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a  b  s  t  r  a  c  t

The  objective  of  this  study  was  to  determine  the  levels  of heavy  metals  cadmium  (Cd)  and  copper  (Cu)
in  rice  by  upscaling  a field-scale  heavy  metal  assessment  (FHMA)  model  from  field  to regional  scale.  The
FHMA  model  was  established  on  the  basis  of  spectral  parameters  in  combination  with  soil  parameters
by  employing  a generalized  dynamic  fuzzy  neural  network.  The  piecewise  function  and  ordinary  kriging
were  developed  to suit  the  upscaled  spectral  parameters  and soil  parameters,  respectively.  In addition,
the  network  structure  and fuzzy  rules,  which  had  already  been  developed  in  the  FHMA  model,  would
yperion data
SD data
iecewise function

be  subsequently  extracted  as those  of  the  regional-scale  heavy  metal  assessment  (RHMA)  model.  The
results  showed  that  the  latter  performed  well  at prediction  with  a  correlation  coefficient  (R2)  and  model
efficiency  (ME)  greater  than  0.70, and  can  be applied  to other  areas,  perhaps  universally.  This  study
suggests  that  it  is feasible  to accurately  estimate  regional  heavy-metal  concentrations  in  rice  by scaling
up the  FHMA  if such  a strategy  is  appropriately  selected  and  finds  that  the  piecewise  function  is  well

ctral  
suited  to transferring  spe

. Introduction

Proximal sensing has proven to be useful in assessment of
eavy-metal concentrations in crop under controlled laboratory
onditions and field-scale trials (Font et al., 2002, 2004; Rosso et al.,
005; Zengin and Munzuroglu, 2005; Chi et al., 2009; Liu et al., 2010,
011a). However, these field-scale approaches are often laborious
nd limited to small area studies (Kooistra et al., 2001, 2004; Clevers
t al., 2004; Noomen et al., 2006, 2012). Regional-scale approaches
sing satellite data for assessing large-area heavy-metal concen-
rations in crop are therefore needed. The goal of this study was
o build a regional model based on imagery, in order to provide
egional-scale information about levels of heavy metal pollution.
he heavy metal assessment model in laboratory conditions and
eld-scale conditions is usually generated by combining ground
ata and spectral data, which are derived from crop leaf or canopy
eflectance. In contrast, the RHMA model is established based on
ixels in remotely sensed imagery.

The importance of scale issues is widely recognized, such as

n hydrology (Becker and Braun, 1999), ecology (Petrosillo et al.,
010; Pelosi et al., 2010) and social sciences (Schroder and Schmidt,
006). Different methods have been employed to estimate systems

∗ Corresponding author. Tel.: +86 10 82321796; fax: +86 10 82322095.
E-mail address: liuxncugb@163.com (X. Liu).

303-2434/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jag.2012.04.014
data  from  a field  to a regional  scale.
©  2012  Elsevier  B.V.  All  rights  reserved.

responses across scales. Generally speaking, scaling transforma-
tions are classified into two  different schemes. The first is the
manipulation of model across scales. Some common methods are to
adjust model parameters or structure, derive response function or
response coefficients for the (often higher) scale at which the model
is applied (Parry et al., 2004; Adam et al., 2011). The second is the
manipulation of data at different spatial resolutions. Approaches
include extrapolation and singling out, interpolation and sampling,
aggregation and disaggregation (Zobeck et al., 2000; Wang et al.,
2002; Ewert et al., 2011). The choice of methods depends on the
specific objectives and the scales or levels considered (Zarco-Tejada
et al., 2001; Volk et al., 2008).

In remote sensing, scaling methods comprise deriving empirical
or physical models that establish a relationship between biophys-
ical variables (e.g., surface temperature, evapotranspiration, leaf
area index and spectral information) from satellite sensors at dif-
ferent scales (Hong et al., 2005, 2009; Liu et al., 2006; Martinez et al.,
2009). When using remote sensing and geographic information sys-
tems (GIS), accurately scaling-up spatial data of a variable and their
uncertainties from a finer to a coarser spatial resolution has been
widely required in mapping and managing natural resources and
ecological and environmental systems (Hong et al., 2009; Nagarajan

et al., 2010). The majority of these studies focused on determin-
ing optimal spatial resolution for data collection and mapping, and
on scaling-up spatial data from one scale to another. However,
there has been little research on transformation of heavy metal

dx.doi.org/10.1016/j.jag.2012.04.014
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
mailto:liuxncugb@163.com
dx.doi.org/10.1016/j.jag.2012.04.014
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ssessment model from field-scale to regional-scale. The objec-
ive of this study was to establish the RHMA model to estimate
egional heavy-metal concentrations in rice based on the FHMA
odel developed in our previous study (Liu et al., 2011b).

. Study area and data

.1. Study area

Two paddy fields in Changchun, Jilin Province, China
43◦05′59.15′′N, 125◦08′26.69′′E) were selected as the study
reas A and B (see Fig. 1). Area A is covered by fewer paddy fields

han Area B. The study areas are about 20 km away from each other
nd similar with regard to climate, historical land use and soil
eries. The areas are within the temperate continental climate zone
ith a mean annual rainfall of 522–615 mm,  where soils are dom-

nated by black soils with sufficient organic matter (2–4%). Jijing
05 rice genotype (Oryza sativa L.) is cultivated in the study areas.
he planted rice is supplied with abundant fertilizers, manures
nd irrigation water to avoid other environmental factors causing
nwanted stress. The main physicochemical characteristics of the
oil are showed in Table 1. From Table 1, the total carbon (C),
otal nitrogen (N), total kalium (K) and total phosphorus (P) can
nsure to meet the needs of rice growing normally based on local
ice management experience. Heavy metals (Zn, Pb, Cr and As) of
wo study areas are both lower than the background level, while
u and Cd concentration are higher than the background level.
ince the rice is not stressed by nutrient deficiency, water stress
tc., and it could therefore be hypothesized that rice are mainly
nfluenced and stressed by Cu and Cd. As such, this study focuses

n predicting Cu and Cd concentration in rice. In this study, Area A
as used to establish the RHMA model for estimating heavy-metal

oncentrations, while Area B was applied to investigate whether
he RHMA model established is not used extensively in another

Fig. 1. The study Areas A and B in the
servation and Geoinformation 19 (2012) 12–23 13

area. In short, Area A and Area B were taken as the study area of
establishment and validation of regional-scale model, respectively.

2.2. Field ground data

The field ground data sets used in this study include soil data,
heavy-metal concentration data in rice and hyperspectral data col-
lected by using an Analytical Spectral Devices (ASD) FieldSpec Pro
spectrometer. The spectral data collection was carried out during
four days during a typical rice growth season in 2008 and 2009,
respectively, which corresponded to the seeding, tillering, booting
and mature growth stages of rice. All spectral measurements were
taken under cloudless or near-cloudless conditions between 10:00
and 14:00. This spectrometer was fitted with fiber optics having
a 10◦ field of view (FOV), and was  operated in the 350–2500 nm
spectral regions with sampling intervals of 2 nm.  Reflectance spec-
tra were measured through calibration with a standardized white
spectralon panel. A panel radiance measurement was taken before
and after the crop measurement with 2 scans each time. The mea-
surements were carried out from a height of 1 m above the rice
canopy. Each site was scanned 10 times and these measurements
were then averaged for the particular site. The 120–160 samples
from heavy metal of rice leaves were scanned in each growth stage
of rice per paddy field. Apart from abnormal spectral data, the whole
set of samples was  split into two subsets, namely about 2/3 for
training (n = 69) and the rest (n = 45) for an external testing.

Rice and soil sampling were taken almost simultaneously
with measurements of canopy spectral reflectance. The leaves
per rice and soil per sample site were both collected and placed
into respective sealed plastic bags to obtain biochemical compo-

sition, such as nutrient elements and heavy-metal concentrations.
Heavy-metal concentrations in soil and rice were determined by
an atomic absorption spectrophotometer (AAS). Total C, total N,
total K were measured by elemental analyzer (Leco, USA), and

 city of Changchun, Jilin, China.
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otal phosphorus in the soil were determined by spectropho-
ometer analyzer (751GD, Shanghai Metash Instrument Co. Ltd.)
t the Chinese Academy of Agricultural Sciences (Bao, 2005). In
his context, soil pH was determined in a paste with a ratio of
:2.5 soils to water using a pH meter Model PHS-3C. Soil organic
atter was analyzed according to Chinese Country Reference
aterial/Reference Material (CRM/RM) information center.

.3. Hyperion hyperspectral data

In this study, a scene of the NASA Earth Observing One (EO-1)
atellite Hyperion image covering the city of Changchun, Jilin,
hina was acquired on 7 October 2009, about one week before
eld ground data for rice in maturity growth stage were collected,
nd when the paddy soil was dry. The Hyperion can provide a
igh resolution hyperspectral imager capable of resolving 220
pectral bands (from 0.4 to 2.5 �m)  with a 30 m resolution. The
O-1 Sensor Hyperion can image a 7.5 km by 100 km land area
er image, and provide detailed spectral mapping with a spectral
ange of 0.2–2.4 �m and a spectral resolution of 10 nm across all
20 channels with high radiometric accuracy.

. Method

To effectively monitor heavy-metal concentrations in rice leaves
n a large scale, we present a method for upscaling from field to
egional scale. This method can be implemented by the following
teps (see Fig. 2):
1) Data collecting and processing, including the ASD, Hyperion
hyperspectral, and soil property data.

2) Upscaling of input parameters, for the spectral parame-
ters, the piecewise function was adopted to achieve scale

Fig. 2. Flow chart for estimating regional heavy meta
servation and Geoinformation 19 (2012) 12–23

transformation, while for the soil parameters, spatial interpo-
lation were used to complete scale transformation.

(3) Extracting of model structure, which derived from FHMA model
based on a generalized dynamic fuzzy neural network (GDFNN).
Such structure would be subsequently used in the RHMA model
in order to predict heavy metal concentrations.

The RHMA model is established across obtaining regional-scale
input variables and performing fuzzy rules and structure of FHMA
model.

3.1. Preprocessing of Hyperion data

The preprocessing of Hyperion imagery includes five steps:

(1) Eliminating useless bands in Hyperion imagery, in which
the signal-to-noise ratio (SNR) was too low because of the
effect from atmospheric scattering and water vapor absorption
(Keshava, 2001, 2003).

(2) Replacing bad lines, which are defined as some vertical lines
in the image having low or no Digital Number (DN) values
compared with adjacent columns. The Gray-scale Slope Thresh-
old (GST) method was applied to automatically identifying bad
lines in each band.

(3) Removing vertical strips in Hyperion imagery. The Global
Normalization Method (GNM) was  used for eliminating the
negative effect of vertical strips (Datt et al., 2003).

(4) Atmospheric correction using the Fast Line-of-sight Atmo-
spheric Analysis of Spectral Hypercubes (FLAASH) software

tool.

(5) Geometric correction, by selecting quadratic polynomial
method and cubic convolution method, the image was cor-
rected to WGS-84 (World Geodetic System1984) coordinate

l concentrations in rice based on FHMA model.
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As soil pH and OM are point data, ordinary kriging was  used to
Fig. 3. Sketch map  for piecewise function in the spectral curve.

system and UTM (Universal Transverse Mercator) projection
system. The geometric error was less than 0.15 pixels. Then
cubic convolution algorithm was used for brightness resam-
pling.

.2. Upscaling of input variables

.2.1. Spectral data
A series of Hyperion reflectance were chose in pure pixel for

ice, in addition, they kept the same geographical coordinates of
SD data collected (Fig. 1). For spectral resampling, ASD data is
ampled at discrete wavelength positions at intervals of 10 nm to
eep consistency with the Hyperion data in the spectral resolu-
ion. In order to improve the efficiency of scaling transformation in
pectral data, it’s important to find an effective way  to diagnose
r eliminate the outliers before retrieving and analyzing spec-
ral information of satellite hyperspectral image. In this study, the
egression analysis between Hyperion data and ASD data based on
esidual, which is larger than would be expected, at the 5% signifi-
ance level, can be used to diagnose outliers (Chave and Thomson,
003). The approach of elimination outliers has been recently used
or upscaling biophysical variables such as LAI (leaf area index), and
APAR (Fraction of Absorbed Photosynthetically Active Radiation)
Weiss et al., 2004). After diagnosing and eliminating outliers in
yperion spectral data, the piecewise functions were developed to
chieve scaling transformation of spectral data. The specific steps
an be depicted as follows:

ASD data was depicted by seven piecewise functions according
o the characteristic of shape in “peak and valley” (Fig. 3), they are
omputed by

A =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1(�)� ∈ (�0, �1)

f2(�)� ∈ (�1, �2)

...

fr(�)� ∈ (�r−1, �r)

(1)

here yA is the ASD reflectance, fr(�) is the ASD reflectance value in

he rth waveband region, r is the number of waveband region, r = 1,
, . . .,  7. The specific waveband range is described in the caption of
ig. 3.
servation and Geoinformation 19 (2012) 12–23 15

Likely, the Hyperion data were depicted by seven piecewise
functions, which are computed by

yH =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g1(�)� ∈ (�0, �1)

g2(�)� ∈ (�1, �2)

...

gr(�)� ∈ (�r−1, �r)

(2)

where yH is the Hyperion reflectance, gr(�) is the Hyperion
reflectance value in the rth waveband region, r is the number of
waveband region, r = 1, 2, . . .,  7.

fr(�) and gr(�) are canopy reflectance and pixel reflectance in
different waveband region. The plant has very similar spectral
response curves in different scales. More specifically, the shape in
“peak and valley” is similar in the specific waveband range, regard-
less of canopy and pixel scale (Green et al., 1998). Therefore, it can
be assumed that the same type of mathematic function exhibits in
fr(�) and gr(�), spectral-response effect transformation of hyper-
spectral data to ASD data can be fulfilled by applying the scaling
and translating of function, i.e.,

fr(�) = Agr(W� + �) + K (3)

where A and W are the scaling factors along vertical and horizontal
axis, respectively; K and � are the translating factors along vertical
and horizontal axis, respectively.

As we  know, the spectral reflectance value is a function of wave-
length. In addition, the effective hyperspectral reflectance value
(fr(�) and gr(�)) in different remote sensors are both plotted at the
corresponding effective wavelength positions (Zhao et al., 2010).
That is to say, there is no need performing scaling and translating
along horizontal axis. Thereby, in Eq. (3), � = 0, W = 1, the equation
is simplified:

fr(�) = Agr(�) + K (4)

We can fulfill the scale transformation of hyperspectral data by
directly applying Eq. (4),  which belongs to piecewise functions. In
fact, it can be considered that there is linear relationship for the
transformation of spectral response effect in hyperspectral data to
that of other scale. This agrees well with the previous study where
the upscaling process is currently addressed by deriving an empir-
ical transfer function that establishes a linear relationship between
the field data to the corresponding satellite products (Zhao et al.,
2010).

To evaluate the approximation accuracy, the fitting degree (FD)
between the transferred Hyperion reflectance and ASD data in the
same wavelength region is calculated by

FD = 1 −
∑n

i (yHC − yA)2∑n
i=1(yHC − yHC )2

(5)

where FD is the fitting degree, yA, yHC, ȳHC are the ASD reflectance,
transferred Hyperion reflectance and average transferred Hyperion
reflectance, respectively; n is the band number. FD values range
from 0 to 1. The higher FD values, the better the performance of
data transformation.

3.2.2. Soil data
In two study areas, soil sampling points (60 within Area A and 60

within Area B) were evenly distributed and chosen on the basis of
0.7 km × 0.7 km squares in each sample. For each sampling site, five
replicate samples were collected, homogenized by hand mixing.
interpolate from a single point to an area. Ordinary kriging provides
an estimate at an unobserved location of a soil property data based
on the weighted average of adjacent observed sites within a given
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Table  1
The physical and chemical properties of the soils in Area A and Area B (mean + standard deviation).

Type Study area Total C (%) Total N (%) Total P (g/kg) Total K (%) Cu (mg/kg) Zn (mg/kg) Pb (mg/kg) Cr (mg/kg) As  (mg/kg) Cd (mg/kg)

Measured soil A 0.18 + 0.06 1.90 + 0.76 0.60 + 0.08 1.39 + 0.21 56.35 + 6.47 50.38 + 4.98 18.95 + 7.45 14.12 + 4.49 9.27 + 1.89 0.36 + 0.01
1 2
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B 0.15 + 0.04 1.59 + 0.51 0.61 + 0.02 1.48 + 0.2
Background soila — — — — 

a Soil quality standard according to the Environment Monitoring Centre of China

rea. The method is usually applied in a case study for scaling-up in
atural resources, ecological and environmental systems (Gertner
t al., 2002; Wang et al., 2002; Triantafilis et al., 2004). The theory of
rdinary kriging is derived from that of regionalized variables (Meul
nd Van Meirvenne, 2003; Lloyd and Atkinson, 2001; Atkinson and
loyd, 2007). In this study, the pH and OM collected in the field
ere interpolated into 30 × 30 m grids by ordinary kriging to keep

onsistency with the Hyperion data in the spatial resolution. The
patial interpolation was conducted using the tool as Geostatistical
nalyst in ArcGIS. The true prediction accuracy of ordinary kriging
ethods was evaluated by error mean (EM) and root mean square

RMS) (Li, 2010). They are computed by:

M =
∑n

i [z(xi, yi)  − z′(xi, yi)]

n
(6)

MS  =
√∑n

i [z(xi, yi)  − z′(xi, yi)]2

n
(7)

here n is the number of observations in the validation subset.
(xi, yi) and z′(xi, yi) are observations and predications in sampling
oordinate (xi, yi). The lower EM and RMS  indicate there is better
rediction accuracy.

.3. Establishment of model

.3.1. Heavy metal assessment model at field-scale
The FHMA model for estimating heavy-metal concentrations

n rice was established based on GDFNN by integrating spectral
arameters and soil parameters. The GDFNN consists of an input

ayer, an output layer and several hidden layers, with the hidden
ayers belonging to the fuzzy interference system by carrying
ut fuzzy reasoning using the structure of neural network. The
etail learning algorithm about GDFNN can be consulted in our
ervious study (Liu et al., 2011b).  Sensitive spectral parameters
o heavy-metal contamination and soil parameters for influencing
eavy-metal diffusion in rice were selected as input variables.
e  selected spectral parameters that have been introduced by

iu et al. (2011b). According to our investigation and analysis, the
ndividual concentrations of Cu in rice served as output variables,
nd five parameters were taken as input variables, i.e., red edge

osition (REP), optimized soil adjusted vegetation index (OSAVI),
ormalized difference vegetation index (NDVI), organic matter
OM) and pH. When the individual concentrations of Cd in rice
erved as output variables, five parameters were also taken as

able 2
pectral parameters used in ASD and Hyperion data.

Spectral parameters Equation (ASD data) Equation (

REP D�i
= R(�i+1)−R(�i−1)

�i+1−�i−1
, when D�i

is

maximum value spectra
between the red and NIR

D�i
= R(�i+

�i+
maximum
between th

OSAVI (1+0.5)(R800−R670)
(R800+R670+0.5)

(1+0.5)(R803−
(R803+R671+

NDVI R760−R695
R760+R695

R762−R691
R762+R691

DVI R734 − R682 R732 − R681

i is the reflectance of band i.
8.23 + 4.18 50.31 + 3.25 15.93 + 2.87 17.89 + 3.27 8.49 + 1.12 0.14 + 0.01
0.8 63.2 26.7 60.1 10.2 0.078

input variables, i.e., difference vegetation index (DVI), OSAVI,
NDVI, OM and pH. The calculation of above vegetation indices was
displayed in Table 2. And it can be consulted in Liu et al. (2011b).

3.3.2. Heavy metal assessment model at regional-scale
The RHMA model was  established based on the FHMA model,

as discussed above. The procedure for the establishment of the
RHMA model can be summarized as follows: (i) the input variables
in regional-scale, which were consistent with those of the FHMA
model, were obtained. The same input variables were considered
in the FHMA and RHMA model. Here, it is noted that the spectral
parameters of the RHMA and FHMA model had subtle difference in
the selection of waveband, due to different spectral resolution in
Hyperion data and ASD data. Detailed calculation for the spectral
parameters was  displayed in Table 2. (ii) These structure and rules
of model, which had already been produced at a first stage (i.e.,
the training processing) in the development of the FHMA model,
would be subsequently extracted. That is, once the FHMA model
was established, the structure of the model was inherent. (iii) The
RHMA model was established by aggregating input data (spectral
parameters and soil parameters) based on the structure and rules
extracted in order to predict heavy-metal concentrations in rice on
regional-scale.

3.4. Assessment of model

To quantify performance of model for estimating heavy metal
concentrations, four evaluation parameters between measured val-
ues and predicted values were calculated: model efficiency (ME),
the correlation coefficient (R2), root mean square error (RMSE) and
mean absolute errors (MAE). The four parameters were computed
by:

ME = 1 −
∑N

i (yai − ymi)
2

∑N
i=1(ymi − ȳm)2

(8)

R2 =

[∑N
i=1(yai − ȳa)

∑N
i=1(ymi − ȳm)

]
∑N 2∑N

2

(9)

i=1(yai − ȳa) i=1(ymi − ȳm)

RMSE =
√∑N

i=1(yai − ymi)
2

N − 1
(10)

Hyperion data) Notation (Hyperion data)

1)−R(�i−1)

1−�i−1
, when D�i

is

 value spectra
e red and NIR

Between the red and NIR from 26th band to
34th band

R671)
0.5) 803 nm and 671 nm for center wavelength of

38th and 25th band respectively
762 nm and 691 nm for center wavelength of
34th and 27th band respectively
732 nm and 681 nm for center wavelength of
31st and 26th band respectively
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Table 3
Fitting degree (FD) and factors of scaling transformation for spectral data.

Spectral regions (nm) K A FD

350–680 −0.0077 0.6858 0.8125
680–770 −0.1119 1.4203 0.9335
770–980 +0.2087 0.3023 0.8789
980–1205 −0.0192 0.7998 0.9559

1205–1480 −0.1106 0.8762 0.9792
M.  Liu et al. / International Journal of Applied Ea

AE  = 1
N

N∑
i=1

|yai − ymi| (11)

here yai and ymi are the predicted value, measured value, ȳa and
¯ m are the average predicted value and the average measured value,
espectively. N is the sample number.

In the above four parameters, R2 and ME  were calculated to ana-
yze the accuracy of predicted values versus measured values. R2

nd ME  value range from 0 to 1. The higher the R2 value is, the
tronger the indication of an existing linear relationship between
he measured and predicted values. Meanwhile, the higher ME  val-
es indicate prediction model’s efficiency, whereas RMSE and MAE

ndicate estimation errors.

.5. Analysis of spatial feature

In order to analyze of spatial feature of the heavy-metal concen-
rations in rice, the main procedures can be summarized as follows:
1) the different levels of heavy-metal pollution were distinguished.
n this study, three stress levels of heavy-metal pollution were
lassified according to heavy-metal concentrations in rice (Liu
t al., 2010), namely, safe level (<12 mg,  for Cu; <30 × 10−3 mg,
or Cd), pollution Level I (12–20 mg,  for Cu; 30–60 × 10−3 mg,  for
d), pollution Level II (>20 mg,  for Cu; >60 × 10−3 mg,  for Cd). The
lassification of stress levels was determined by below factors,
ncluding measured heavy-metal concentrations in rice under dif-
erent pollution levels, China food health standards (GB 15199-94
nd GBn238-84) and the ratio relationship of leaves and grains
f heavy-metal concentrations in rice (Huang et al., 2009). (2)
eavy-metal concentrations in rice were displayed by using the

wo-dimensional map  based on the image supervised classifica-
ion mapping the distribution of rice. (3) The area and percentage
f different levels of heavy-metal pollution were calculated and
nalyzed.

. Results

.1. Scale transformation of spectral data

.1.1. Comparison between Hyperion and ASD data
A series of spectral reflectance from Hyperion image and ASD

ata were shown in Fig. 4(a). For clarity, Fig. 4(b) shows their
espective mean value of spectral reflectance. As shown in Fig. 4(b),
he shape of Hyperion reflectance in valley and peak in seven
egions was similar to that of ASD data. The significant distinction

as that the spectral curve of rice for Hyperion data was  slightly
igher than that of ASD data in the 450–680 nm and 770–2500 nm
egion. It was attributed to the differences between the spectral
esponse functions of ASD and Hyperion, atmospheric correction,

Fig. 4. Scale transformation of Hype
1480–1900 −0.0258 0.5253 0.9176
1900–2500 −0.1099 No 0.5366

350–2500 0.9861

spatial heterogeneity, type of instrument and environmental con-
ditions (canopy heterogeneity, illumination conditions) (Liu et al.,
2006). All of which may  lead to differences in the reflectivity at
spaceborne or airborne hyperspectral imagery relative to the “true”
reflectivity at ground hyperspectral data. Further investigation on
this issue is needed.

4.1.2. Transformation result of Hyperion data
Based on the above discussion about the method of scale trans-

formation for spectral data, transferred Hyperion data was shown
in Fig. 4(c). It was observed that transferred Hyperion data has
a close tendency to ASD data in terms of the fitting degree (FD).
The results of transformation in seven wavelength regions were
summarized in Table 3. For translation factor (k), with the excep-
tion of the 770–980 nm region, the translation factor was taken
down translation across y axis in the six other regions. For scal-
ing factor (A), vertical scaling transform of spectral curve in the
660–770 nm region was stretched along y axis (A > 1), while in the
six other regions, vertical scaling transform of spectral curve was
shortened along y axis (A < 1). For fitting degree, there was  low
value (FD = 0.5366) in the 1900–2500 nm,  it is because that they
were influenced by the water vapor in atmosphere. While in the six
other regions, FD was greater than 0.8. Fortunately, we would obtain
a good approximation (FD = 0.9861) between transferred Hyperion
data and ASD data on the whole spectral curve. Therefore, it con-
firmed that the piecewise function is applicable to performing the
scale transformation in spectral data.

4.1.3. Spatial distribution of spectral parameters from Hyperion
data

For spectral parameters from Hyperion data, in seven wave-
length regions, the respective piecewise function was established
between ASD data (fr(�)) and Hyperion data (gr(�)). And then piece-
wise function was applied to Hyperion image in order to achieve

upscaling of spectral data. The subtle differences were presented in
the same spectral parameters in Areas A and B. Detailed statistics
are presented in Table 4. The values of DVI, NDVI and OSAVI in Area
B are higher than those in Area A. While the value of REP in Area B

rion data based on ASD data.
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Table  4
Statistics of spectral input variables in Area A and Area B.

Study area Input variables Min  Max  Mean Medium Standard deviation

A DVI −0.17 0.56 0.07 0.06 0.06
NDVI −1.00 1.00 0.12 0.11 0.09
OSAVI −0.31 0.35 0.17 0.18 0.05
REP  (nm) 681 763 712 702 20

B DVI  −0.07 0.61 0.13 0.12 0.05
0.43 
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NDVI −0.14 

OSAVI 0.02 

REP  (nm) 681 

s lower than that in Area A. The variation range of NDVI in Area B is
reater than that in Area A. The standard deviation of four spectral
arameters in Area A was higher than that in Area B.

.2. Spatial interpolation of soil parameters

Ordinary kriging was applied for scaling-up spatial soil param-
ters across scales. Fig. 5 shows their spatial predictions for pH and
M in Area A and Area B. Detailed statistics are also presented in
able 5. The mean value of pH in Area B is lower than that in Area
, while the mean value of OM in Area B is greater than that in Area
. The standard deviation of two soil parameters in Area A is higher

han that in Area B. For prediction accuracy, pH and OM in Area A
nd Area B had low EM and RMS  values. It indicated that predic-
ion accuracy of soil parameters by kriging interpolation methods
ot good performance. Additionally, whether pH or OM was being
nterpolated by ordinary kriging, the true prediction accuracy of
rea B was better than those of Area A based on EM and RMS.

.3. Heavy-metal concentrations in rice estimation

.3.1. Field-scale model
Hyperion image data was acquired in maturity growth stage of

ice. Therefore, in this study, data sets in the development of the
HMA model were obtained for different levels of heavy-metal pol-
ution from the maturity growth stage of rice. In the FHMA model,
he results are shown in Fig. 6, in which fuzzy rule, RMSE and
ctual output error change with more and more input variables

ntering the model. For Cu and Cd prediction, 10 fuzzy rules were
oth created. The R2 values between the measured and predicted
alue were 0.9624 and 0.8329, respectively. Generally, regard-
ess whether Cu or Cd was being estimated, FHMA model showed

Fig. 5. Predicted value of pH and OM in study areas using
0.18 0.18 0.04
0.21 0.21 0.03
701 691 17

a satisfactory performance in model’s efficiency and estimation
errors. To detail, few fuzzy rule, low RMSE and high R2 values were
achieved with the FHMA model. In order to examine the credibil-
ity and stability of the FHMA model, the model was verified using
testing sets based on the development of the network structure
and fuzzy rules in the training stage. The relationship between
the predicted and measured values of Cu and Cd concentration
in rice leaves during the testing process is shown in Fig. 7. The
constructed FHMA model (5 input variables, 10 fuzzy rules) pro-
vided a good fitting model for both of Cu and Cd concentration.
R2 between the measured and the predicated values were 0.8437
and 0.7112, respectively. Based on the above analysis, it concluded
that the FHMA model has the good ability to estimate Cu and Cd
concentrations in rice.

4.3.2. Regional-scale model
In order to estimate heavy-metal concentrations in rice on

region scale, the RHMA model was  constructed based on the devel-
opment of the network structure and fuzzy rules in the FHMA
model. Additionally, the input variables of the RHMA model are
consistent with those of the FHMA model, including REP, OSAVI,
NDVI, pH and OM that were used to predict concentrations of Cu in
rice leaves. Likely, OSAVI, NDVI, DVI, pH and OM were taken as input
variables to predict concentrations of Cd in rice leaves. The data sets
of input variables were acquired by upscaling spatial data. Fig. 8(a)
shows the spatial distribution of heavy-metal concentrations in rice
leaves in Area A. Detailed statistics are presented in Table 6. For rice

under Cd pollution, the area percentage of rice under safe level, pol-
lution Level I and pollution Level II were 29.78%, 51.67% and 18.73%
of the total rice area in Area A, respectively; While for rice under
Cu pollution, the area percentage of rice under safe level, pollution

 ordinary kriging method (a) Area A and (b) Area B.
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Table  5
Statistics of soil input variables in Area A and Area B.

Study area Input variables Min  Max  Mean Medium Standard deviation Predication accuracy

EM (10−2) RMS

A pH 6.69 7.38 7.05 7.08 0.17 1.66 0.17
OM  2.00 2.79 2.31 2.23 0.23 2.57 0.34

B pH 6.76  6.89 6.83 6.84 0.03 0.26 0.09
OM 2.74  2.96 2.85 2.84 0.05 0.64 0.12

Fig. 6. Dynamic results of the field-scale spectral analysis and assessment model for estimating (a) Cd concentration and (b) Cu concentration.

Table 6
Statistics of Cu and Cd concentration in rice leaves in Area A and Area B.

Study area Heavy metal Safe level Level I Level II Total rice area (102 m2)

Area (102 m2) Percentage (%) Area (102 m2) Percentage (%) Area (102 m2) Percentage (%)

A Cu 3006 12.10 15,903 64.02 5931 23.88 24,840
Cd 7398 29.78 12,834 51.67 4653 18.73

B Cu  88,029 58.51 50,076 33.29 12,339 8.20 150,444
Cd  97,515 64.82 42,714 28.39 10,215 6.79
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Fig. 7. Comparison of the predicted and measured in 

evel I and pollution Level II were 12.10%, 64.02% and 23.88% of
he total rice area in Area A, respectively. On the whole, regardless
hether Cu or Cd was being estimated, the most of rice were suf-

ered by the pollution Level I, while the small part of rice was at
afe level in Area A. It was attributed to the rice planted nearby to
he center of the city of Changchun. It was in good agreement with
he actual distribution of heavy-metal concentration in paddy. This
tudy reveals that the RHMA model established can be used for
redicting heavy-metal concentrations in rice.

.3.3. Validation of regional-scale model
To illustrate the ability of the RHMA model to be used exten-

ively, we apply it to another study area (i.e., Area B). During the
alidation of the RHMA model, the input variables of model were
gain REP, OSAVI, NDVI, pH and OM to predict concentrations of Cu
n rice leaves. Likely, OSAVI, NDVI, DVI, pH and OM were taken as
nput variables to predict concentrations of Cd in rice leaves. The
ata sets of input variables were obtained by performing the upscal-

ng transformation of spectral parameters and soil parameters.
ig. 8(b) shows the result of prediction and the spatial distribu-

ion of heavy-metal concentrations in rice leaves. Detailed statistics
re also presented in Table 6. For rice under Cd pollution, the area
ercentage of rice under safe level, pollution Level I and pollution
evel II were 64.82%, 28.39% and 6.79% of the total rice area in Area

Fig. 8. Spatial distribution of heavy-metal concentrations in rice
 model (a) Cd and (b) Cu concentration in rice leaves.

B, respectively; While for rice under Cu pollution, the area percent-
age of rice under safe level, pollution Level I and pollution Level
II were 58.51%, 33.29% and 8.20% of the total rice area in Area B,
respectively; Generally, regardless of Cd or Cu, the minority of rice
was suffered by the heavy-metal stress, the majority of rice was  at
safe level. In addition, the highest area percentage of rice under Cd
or Cu pollution in the total rice area were measured at safe level,
followed by pollution Level I, then pollution Level II in Area B.

Further, to examine the credibility and stability of RHMA, the
model was  verified using 20 data sets, which derived from field
measurement in Area B. Fig. 9 shows the plots between measured
and model predicted values of Cd and Cu concentration in rice
leaves. The constructed RHMA provided a good fitting model for
both of Cd and Cu. The R2 values for the Cd and Cu were 0.7704 and
0.8407, respectively. More detailed performance parameters for the
model for estimating of Cu and Cd concentration of rice leaves were
calculated in Table 7. As seen in Table 7, while predicting both Cd
and Cu concentrations, R2 and ME  were both above 0.70. Here, the
RMSE values were 15.02 and 2.83 for Cd and Cu, respectively; the
MAE values were 51.64 and 21.10 for Cd and Cu, respectively. Com-

pared with Cu concentration, Cd concentration had greater estima-
tion error with higher RMSE and MAE. Furthermore, to quantify dif-
ference in model’s performance between RHMA model and FHMA
model for estimating heavy metal concentrations, performance

 using the RHMA model in areas (a) Area A and (b) Area B.
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Fig. 9. Comparison of the predicted and measured in RHMA

Table  7
Comparison of model’s performance between FHMA and RHMA model for estimat-
ing of Cu and Cd concentration in rice leaves.

Model Heavy metal ME  R2 RMSE MAE

FHMA Cd 0.67 0.7112 0.69 1.45
Cu 0.84 0.8437 1.40 4.36
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RHMA Cd  0.72 0.7707 15.02 51.64
Cu 0.84 0.8407 2.83 21.10

arameters for the FHMA model were also displayed in Table 7.
rom Table 7, RHMA and FHMA model had good performance in
he accuracy of model predictions with having similar R2 and ME.
t implied that it was effective to estimate regional heavy metal con-
entrations in rice by upscaling of FHMA model. However, estima-
ion errors of RHMA model were greater than those of FHMA model.

. Discussion

It  is essential for agricultural production, food security, and
he human habitat to use remote sensing technology to provide
arge-scale information about the precise levels of heavy metal
tress. However, it is difficult to assess stress levels of crops
ith heavy metal pollution on a large scale using spaceborne

r airborne images directly. The primary reason is that various
nvironment-induced noise in the spaceborne or airborne images
asks subtle features associated with stress (Collins et al., 1983).

ome research has been undertaken to establish a relationship
etween heavy metal concentrations in crops and ground hyper-
pectral reflectance characteristics in both controlled laboratory
onditions and field conditions (Chi et al., 2009; Liu et al., 2010,
011a). Significant progress has been made in field-scale heavy
etal estimation in crops. Therefore, in this study, we propose the

ovel idea for estimating regional heavy metal concentrations in
rop by scaling the FHMA model up based on our previous study (Liu
t al., 2011b). Near surface remote sensing as a technique to monitor
eavy metal pollution in crop has two merits in order to extrapo-

ate the results regionally. First, biochemical data of crops under
eavy metal stress were taken almost simultaneously with mea-
urements of canopy spectral reflectance. In contrast, it is difficult
o keep the acquired airborne hyperspectral imagery synchroniza-
ion with measurements of the biochemical data of the crop under
eavy metal stress. Second, it is convenient to obtain a number
f crop reflectance spectra data using proximal sensing in a field
cale in order to explore the relationship between spectra and metal
oncentrations.
Whether estimation of regional heavy metal concentrations in
rop is accurate or not depends on the strategy scaling the FHMA
odel up. In fact, many researchers have developed effective meth-

ds, such as wavelet transform (White et al., 2005; Biswas and
 model (a) Cd and (b) Cu concentration in rice leaves.

Si, 2011), hierarachical theory (Wu and David, 2002; Zhang and
Arhonditsis, 2009), geostatistical methods (Kok and Veldkamp,
2001; Van de Giesen et al., 2011), in order to deal with upscal-
ing problems pertaining to hydrology, ecology, geography, water
resources management and agricultural systems.

Our present study focuses on scaling the input variables of the
FHMA model up, rather than adjusting the model structure or
re-establishing a new model. It is because the FHMA model is based
on the link mechanism of soil heavy metal contamination, heavy
metal accumulation in crops and heavy metal-induced spectral
response. Mechanism of crop heavy metal assessment model is
similar whether they occur in the finer scale or in the coarser scale.
In addition, different upscaling methods have been considered
when dealing with different types of input variables. For spectral
reflectance, the significant difference was observed between Hype-
rion data and ASD data (Fig. 4). In nature, it was  demonstrated that
there is a difference between spectral reflectance of the canopy and
the spectral reflectance of a pixel. Some researchers applied piece-
wise regression model to solve non-linear problems in different
spatial resolution data (Kustas et al., 2003; Jeganathan et al., 2011).
Here, piecewise function was  used to correct Hyperion reflectance
to ASD reflectance according to the shape of the reflectance spec-
trum, which made Hyperion reflectance into “true” reflectance in
ground hyperspectral data in order to reduce estimation errors
induced by spectral parameters. Seven piecewise functions were
used based on the shape of “peak” and “valley” in plant reflectance.
Going into further detail, “green peak” in visible bands “red edge”
in near infrared bands and other five “peak” between water absorp-
tion center of plant reflectance about 960 nm, 1100 nm in near
infrared bands, and 1400 nm,  1900 nm and 2700 in short-wave
infrared bands (Gerstl and Zardecki, 1985; Hurcom et al., 1996). In
addition, our result showed that it is effective to perform spectral
scale transformation by cutting seven piecewise functions. While
for soil parameters, their regional parameters were obtained by
ordinary kriging interpolation, which is widely used in agriculture,
ecology and environmental systems (Gertner et al., 2002; Wang
et al., 2002; Triantafilis et al., 2004). It suggested that different
approaches to upscaling should be taken into consideration to deal
with different types of variables. It is feasible to estimate regional
heavy-metal concentrations in rice by scaling the FHMA model up.
Additionally, the established model can be successfully applied to
two different study areas (i.e., Area A and Area B). It concluded that
the RHMA model is reproductive and is used extensively under
different environmental conditions by combining soil parameters
with spectral parameters. Our previous study has also demon-
strated that such model is universal and transferable (Liu et al.,

2011b). The major reason is that FHMA model based on GDFNN
algorithm, the algorithm itself possesses the advantages of strong
self-study ability, information fusion and fuzzy reasoning (Er et al.,
2004; Wen  and Zhu, 2004). And also because the involvement
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f soil parameters as input variables facilitates the application of
HMA model in different soil environmental conditions and thus
ncreases the ability of model to be used extensively.

In this research, in order to provide regional-scale information
bout levels of heavy metal pollution, the upscaling method of

 field-scale heavy metal assessment model was proposed. This
pproach may  offer insight into monitoring various environments
n a large scale, such as agro-ecosystems and the water environ-
ent.

. Conclusions

In this study, we have presented a method for estimating
egional heavy metal concentrations in crop. The preliminary FHMA
odel was created to estimate field-scale heavy-metal concentra-

ions in rice based on the GDFNN algorithm by integrating spectral
arameters, which derived from the field measurement ASD data,
nd soil parameters. Five parameters (for Cu, REP, OSAVI, NDVI,
M,  and pH; for Cd, DVI, OSAVI, NDVI, OM and pH) were taken into
onsideration as input variables of the FHMA model. The results
howed that in the FHMA model for estimating Cu during training
nd testing stages, the R2 value between the measured and the pre-
icted value were over 0.80. While the FHMA model was used for
stimating Cd during training and testing stages, the R2 value was
reater than 0.75. Fuzzy rules were both 10, regardless whether Cu
r Cd was being estimated. It demonstrated that the FHMA model
as both a high level of accuracy as well as a compact network
tructure.

This study focuses on upscaling issues referring to the transfer
f heavy-metal assessment model. The final results showed that
he RHMA model performed well in assessing the stress levels of
ice under heavy-metal pollution with R2 and ME  over 0.70. Fur-
her, the RHMA model established was verified by applying it to
nother study area. Fortunately, the predicted results were both in
ood agreement with the actual distribution of heavy-metal con-
entration in rice. It confirmed that the RHMA model is efficient and
niversally applicable to estimating heavy-metal concentrations in
ice on regional-scale. This study suggested that the piecewise func-
ion is promising for transferring of spectral data from one scale to
nother.

In conclusion, the RHMA model can successfully estimate heavy-
etal concentrations in rice at regional scale by upscaling of FHMA
odel.
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