, we split the polyline at vi and restart 
the computation with vi. In this way, we can gen-
erate monotone subpolylines with time complex-
ity O(n).

Simplifying Monotone Subpolylines
Now, we further simplify the subpolylines and en-
sure that the simplified results don’t intersect with 
each other.

To constrain the simplification, we rely on e-
Voronoi diagrams. A Voronoi diagram of a set of 
geometric objects is a partition of the surround-
ing space into cells, each of which comprises the 
points closer to one of the objects than to any oth-
ers (see Figure 2a). An object’s e-Voronoi cell is the 
portion of its Voronoi cell lying within distance e 
of the object (see Figure 2b).

To avoid intersections between polylines, Nabil 
Mustafa and his colleagues proposed a simplification 
algorithm that removes noncompliant line segments 
on the basis of the polyline’s e-Voronoi cell.2 In their 
method, a polyline segment connects any two ver-
tices of the polyline, whether adjacent or not. A 
compliant segment lies completely within the poly-
line’s e-Voronoi cell (see Figure 2b). So, compliant 
segments don’t intersect other compliant segments. 
However, they might still cross themselves.

Our approach avoids intersections and self-
intersections by computing e-Voronoi cells for each 
monotone subpolyline rather than for the polylines 
themselves. Simplification involves five main steps.

First, we generate a set of shortcut segments for 
each monotone subpolyline.

Second, we render the e-Voronoi cell for each 
monotone subpolyline in the graphics hardware’s 
stencil buffer. Each monotone segment’s Voronoi 
region gets a unique stencil value—essentially, a dif-
ferent color. Most computer graphics cards permit 
stencil values from 0 to 255. If there are more than 
255 monotone subpolylines, we use simple heuristics 
to color the adjacent e-Voronoi cells with different 
values. For each subpolyline, we scan surrounding 
pixels in the stencil buffer before rendering the e-
Voronoi cell and record these pixels’ stencil values. 
Then, we set this subpolyline’s stencil value to be 
different than that of any of those pixels.

Third, we draw each shortcut segment in the 
color buffer in a unique color with the stencil 
test enabled. A segment passes the test only if its 
stencil value doesn’t equal the stencil value of the 
subpolyline’s e-Voronoi cell. Any segment lying 
completely in the Voronoi region fails the test. The 
result is that compliant segments don’t appear in 
the color buffer.

Fourth, we scan the color buffer. If the scan de-
tects a shortcut segment’s color, that segment is 
noncompliant and is removed.

Finally, we connect the remaining compliant 
segments.

The depth and stencil buffers let us generate 
the Voronoi regions quickly, without complex geo-
metric computation. But because the color buffer 
represents polylines as pixels, a noncompliant seg-
ment might be hidden by other segments. To solve 
this problem, we repeatedly clear the color buffer, 
rerender the segments, and eliminate noncompli-
ant segments until the process uncovers no new 
noncompliant segments.

Generating fewer shortcut segments can reduce 
the iterations necessary to complete this process. 
We employ the Douglas-Peucker algorithm to se-
lect an optimal set of shortcut segments.3 We first 
connect the original polyline’s starting and ending 
vertices to get a segment. We then calculate the 
distances from the intermediate vertices to that 
segment and identify the vertex at the greatest 
distance. We connect the vertex having the maxi-
mum distance with the starting and ending ver-
tices to generate two segments. If the maximum 
distance is less than e, we add the segment to the 
segments set.��������������������������������������  ������������������������������������We repeat this process until it gen-
erates no more segments.

(a) (b)

�

Figure 2. To simplify monotone subpolylines, we use e-Voronoi diagrams. 
(a) Voronoi diagrams of three polylines. The dark gray zone is the 
leftmost polyline’s Voronoi cell because this zone’s pixels are closer to 
the leftmost polyline than the others. (b) e-Voronoi cells. The distance 
from a polyline to its e-Voronoi cell’s boundary isn’t larger than e. The 
dashed line shows the noncompliant segment, which is a segment of the 
middle polyline and beyond this polyline’s e-Voronoi cell. The dotted 
line shows the compliant segment, which lies completely in the middle 
polyline’s e-Voronoi cell.
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Because a monotone subpolyline’s compliant 
segments lie completely in its e-Voronoi cell, a 
subpolyline simplified in this way can’t cross 
other simplified polylines. Because the simplified 
subpolylines are monotone, they’ll never cross 
themselves. So, this method removes all the inter-
sections and self-intersections. Figure 3 illustrates 
the main procedure.

Retaining Precision
Vector features drawn at large scales in the frame 
buffer might be represented by several pixels or 
only one pixel. To reduce inexactness and occlu-
sions due to rasterization, we subdivide the vector 
map to guarantee that each line segment can be 
represented by at least two pixels.

We divide the map into at least nW subregions 
in the width direction according to the function 
nW = W/(d · w), where d is the average distance 
between two adjacent vertices of a polyline, w is 
the screen width, and W is the map width. The  
function rounds a number up to an integer value, 
which ensures that different vertices in the map 
don’t cover the same pixel in the frame buffer. 
Next, we divide the map into nH subregions in the 
height direction. Loosely speaking, the simplifica-
tion time increases as O(nW · nH).

Overlay on Multiresolution Terrain Models
We render the simplified vector features accord-
ing to their LOD. At a relatively coarse LOD, we 
render the features using the shadow volume ap-
proach.4 At the coarsest level—farthest from the 
viewpoint—we render the features using substitute 
technologies.

For a look at other research on rendering vector 
maps on multiresolution terrain models, see the 
related sidebar.

Accurate Overlay
The overlaying involves two steps: constructing 
shadow volumes and rendering the shadows.

A vector feature’s shadow volume is a polyhedron 

(a) (b) (c)

Figure 3. Simplifying polylines. (a) The original polylines. (b) e-Voronoi diagrams of monotone subpolylines. 
(c) The simplified results (bold black lines). Each subpolyline’s simplified result always lies in its e-Voronoi cell. 
So, the simplified results won’t cross with each other or cross themselves.

Methods for visualizing vector data over digital elevation models 
(DEMs) are either geometry based or texture based. To avoid 

cracks between vector maps and the associated level-of-detail 
(LOD) terrain models, geometry-based methods must reconstruct 
the maps dynamically as the viewpoint changes. Some methods 
rely on terrain-rendering algorithms, such as Zachary Wartell and 
his colleagues’ algorithm for overlaying polylines on LOD terrain 
models.1 Other algorithms generate static geometric primitives 
during preprocessing, but users can’t manipulate the vector data 
at runtime.

Texture-based methods generate 2D textures from the vector 
data and then project them onto DEMs. However, when the texture 
resolution is less than the screen resolution, these methods produce 
blurry edge and, as the viewpoint moves toward terrain surfaces, 
serious aliasing artifacts. Increasing the texture resolution or using 
multiple texture maps with different resolutions can resolve the dif-
ficulties, but these approaches consume huge amounts of texture 
memory. Oliver Kersting and Jürgen Döllner used an off-screen 
buffer to generate textures dynamically,2 but performance depends 
on the availability of advanced graphics hardware.

On the other hand, Martin Schneider and Reinhard Klein adopted 
the shadow volume algorithm,3 which overcomes the limitations 
of conventional geometry-based and texture-based methods. It’s 
independent of LOD terrain models and overlays the vector maps 
on the terrain precisely. However, rendering large, complicated 
vector maps in real time can be difficult.
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whose lateral faces are perpendicular to the hori-
zontal plane. To construct a polygon’s shadow vol-
ume, each side is extruded vertically to create its 
lateral faces. The top and bottom caps of the poly-
hedron are parallel to the horizontal plane; their 
heights are the maximum and minimum heights, 
respectively, of the DEM region covered by the poly-
gon. To construct a polyline’s shadow volume, we 
broaden it to a narrow strip and then construct 
lateral faces and caps the same way as for polygons.

To render the resulting polyhedron’s shadows, 
we disable the color buffer and depth buffer write 
functions and enable the stencil buffer write and 
stencil test. First, we set the stencil test rule to 
increase the stencil value when the depth test fails 
and render the polyhedron’s back faces. According 
to the depth test rule, if a pixel’s depth is larger 
than that already stored in the depth buffer, the 
depth test fails. Because we measure the depth in 
terms of the distance to the viewpoint, and the 
terrain has been rendered in the depth buffer, 
the parts of polyhedron that are concealed by the 
terrain fail the depth test. Second, we alter the 
stencil test to decrease the stencil value when the 
depth test fails and render the front faces. Finally, 
we disable the depth test, enable the color buffer 
override (with the stencil test passing only if the 
stencil value doesn’t equal 0), and render the back 
faces again with the specific color.

Polyline Overlays
In a large landscape, gaps between the polylines 
and the underlying terrain surface that are small 
and far from the viewpoint don’t significantly 
affect the landscape’s visual quality. So, we can 
overlay the far polylines using our coarse models. 
During preprocessing, we first interpolate new ver-
tices into the simplified polylines and then convert 
the new and original vertices into 3D vertices us-
ing the terrain surface elevations. In this way, we 
generate 3D polylines.

To avoid z-buffer fighting (the generation of visual 
artifacts by two objects that are rendered close to 
each other), we enter the artifacts and the poly-
lines into the terrain models’ undersurfaces. We 

raise the 3D polylines’ heights by a specified off-
set during rendering, with the offset increasing 
linearly with the distance from the polyline to the 
viewpoint. After rendering, few polylines intersect 
with the terrain models, and the gaps between the 
polylines and the terrain surface are inconspicuous.

Polygon Overlays
To render distant polygon features, we use texture 
mapping; the long distance to the viewpoint alle-
viates the aliasing problems this technique causes. 
First, we render vector features into a 2D texture by 
filling the simplified polygons with specific colors 
and making the other regions transparent. We then 
fuse the resulting texture with other textures of the 
terrain surface and project it onto the surface.

The overlay process should update the texture 
in real time according to the distance between 
the polygons and the viewpoint. If the viewpoint 
moves toward a polygon, we set the polygon’s cor-
responding region in the texture to be transparent 
by setting its alpha value to 0. Then, we render the 
polygon on the terrain models using the shadow 
volume approach. If the viewpoint moves away 
from a polygon, we just set ���������������������the corresponding re-
gion’s texture of terrain models to be opaque.

LOD Selection
The distance between a spatial object and the 
viewpoint serves as the criterion for the LOD. Be-
cause of vector features’ irregular shapes and vari-
able lengths (for polylines) or areas (for polygons), 
computing the distance and constructing continu-
ous LOD models are difficult. Moreover, comput-
ing the distance to the viewpoint for all vertices 
is time-consuming. So, we compute the LOD level 
value for each monotone subpolyline generated 
during simplification instead of for each feature.

To accelerate LOD selection, we use a block-
indexing algorithm. We compute a map’s mini-
mum bounding rectangle and the number of 
subpolylines nsubs. Given a value navg, we split the 
rectangle into nsubs/navg regular blocks, implying 
that on average, every block contains navg subpoly-
lines. For each block, we compute and store the 
subpolylines that are fully or partly contained in 
it. Because the vector features are unevenly dis-
tributed, some blocks might not contain subpoly-
lines; we remove those blocks.

As the viewpoint changes, we calculate the dis-
tance d between it and the center of a block. Given 
distance thresholds f1 and f2, where f1 > f2, there 
are four possible LODs:

■■ invisible (the block is culled and invisible),

To render distant polygon features,  
we use texture mapping; the long distance 

to the viewpoint alleviates the aliasing 
problems this technique causes.
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■■ coarse (d > f1.),
■■ medium (f2 < d < f1), and
■■ full (d < f2).

If a subpolyline is contained by several blocks with 
different LOD values, we choose the highest level 
of all the blocks as the subpolyline’s level.

Vector Map Construction
At this point, the polylines are represented by their 
monotone subpolylines. If a subpolyline’s LOD is 
full, we overlay it on the terrain model using the 
shadow volume algorithm. If the LOD is medium, 
we overlay the simplified subpolyline instead, again 
using the shadow volume algorithm. If the LOD is 
coarse, we render the simplified subpolyline with 
the 3D polylines.

Constructing LOD polygon models is a bit more 
complicated: if one polygon rendered at the full LOD 
is adjacent to one rendered at the coarse LOD using 
the simplified polygons, the two polygons’ boundar-
ies will no longer match. We avoid this problem by 
splitting the boundaries into arcs (see Figure 4b) ac-
cording to their adjacent topological relations. (We 
use Esri’s ArcMap to build topological relations be-
fore the simplification.) We then simplify these arcs 
instead of the original polygon borders by splitting 
them into monotone subpolylines (see Figure 4c), 
which we simplify separately in turn. When render-
ing, we first get each subpolyline’s LOD, then decide 
how to render each polygon.

A polygon has three options regarding LOD:

■■ One or more of its subpolylines are at the me-
dium or full LOD.

■■ None of the subpolylines is at the medium or full 
LOD, and one or more are at the coarse LOD.

■■ The whole polygon is at the invisible LOD.

In the first case, we construct the polygon’s new 
border by using the simplified or original subpoly-
lines—the original when the subpolyline is at the 
full LOD and its simplified version otherwise (see 
Figure 4d). Then, we render the reconstructed 
polygon using the shadow volume algorithm and 
set its corresponding region in the texture to be 
transparent. In the second case, we render the 
polygon using texture mapping and set its corre-
sponding region to be opaque. In the third case, we 
simply ignore the polygon.

Results and Discussion
We implemented our algorithms using Visual C++ 
and OpenGL and successfully tested them on dif-
ferent real-world terrain vector map datasets. For 
the tests, we used a PC with a 2.4-GHz Intel Core 
2 CPU, 2 Gbytes of RAM, and an ATI Radeon HD 
4650 graphics card.

Map Simplification
We used four types of vector maps: land use/land 
cover (LULC), contour, stream, and soil (see Table 
1). Figures 5, 6, and 7 illustrate the first three 
original maps and their simplified versions. Table 
2 presents the total simplification time and the 

(a) (b) (c) (d)

Figure 4. Constructing level-of-detail (LOD) polygon models. (a) The original polygons. (b) Splitting the polygons into arcs. 	
(c) Splitting the arcs into monotone subpolylines. The boldest subpolylines are at the full LOD, the bolder ones are at the medium 
LOD, and the finest ones are at the coarse LOD. (d) Reconstructing the polygons. We render the light gray polygons using the 
shadow volume algorithm and the dark gray one using texture mapping.

Table 1. Tested vector datasets.

Dataset type
No. of polylines or 

polygons No. of vertices Source

Land use/land cover (LULC) map 1,197 90,145 State of Hawaii, www.state.hi.us/dbedt/gis/lulc.htm

500-ft. contour map 305 93,187 State of Hawaii, http://hawaii.gov/dbedt/gis/cntrs500.htm

Stream map 2,651 114,023 State of Hawaii, http://hawaii.gov/dbedt/gis/huntareas.htm

Soil map 5,548 987,204 State of Hawaii, http://hawaii.gov/dbedt/gis/soils.htm
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number of remaining vertices. Table 3 describes 
the time spent on each step.

We also compared our method to Mustafa and 
his colleagues’ method. Table 4 shows that these 
methods require roughly the same time to get the 
same compression ratios. Our method generates 
fewer segments and thus spends less time detecting 

the noncompliant segments. On the other hand, 
it computes e-Voronoi cells for the monotone sub-
polylines instead of for the original polylines. Our 
approach’s main advantage is that it can avoid 
both intersections and self-intersections, whereas 
Mustafa and his colleagues’ method might intro-
duce self-intersections.

Figure 8 shows the simplifications from both 
methods; using ArcMap to check the simplified 
maps’ topological relationships, we found no topo-
logical errors. With almost the same compression 
ratios as Mustafa and his colleagues’ method, our 
method can keep the exact topological consistency.

To the best of our knowledge, few researchers 
have addressed map simplification using graphics 
hardware. So, we also compared our method with 
Bisheng Yang and his colleagues’ geometry-based 
method,6 which can likewise prevent intersections 
and self-intersections. To reduce computing time, 
Yang and his colleagues removed small features 
before simplification. In contrast, our method 
keeps all the features.

In the experiment, we used Yang and his col-
leagues’ method without removing small features 
first (see Table 4). When the data volume is small, 
our method offers no obvious advantages because 
clearing and reading the frame buffer takes a cer-
tain amount of time. However, it’s more efficient 
and faster with large datasets because it doesn’t 
require complex geometric computing processes.

Overlaying Vector Maps on 3D Terrain Models
Using the datasets described in Table 1, we con-
structed four LOD map models and overlaid them 
on a Hawaiian terrain model containing 1,0252 
height points. We rendered the contour map (e = 
5‰) and stream map (e = 0.5‰) on the LOD ter-
rain’s surface as visualized with Samuel Atlan and 
Michael Garland’s algorithm.7 For the LULC map 
(e = 5‰) and soil map (e = 0.5‰), we rendered 
the terrain with Stefan Röttger’s algorithm.8

We also visualized these four maps using Martin 
Schneider and Reinhard Klein’s method.4 Figures 
9 and 10 show the results; we don’t see aliasing 
artifacts or gaps. Figure 11 demonstrates that our 
method achieves higher frame rates than Schneider 
and Klein’s method does, especially when the view-
point is far from the terrain surface. Furthermore, 
our overlaying efficiency is almost unaffected by 
the complexity of the underlying terrain datasets 
and the terrain LOD algorithms.

Future research will explore issues such as adap-
tation of an out-of-core algorithm to efficiently 

(a) (b)

Figure 5. Simplifying a land use/land cover (LULC) map. (a) The original 
map has 90,145 vertices. (b) The simplified map has 9,530 vertices. e = 
5‰, where e is the tolerance parameter for the Zhao-Saalfeld5 method, 
and 5‰ means e is set as 5‰ of the original map’s width.

(a) (b)

Figure 7. Simplifying a stream map. (a) The original map has 114,023 
vertices. (b) The simplified map has 5,720 vertices. e = 5‰.

(a) (b)

Figure 6. Simplifying a contour map. (a) The original map has 93,187 
vertices. (b) The simplified map has 1,831 vertices. e = 5‰.
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implement large vector map simplification, and fast 
transmission of large-scale vector maps and DEM 
datasets in networked environments. �
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Table 2. The simplification time and remaining vertices in our method.

Map LULC Contour Stream Soil

Original no. of vertices 90,145 93,187 114,023 987,204

Distance tolerance e (‰) 5.0 0.5 5.0 0.5 5.0 0.5 5.0 0.5

Simplification time (sec.) 4.2 3.2 3.5 2.5 4.5 3.0 28.7 21.6

No. of remaining vertices 9,530 23,680 1,831 11,961 5,720 11,749 70,643 165,936

Compression ratio (%) 10.6 26.3 2.0 12.8 5.0 10.3 7.2 16.8

Table 3. The time cost for each step in our method (sec.).

Step

Map

LULC Contour Stream Soil

e = 5.0‰ e = 0.5‰ e = 5.0‰ e = 0.5‰ e = 5.0‰ e = 0.5‰ e = 5.0‰ e = 0.5‰

1. Get monotone subpolylines 0.1 0.1 0.1 0.1 0.1 0.1 1.2 0.8

2. Generate shortcut segments 0.4 0.4 0.6 0.3 0.8 0.5 3.9 3.0

3. Render e-Voronoi cells 2.1 1.2 1.4 0.9 1.4 0.7 8.1 5.5

4. Remove noncompliant segments 1.5 1.0 1.3 1.1 2.0 1.6 13.4 10.5

5. Get final simplifications 0.2 0.1 0.1 0.1 0.3 0.2 2.1 1.6

Total time 4.2 3.2 3.5 2.5 4.5 3.0 28.7 21.6

Table 4. Comparing three methods for simplifying vector maps.

Map

Method

Ours Bisheng Yang and his colleagues6 Nabil Mustafa and his colleagues2

No. of remaining 
vertices

Simplification time 
(sec.)

No. of remaining 
vertices

Simplification time 
(sec.)

No. of remaining 
vertices

Simplification time 
(sec.)

LULC 9,530 4.2 9,644 2.7 9,294 3.7

Contour 1,831 3.5 1,806 3.4 1,862 2.7

Stream 5,720 4.5 5,693 3.2 5,835 3.2

Soil 70.630 28.7 70,648 45.1 70,461 27.1

(a) (b) (c)

Figure 8. Simplifying a soil map. (a) A small region in the original map, which has 987,204 vertices. (b) The 
same region in our simplified map, which has 70,630 vertices. (c) The same region in the simplified map 
generated by Nabil Mustafa and his colleagues’ method,2 which has 70,461 vertices. The proposed method 
keeps the exact topological consistency, with almost the same compression ratios as Mustafa and his 
colleagues’ method.
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(a) (b)

Figure 9. Visualizing a stream map. (a) A view-dependent LOD stream map overlay (e = 0.5‰, f1 = 14,000 m, 
and f2 = 7,000 m, where f1 is the distance threshold between the coarse level and medium level and f2 is the 
threshold between the medium level and full level). (b) The original contour map overlay implemented by 
Martin Schneider and Reinhard Klein’s method.4 Our method renders the faraway polylines with fewer details. 
Compared with Schneider and Klein’s method, ours doesn’t generate violent changes or perceivable cracks.

(a) (b)

Figure 10. Visualizing a soil map. (a) A view-dependent LOD soil map model overlay (e = 0.5‰, f1 = 9,000 m, 
and f2 = 4,500 m). (b) The original soil map overlay implemented by Schneider and Klein’s method. Our 
method renders the faraway polygons by texture mapping but doesn’t generate aliasing.
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Overlay polygons by Schneider and Klein’s algorithm
Overlay polygons by our algorithm
Just render digital elevation models by Atlan and 
Garland’s algorithm

Overlay polygons by Schneider and Klein’s algorithm
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Just render digital elevation models by Atlan and 
Garland’s algorithm
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Figure 11. Frame rate curves from rendering the Hawaiian terrain and vector maps. (a) The contour map. (b) 
The stream map. (c) The LULC map. (d) The soil map. The frame rate fluctuates with the viewpoint moving 
to the terrain’s surface and then to the distance. Our method achieves higher frame rates and is almost 
unaffected by the terrain LOD algorithms.
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