
14	 March/April 2011	 Published by the IEEE Computer Society� 0272-1716/11/$26.00 © 2011 IEEE

Feature Article

Efficient Simplification
of Large Vector Maps Rendered
onto 3D Landscapes
Ling Yang and Liqiang Zhang ■ State Key Laboratory of Remote Sensing Science

Jingtao Ma ■ PTV America

Zhizhong Kang ■ China University of Geosciences

Lixin Zhang ■ State Key Laboratory of Remote Sensing Science

Jonathan Li ■ University of Waterloo

Overlaying 2D vector maps onto 3D digital
elevation models (DEMs) communicates
information about the topography and

landscape objects in a convenient, easily under-
stood form. So, quickly rendering vector maps in
3D landscapes is an important goal in spatial-

decision VR applications, such as
land-use planning with comput-
erized models.

Level-of-detail (LOD) terrain
models decrease the complex-
ity of 3D spatial object repre-
sentation and are often used
with high-resolution landscape
visualization to achieve high-
performance rendering. How-
ever, in these models, changing
the virtual observer’s point of
view often requires terrain sur-
face reconstructions, and the
overlay process should make the

corresponding adjustments in real time. Further-
more, different applications might use different
LOD terrain models, and many overlaying meth-
ods are developed ad hoc and are hard to adapt to
general situations.

Maintaining valid, consistent topology in vec-
tor map data is a prerequisite to obtaining correct
results for queries and spatial analysis. However,
owing partly to the intrinsic complexity of sim-
plifying vector maps while maintaining consistent
topology, few studies have tackled this problem in
a real map context, working with multiple object
types such as lines and polygons while achieving
computational efficiency.

Here, we show how we construct LOD vector map
models that can rapidly overlay large-scale vector
maps on multiresolution terrain models. Our ap-
proach doesn’t generate perceivable cracks or alias-
ing artifacts and is independent of LOD DEMs.
Performance isn’t affected by the DEM dataset;
it’s related only to the vector maps’ complexity.
To generate the vector maps, we developed a map
simplification algorithm that avoids changes to the
original topological connectivity. This algorithm is
also applicable to other tasks, such as vector data
progressive transmission.

Vector Map Simplification
Our study focuses on polyline simplification be-
cause most map features are represented as lines
or as polygons made up of lines. (For a look at

Real-time rendering of large-
scale vector maps over terrain
surfaces requires displaying
substantial numbers of
polylines and polygons. The
proposed approach simplifies
such maps, permitting more
efficient rendering and
reducing latency in the display
and manipulation of a virtual
environment.

	 IEEE Computer Graphics and Applications� 15

other map simplification research, see the related
sidebar.) We first split each polyline into monotone
pieces. Then, we simplify the resulting subpoly-
lines through the rendering processes of graph-
ics hardware. Finally, we connect the simplified
subpolylines to produce the vector map. Besides
avoiding intersections and self-intersections, this
algorithm can perform better than conventional
geometric techniques.

Generating Monotone Subpolylines
A polyline l is monotone if a line ld exists such
that any line ls perpendicular to ld has at most
one intersection with l (see Figure 1). A monotone
polyline doesn’t intersect with itself. Its simpli-
fied version will still be monotone and won’t self-
intersect either.

To get monotone pieces, we first connect each
pair of successive vertices to form vectors. Then, we
define the angle formed by the vectors

�
p and

�
q . If

the angle determined by counterclockwise rotation
from

�
p to

�
q is less than 180 degrees, we use that

value. If it’s greater than 180 degrees, we subtract
360 from it and use that value instead. So, both
angles lie in the range (-180°, 180°].

ld

l

ls

Figure 1. A monotone polyline. Line ls, perpendicular
to line ld, intersects with the polyline only once, so
the polyline is monotone.

Many researchers have investigated map simplification.
The Douglas-Peucker algorithm, one of the most

popular line simplification methods, can keep impor-
tant geometric characteristics of original lines.1 Mahes
Visvalingam and J.D. Whyatt’s line simplification algorithm
removes the vertices forming the smallest “effective area”
triangles.2 Zhiyuan Zhao and Alan Saalfeld proposed a
sleeve-fitting algorithm that runs in linear time.3 Wenzhong
Shi and ChuiKwan Cheung evaluated several geometric line
simplification methods and found that the Douglas-Peucker
algorithm produced the most accurate results.4

However, all these methods can introduce topologi-
cal errors such as intersections between lines and self-
intersections. The algorithms must include restrictions for
avoiding such errors.

To address this issue, Regina Estkowski and Joseph Mitchell
described a heuristic method for simplifying parallel lines with-
out intersections—in cubic time in the worst case.5 Leonidas
Guibas and his colleagues pointed out that the problem of
computing a minimum-link approximation of a simple poly-
gon while preventing self-intersections is NP-hard.6

Andrea Mantler and Jack Snoeyink presented a Voronoi
diagram algorithm that can maintain topological relation-
ships.7 Their method first divides a complex polyline into
a collection of safe sets. It then simplifies each safe set by
using a single line segment or a standard polyline simplifi-
cation algorithm such as the Douglas-Peucker algorithm.
This method’s time complexity for computing a Voronoi
diagram is O(nlogn) and for computing safe sets is O(n).

Nabil Mustafa and his colleagues also implemented a
Voronoi-diagram-based algorithm to perform dynamic
view-dependent simplification of large geographical maps.8

By using graphics hardware, they achieved high computa-
tional efficiency and avoided intersections among the out-
put lines. However, the frame buffer resolution limits that
algorithm’s precision, and it can’t avoid self-intersections.

References
	 1.	 D.H. Douglas and T.K. Peucker, “Algorithms for the Reduction

of the Number of Points Required to Represent a Digitized

Line or Its Caricature,” Canadian Cartographer, vol. 10, no. 2,

1973, pp. 112–122.

	 2.	 M. Visvalingam and J.D. Whyatt, “Line Generalisation by

Repeated Elimination of Points,” Cartographic J., vol. 30, no.

1, 1993, pp. 46–51.

	 3.	 Z. Zhao and A. Saalfeld, “Linear-Time Sleeve-Fitting Poly

line Simplification Algorithms,” Proc. Auto-Carto XIII, pp.

214–223.

	 4.	 W.Z. Shi and C.K. Cheung, “Performance Evaluation of Line

Simplification Algorithms for Vector Generalization,” Carto

graphic J., vol. 43, no. 1, 2006, pp. 27–44.

	 5.	 R. Estkowski and J.S.B. Mitchell, “Simplifying a Polygonal

Subdivision While Keeping It Simple,” Proc. 17th ACM Symp.

Computational Geometry, ACM Press, 2001, pp. 40–49.

	 6.	 L.J. Guibas et al., “Approximating Polygons and Subdivisions

with Minimum Link Paths,” Int’l J. Computational Geometry

and Applications, vol. 3, no. 4, 1993, pp. 383–415.

	 7.	 A. Mantler and J. Snoeyink, “Safe Sets for Line Simplification,”

Proc. 10th Ann. Workshop Computational Geometry, Stony Brook

Univ., 2000.

	 8.	 N. Mustafa et al., “Dynamic Simplification and Visualization

of Large Maps,” Int’l J. Geographical Information Science, vol.

20, no. 3, 2006, pp. 273–320.

Related Work on Map Simplification

16	 March/April 2011

Feature Article

For a polyline l = (v0, v1, …, vn), we define the edge
angle qi associated with edge v vi i+1 by the angle
from v v0 1 to v vi i+1 . V. Chandru and colleagues
have proved that l is monotone if and only if its
edge-angle sequence {q0, q1, …, qn–1} satisfies (qmax -
qmin) < 180, where qmax = max(q0, q1, …, qn–1) and
qmin = min(q0, q1, …, qn–1).1 So, starting with q0, we
compute the edge angles in sequence and update
qmax and qmin simultaneously. If (qmax - qmin) ≥ 180
degrees at qi, we split the polyline at vi and restart
the computation with vi. In this way, we can gen-
erate monotone subpolylines with time complex-
ity O(n).

Simplifying Monotone Subpolylines
Now, we further simplify the subpolylines and en-
sure that the simplified results don’t intersect with
each other.

To constrain the simplification, we rely on e-
Voronoi diagrams. A Voronoi diagram of a set of
geometric objects is a partition of the surround-
ing space into cells, each of which comprises the
points closer to one of the objects than to any oth-
ers (see Figure 2a). An object’s e-Voronoi cell is the
portion of its Voronoi cell lying within distance e
of the object (see Figure 2b).

To avoid intersections between polylines, Nabil
Mustafa and his colleagues proposed a simplification
algorithm that removes noncompliant line segments
on the basis of the polyline’s e-Voronoi cell.2 In their
method, a polyline segment connects any two ver-
tices of the polyline, whether adjacent or not. A
compliant segment lies completely within the poly-
line’s e-Voronoi cell (see Figure 2b). So, compliant
segments don’t intersect other compliant segments.
However, they might still cross themselves.

Our approach avoids intersections and self-
intersections by computing e-Voronoi cells for each
monotone subpolyline rather than for the polylines
themselves. Simplification involves five main steps.

First, we generate a set of shortcut segments for
each monotone subpolyline.

Second, we render the e-Voronoi cell for each
monotone subpolyline in the graphics hardware’s
stencil buffer. Each monotone segment’s Voronoi
region gets a unique stencil value—essentially, a dif-
ferent color. Most computer graphics cards permit
stencil values from 0 to 255. If there are more than
255 monotone subpolylines, we use simple heuristics
to color the adjacent e-Voronoi cells with different
values. For each subpolyline, we scan surrounding
pixels in the stencil buffer before rendering the e-
Voronoi cell and record these pixels’ stencil values.
Then, we set this subpolyline’s stencil value to be
different than that of any of those pixels.

Third, we draw each shortcut segment in the
color buffer in a unique color with the stencil
test enabled. A segment passes the test only if its
stencil value doesn’t equal the stencil value of the
subpolyline’s e-Voronoi cell. Any segment lying
completely in the Voronoi region fails the test. The
result is that compliant segments don’t appear in
the color buffer.

Fourth, we scan the color buffer. If the scan de-
tects a shortcut segment’s color, that segment is
noncompliant and is removed.

Finally, we connect the remaining compliant
segments.

The depth and stencil buffers let us generate
the Voronoi regions quickly, without complex geo-
metric computation. But because the color buffer
represents polylines as pixels, a noncompliant seg-
ment might be hidden by other segments. To solve
this problem, we repeatedly clear the color buffer,
rerender the segments, and eliminate noncompli-
ant segments until the process uncovers no new
noncompliant segments.

Generating fewer shortcut segments can reduce
the iterations necessary to complete this process.
We employ the Douglas-Peucker algorithm to se-
lect an optimal set of shortcut segments.3 We first
connect the original polyline’s starting and ending
vertices to get a segment. We then calculate the
distances from the intermediate vertices to that
segment and identify the vertex at the greatest
distance. We connect the vertex having the maxi-
mum distance with the starting and ending ver-
tices to generate two segments. If the maximum
distance is less than e, we add the segment to the
segments set.�������������������������������������� ������������������������������������We repeat this process until it gen-
erates no more segments.

(a) (b)

�

Figure 2. To simplify monotone subpolylines, we use e-Voronoi diagrams.
(a) Voronoi diagrams of three polylines. The dark gray zone is the
leftmost polyline’s Voronoi cell because this zone’s pixels are closer to
the leftmost polyline than the others. (b) e-Voronoi cells. The distance
from a polyline to its e-Voronoi cell’s boundary isn’t larger than e. The
dashed line shows the noncompliant segment, which is a segment of the
middle polyline and beyond this polyline’s e-Voronoi cell. The dotted
line shows the compliant segment, which lies completely in the middle
polyline’s e-Voronoi cell.

	 IEEE Computer Graphics and Applications� 17

Because a monotone subpolyline’s compliant
segments lie completely in its e-Voronoi cell, a
subpolyline simplified in this way can’t cross
other simplified polylines. Because the simplified
subpolylines are monotone, they’ll never cross
themselves. So, this method removes all the inter-
sections and self-intersections. Figure 3 illustrates
the main procedure.

Retaining Precision
Vector features drawn at large scales in the frame
buffer might be represented by several pixels or
only one pixel. To reduce inexactness and occlu-
sions due to rasterization, we subdivide the vector
map to guarantee that each line segment can be
represented by at least two pixels.

We divide the map into at least nW subregions
in the width direction according to the function
nW = W/(d · w), where d is the average distance
between two adjacent vertices of a polyline, w is
the screen width, and W is the map width. The 
function rounds a number up to an integer value,
which ensures that different vertices in the map
don’t cover the same pixel in the frame buffer.
Next, we divide the map into nH subregions in the
height direction. Loosely speaking, the simplifica-
tion time increases as O(nW · nH).

Overlay on Multiresolution Terrain Models
We render the simplified vector features accord-
ing to their LOD. At a relatively coarse LOD, we
render the features using the shadow volume ap-
proach.4 At the coarsest level—farthest from the
viewpoint—we render the features using substitute
technologies.

For a look at other research on rendering vector
maps on multiresolution terrain models, see the
related sidebar.

Accurate Overlay
The overlaying involves two steps: constructing
shadow volumes and rendering the shadows.

A vector feature’s shadow volume is a polyhedron

(a) (b) (c)

Figure 3. Simplifying polylines. (a) The original polylines. (b) e-Voronoi diagrams of monotone subpolylines.
(c) The simplified results (bold black lines). Each subpolyline’s simplified result always lies in its e-Voronoi cell.
So, the simplified results won’t cross with each other or cross themselves.

Methods for visualizing vector data over digital elevation models
(DEMs) are either geometry based or texture based. To avoid

cracks between vector maps and the associated level-of-detail
(LOD) terrain models, geometry-based methods must reconstruct
the maps dynamically as the viewpoint changes. Some methods
rely on terrain-rendering algorithms, such as Zachary Wartell and
his colleagues’ algorithm for overlaying polylines on LOD terrain
models.1 Other algorithms generate static geometric primitives
during preprocessing, but users can’t manipulate the vector data
at runtime.

Texture-based methods generate 2D textures from the vector
data and then project them onto DEMs. However, when the texture
resolution is less than the screen resolution, these methods produce
blurry edge and, as the viewpoint moves toward terrain surfaces,
serious aliasing artifacts. Increasing the texture resolution or using
multiple texture maps with different resolutions can resolve the dif-
ficulties, but these approaches consume huge amounts of texture
memory. Oliver Kersting and Jürgen Döllner used an off-screen
buffer to generate textures dynamically,2 but performance depends
on the availability of advanced graphics hardware.

On the other hand, Martin Schneider and Reinhard Klein adopted
the shadow volume algorithm,3 which overcomes the limitations
of conventional geometry-based and texture-based methods. It’s
independent of LOD terrain models and overlays the vector maps
on the terrain precisely. However, rendering large, complicated
vector maps in real time can be difficult.

References
	 1.	 Z. Wartell et al., “Rendering Vector Data over Global, Multiresolution

3D Terrain,” Proc. 2003 Symp. Data Visualization, ACM Press, 2003,

pp. 213–222.

	 2.	 O. Kersting and J. Döllner, “Interactive Visualization of Vector Data

in GIS,” Proc. 10th ACM Int’l Symp. Advances in GIS, ACM Press, 2002,

pp. 107–112.

	 3.	 M. Schneider and R. Klein, “Efficient and Accurate Rendering of Vector

Data on Virtual Landscapes,” J. WSCG, vol. 15, nos. 1–3, 2007, pp.

59–65.

Related Work on Rendering Vector Maps

onto Multiresolution Terrain Models

18	 March/April 2011

Feature Article

whose lateral faces are perpendicular to the hori-
zontal plane. To construct a polygon’s shadow vol-
ume, each side is extruded vertically to create its
lateral faces. The top and bottom caps of the poly-
hedron are parallel to the horizontal plane; their
heights are the maximum and minimum heights,
respectively, of the DEM region covered by the poly-
gon. To construct a polyline’s shadow volume, we
broaden it to a narrow strip and then construct
lateral faces and caps the same way as for polygons.

To render the resulting polyhedron’s shadows,
we disable the color buffer and depth buffer write
functions and enable the stencil buffer write and
stencil test. First, we set the stencil test rule to
increase the stencil value when the depth test fails
and render the polyhedron’s back faces. According
to the depth test rule, if a pixel’s depth is larger
than that already stored in the depth buffer, the
depth test fails. Because we measure the depth in
terms of the distance to the viewpoint, and the
terrain has been rendered in the depth buffer,
the parts of polyhedron that are concealed by the
terrain fail the depth test. Second, we alter the
stencil test to decrease the stencil value when the
depth test fails and render the front faces. Finally,
we disable the depth test, enable the color buffer
override (with the stencil test passing only if the
stencil value doesn’t equal 0), and render the back
faces again with the specific color.

Polyline Overlays
In a large landscape, gaps between the polylines
and the underlying terrain surface that are small
and far from the viewpoint don’t significantly
affect the landscape’s visual quality. So, we can
overlay the far polylines using our coarse models.
During preprocessing, we first interpolate new ver-
tices into the simplified polylines and then convert
the new and original vertices into 3D vertices us-
ing the terrain surface elevations. In this way, we
generate 3D polylines.

To avoid z-buffer fighting (the generation of visual
artifacts by two objects that are rendered close to
each other), we enter the artifacts and the poly-
lines into the terrain models’ undersurfaces. We

raise the 3D polylines’ heights by a specified off-
set during rendering, with the offset increasing
linearly with the distance from the polyline to the
viewpoint. After rendering, few polylines intersect
with the terrain models, and the gaps between the
polylines and the terrain surface are inconspicuous.

Polygon Overlays
To render distant polygon features, we use texture
mapping; the long distance to the viewpoint alle-
viates the aliasing problems this technique causes.
First, we render vector features into a 2D texture by
filling the simplified polygons with specific colors
and making the other regions transparent. We then
fuse the resulting texture with other textures of the
terrain surface and project it onto the surface.

The overlay process should update the texture
in real time according to the distance between
the polygons and the viewpoint. If the viewpoint
moves toward a polygon, we set the polygon’s cor-
responding region in the texture to be transparent
by setting its alpha value to 0. Then, we render the
polygon on the terrain models using the shadow
volume approach. If the viewpoint moves away
from a polygon, we just set ���������������������the corresponding re-
gion’s texture of terrain models to be opaque.

LOD Selection
The distance between a spatial object and the
viewpoint serves as the criterion for the LOD. Be-
cause of vector features’ irregular shapes and vari-
able lengths (for polylines) or areas (for polygons),
computing the distance and constructing continu-
ous LOD models are difficult. Moreover, comput-
ing the distance to the viewpoint for all vertices
is time-consuming. So, we compute the LOD level
value for each monotone subpolyline generated
during simplification instead of for each feature.

To accelerate LOD selection, we use a block-
indexing algorithm. We compute a map’s mini-
mum bounding rectangle and the number of
subpolylines nsubs. Given a value navg, we split the
rectangle into nsubs/navg regular blocks, implying
that on average, every block contains navg subpoly-
lines. For each block, we compute and store the
subpolylines that are fully or partly contained in
it. Because the vector features are unevenly dis-
tributed, some blocks might not contain subpoly-
lines; we remove those blocks.

As the viewpoint changes, we calculate the dis-
tance d between it and the center of a block. Given
distance thresholds f1 and f2, where f1 > f2, there
are four possible LODs:

■■ invisible (the block is culled and invisible),

To render distant polygon features,
we use texture mapping; the long distance

to the viewpoint alleviates the aliasing
problems this technique causes.

	 IEEE Computer Graphics and Applications� 19

■■ coarse (d > f1.),
■■ medium (f2 < d < f1), and
■■ full (d < f2).

If a subpolyline is contained by several blocks with
different LOD values, we choose the highest level
of all the blocks as the subpolyline’s level.

Vector Map Construction
At this point, the polylines are represented by their
monotone subpolylines. If a subpolyline’s LOD is
full, we overlay it on the terrain model using the
shadow volume algorithm. If the LOD is medium,
we overlay the simplified subpolyline instead, again
using the shadow volume algorithm. If the LOD is
coarse, we render the simplified subpolyline with
the 3D polylines.

Constructing LOD polygon models is a bit more
complicated: if one polygon rendered at the full LOD
is adjacent to one rendered at the coarse LOD using
the simplified polygons, the two polygons’ boundar-
ies will no longer match. We avoid this problem by
splitting the boundaries into arcs (see Figure 4b) ac-
cording to their adjacent topological relations. (We
use Esri’s ArcMap to build topological relations be-
fore the simplification.) We then simplify these arcs
instead of the original polygon borders by splitting
them into monotone subpolylines (see Figure 4c),
which we simplify separately in turn. When render-
ing, we first get each subpolyline’s LOD, then decide
how to render each polygon.

A polygon has three options regarding LOD:

■■ One or more of its subpolylines are at the me-
dium or full LOD.

■■ None of the subpolylines is at the medium or full
LOD, and one or more are at the coarse LOD.

■■ The whole polygon is at the invisible LOD.

In the first case, we construct the polygon’s new
border by using the simplified or original subpoly-
lines—the original when the subpolyline is at the
full LOD and its simplified version otherwise (see
Figure 4d). Then, we render the reconstructed
polygon using the shadow volume algorithm and
set its corresponding region in the texture to be
transparent. In the second case, we render the
polygon using texture mapping and set its corre-
sponding region to be opaque. In the third case, we
simply ignore the polygon.

Results and Discussion
We implemented our algorithms using Visual C++
and OpenGL and successfully tested them on dif-
ferent real-world terrain vector map datasets. For
the tests, we used a PC with a 2.4-GHz Intel Core
2 CPU, 2 Gbytes of RAM, and an ATI Radeon HD
4650 graphics card.

Map Simplification
We used four types of vector maps: land use/land
cover (LULC), contour, stream, and soil (see Table
1). Figures 5, 6, and 7 illustrate the first three
original maps and their simplified versions. Table
2 presents the total simplification time and the

(a) (b) (c) (d)

Figure 4. Constructing level-of-detail (LOD) polygon models. (a) The original polygons. (b) Splitting the polygons into arcs. 	
(c) Splitting the arcs into monotone subpolylines. The boldest subpolylines are at the full LOD, the bolder ones are at the medium
LOD, and the finest ones are at the coarse LOD. (d) Reconstructing the polygons. We render the light gray polygons using the
shadow volume algorithm and the dark gray one using texture mapping.

Table 1. Tested vector datasets.

Dataset type
No. of polylines or

polygons No. of vertices Source

Land use/land cover (LULC) map 1,197 90,145 State of Hawaii, www.state.hi.us/dbedt/gis/lulc.htm

500-ft. contour map 305 93,187 State of Hawaii, http://hawaii.gov/dbedt/gis/cntrs500.htm

Stream map 2,651 114,023 State of Hawaii, http://hawaii.gov/dbedt/gis/huntareas.htm

Soil map 5,548 987,204 State of Hawaii, http://hawaii.gov/dbedt/gis/soils.htm

20	 March/April 2011

Feature Article

number of remaining vertices. Table 3 describes
the time spent on each step.

We also compared our method to Mustafa and
his colleagues’ method. Table 4 shows that these
methods require roughly the same time to get the
same compression ratios. Our method generates
fewer segments and thus spends less time detecting

the noncompliant segments. On the other hand,
it computes e-Voronoi cells for the monotone sub-
polylines instead of for the original polylines. Our
approach’s main advantage is that it can avoid
both intersections and self-intersections, whereas
Mustafa and his colleagues’ method might intro-
duce self-intersections.

Figure 8 shows the simplifications from both
methods; using ArcMap to check the simplified
maps’ topological relationships, we found no topo-
logical errors. With almost the same compression
ratios as Mustafa and his colleagues’ method, our
method can keep the exact topological consistency.

To the best of our knowledge, few researchers
have addressed map simplification using graphics
hardware. So, we also compared our method with
Bisheng Yang and his colleagues’ geometry-based
method,6 which can likewise prevent intersections
and self-intersections. To reduce computing time,
Yang and his colleagues removed small features
before simplification. In contrast, our method
keeps all the features.

In the experiment, we used Yang and his col-
leagues’ method without removing small features
first (see Table 4). When the data volume is small,
our method offers no obvious advantages because
clearing and reading the frame buffer takes a cer-
tain amount of time. However, it’s more efficient
and faster with large datasets because it doesn’t
require complex geometric computing processes.

Overlaying Vector Maps on 3D Terrain Models
Using the datasets described in Table 1, we con-
structed four LOD map models and overlaid them
on a Hawaiian terrain model containing 1,0252
height points. We rendered the contour map (e =
5‰) and stream map (e = 0.5‰) on the LOD ter-
rain’s surface as visualized with Samuel Atlan and
Michael Garland’s algorithm.7 For the LULC map
(e = 5‰) and soil map (e = 0.5‰), we rendered
the terrain with Stefan Röttger’s algorithm.8

We also visualized these four maps using Martin
Schneider and Reinhard Klein’s method.4 Figures
9 and 10 show the results; we don’t see aliasing
artifacts or gaps. Figure 11 demonstrates that our
method achieves higher frame rates than Schneider
and Klein’s method does, especially when the view-
point is far from the terrain surface. Furthermore,
our overlaying efficiency is almost unaffected by
the complexity of the underlying terrain datasets
and the terrain LOD algorithms.

Future research will explore issues such as adap-
tation of an out-of-core algorithm to efficiently

(a) (b)

Figure 5. Simplifying a land use/land cover (LULC) map. (a) The original
map has 90,145 vertices. (b) The simplified map has 9,530 vertices. e =
5‰, where e is the tolerance parameter for the Zhao-Saalfeld5 method,
and 5‰ means e is set as 5‰ of the original map’s width.

(a) (b)

Figure 7. Simplifying a stream map. (a) The original map has 114,023
vertices. (b) The simplified map has 5,720 vertices. e = 5‰.

(a) (b)

Figure 6. Simplifying a contour map. (a) The original map has 93,187
vertices. (b) The simplified map has 1,831 vertices. e = 5‰.

	 IEEE Computer Graphics and Applications� 21

implement large vector map simplification, and fast
transmission of large-scale vector maps and DEM
datasets in networked environments. �

Acknowledgments
This research was supported by the National Natu-
ral Science Foundation of China (grants 60736007

Table 2. The simplification time and remaining vertices in our method.

Map LULC Contour Stream Soil

Original no. of vertices 90,145 93,187 114,023 987,204

Distance tolerance e (‰) 5.0 0.5 5.0 0.5 5.0 0.5 5.0 0.5

Simplification time (sec.) 4.2 3.2 3.5 2.5 4.5 3.0 28.7 21.6

No. of remaining vertices 9,530 23,680 1,831 11,961 5,720 11,749 70,643 165,936

Compression ratio (%) 10.6 26.3 2.0 12.8 5.0 10.3 7.2 16.8

Table 3. The time cost for each step in our method (sec.).

Step

Map

LULC Contour Stream Soil

e = 5.0‰ e = 0.5‰ e = 5.0‰ e = 0.5‰ e = 5.0‰ e = 0.5‰ e = 5.0‰ e = 0.5‰

1. Get monotone subpolylines 0.1 0.1 0.1 0.1 0.1 0.1 1.2 0.8

2. Generate shortcut segments 0.4 0.4 0.6 0.3 0.8 0.5 3.9 3.0

3. Render e-Voronoi cells 2.1 1.2 1.4 0.9 1.4 0.7 8.1 5.5

4. Remove noncompliant segments 1.5 1.0 1.3 1.1 2.0 1.6 13.4 10.5

5. Get final simplifications 0.2 0.1 0.1 0.1 0.3 0.2 2.1 1.6

Total time 4.2 3.2 3.5 2.5 4.5 3.0 28.7 21.6

Table 4. Comparing three methods for simplifying vector maps.

Map

Method

Ours Bisheng Yang and his colleagues6 Nabil Mustafa and his colleagues2

No. of remaining
vertices

Simplification time
(sec.)

No. of remaining
vertices

Simplification time
(sec.)

No. of remaining
vertices

Simplification time
(sec.)

LULC 9,530 4.2 9,644 2.7 9,294 3.7

Contour 1,831 3.5 1,806 3.4 1,862 2.7

Stream 5,720 4.5 5,693 3.2 5,835 3.2

Soil 70.630 28.7 70,648 45.1 70,461 27.1

(a) (b) (c)

Figure 8. Simplifying a soil map. (a) A small region in the original map, which has 987,204 vertices. (b) The
same region in our simplified map, which has 70,630 vertices. (c) The same region in the simplified map
generated by Nabil Mustafa and his colleagues’ method,2 which has 70,461 vertices. The proposed method
keeps the exact topological consistency, with almost the same compression ratios as Mustafa and his
colleagues’ method.

22	 March/April 2011

Feature Article

and 60972128), Program for New Century Excellent
Talents in University (grant NCET-07-0099), 973
Program (grant 2007CB714403), and Open Project
Program of the State Key Lab of Computer-Assisted
Design and Computer Graphics (grant A0901), Zhe-
jiang University. We thank our editor and reviewers
for their kind suggestions.

References
	 1.	 V. Chandru, V.T. Rajan, and R. Swaminathan,

“Monotone Pieces of Chains,” ORSA J. Computing,
vol. 4, no. 4, 1992, pp. 439–446.

	 2.	 N. Mustafa et al., “Dynamic Simplification and
Visualization of Large Maps,” Int’l J. Geographical
Information Science, vol. 20, no. 3, 2006, pp. 273–320.

	 3.	 D.H. Douglas and T.K. Peucker, “Algorithms for
the Reduction of the Number of Points Required to
Represent a Digitized Line or Its Caricature,” Canadian
Cartographer, vol. 10, no. 2, 1973, pp. 112–122.

	 4.	 M. Schneider and R. Klein, “Efficient and Accurate
Rendering of Vector Data on Virtual Landscapes,” J.

WSCG, vol. 15, nos. 1–3, 2007, pp. 59–65.
	 5.	 Z. Zhao and A. Saalfeld, “Linear-Time Sleeve-Fitting

Polyline Simplification Algorithms,” Proc. Auto-Carto
XIII, pp. 214–223.

	 6.	 B.S. Yang, R. Purves, and R. Weibel, “Efficient Trans
mission of Vector Data over the Internet,” Int’l J.
Geographical Information Science, vol. 21, no. 2, 2007,
pp. 215–237.

	 7.	 S. Atlan and M. Garland, “Interactive Multiresolution
Editing and Display of Large Terrains,” Computer
Graphics Forum, vol. 25, no. 2, 2006, pp. 211–224.

	 8.	 S. Röttger et al., “Real-Time Generation of Continu
ous Levels of Detail for Height Fields,” Proc. 6th Int’l
Conf. in Central Europe on Computer Graphics and
Visualization (WSCG ’98), IEEE Computer Society
Press, 1998, pp. 315–322.

Ling Yang is a master’s student in geographic information
systems at Beijing Normal University. Her research interests
include map generalization and geographic information sys-
tems. Yang has a BA in geoinformatics from Beijing Normal
University. Contact her at yangling0531@126.com.

(a) (b)

Figure 9. Visualizing a stream map. (a) A view-dependent LOD stream map overlay (e = 0.5‰, f1 = 14,000 m,
and f2 = 7,000 m, where f1 is the distance threshold between the coarse level and medium level and f2 is the
threshold between the medium level and full level). (b) The original contour map overlay implemented by
Martin Schneider and Reinhard Klein’s method.4 Our method renders the faraway polylines with fewer details.
Compared with Schneider and Klein’s method, ours doesn’t generate violent changes or perceivable cracks.

(a) (b)

Figure 10. Visualizing a soil map. (a) A view-dependent LOD soil map model overlay (e = 0.5‰, f1 = 9,000 m,
and f2 = 4,500 m). (b) The original soil map overlay implemented by Schneider and Klein’s method. Our
method renders the faraway polygons by texture mapping but doesn’t generate aliasing.

	 IEEE Computer Graphics and Applications� 23

Liqiang Zhang is a professor of image processing and geo-
graphic information systems at Beijing Normal University.
His research interests include 3D geographic information sys-
tems and remote-sensing image processing. Zhang has a PhD
in geoinformatics from the Chinese Academy of Science’s In-
stitute of Remote Sensing Applications. He’s the correspond-
ing author of this article. Contact him at zihaozhang2003@
yahoo.com.cn.

Jingtao Ma is an intelligent-transportation-systems prod-
uct manager at PTV America. His research interests include
urban transportation and intelligent transportation sys-
tems. Ma has a PhD in transportation engineering from
University of California, Davis. Contact him at jtma@
ptvamerica.com.

Zhizhong Kang is an associate professor of remote sens-
ing and lidar image processing at the China University of
Geosciences. His research interests include real-time render-
ing and lidar data processing. Kang has a PhD in digital
photogrammetry from Wuhan University. Contact him at
dr_zzkang@yahoo.com.cn.

Lixin Zhang is a professor of remote-sensing image pro-

cessing at Beijing Normal University and the vice director
of the State Key Laboratory of Remote Sensing Science. His
research interests include remote-sensing image processing.
Zhang has a PhD in remote sensing from the Chinese Acad-
emy of Science’s Cold and Arid Regions Environmental and
Engineering Research Institute. Contact him at lxzhang@
bnu.edu.cn.

Jonathan Li is a professor in the University of Waterloo’s
Department of Geography and Environmental Management.
His research ranges from remote sensing to distributed geo-
spatial information services. Li has a PhD from the Uni-
versity of Cape Town. Contact him at junli@uwaterloo.ca.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

Fr
am

es
 p

er
 s

ec
on

d

Fr
am

es
 p

er
 s

ec
on

d

Fr
am

es
 p

er
 s

ec
on

d

(c) (d)

(a) (b)

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

Time Time

Time Time

0

20

40

60

80

100

120

0

20

40

60

80

100

120

140

Fr
am

es
 p

er
 s

ec
on

d

Overlay polygons by Schneider and Klein’s algorithm
Overlay polygons by our algorithm
Just render digital elevation models by Atlan and
Garland’s algorithm

Overlay polygons by Schneider and Klein’s algorithm
Overlay polygons by our algorithm
Just render digital elevation models by Atlan and
Garland’s algorithm

Overlay polygons by Schneider and Klein’s algorithm
Overlay polygons by our algorithm
Just render digital elevation models by Röettger’s algorithm

Overlay polygons by Schneider and Klein’s algorithm
Overlay polygons by our algorithm
Just render digital elevation models by Röettger’s algorithm

Figure 11. Frame rate curves from rendering the Hawaiian terrain and vector maps. (a) The contour map. (b)
The stream map. (c) The LULC map. (d) The soil map. The frame rate fluctuates with the viewpoint moving
to the terrain’s surface and then to the distance. Our method achieves higher frame rates and is almost
unaffected by the terrain LOD algorithms.

Visit CG&A on
the Web at

www.computer.org/cga

