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ABSTRACT
In this paper, we propose a learning-based approach for road width
estimation fromhigh resolution satellite or aerial images.With the road
centerline given, a proposed pixel-wise descriptor describes the
distribution of the road-like pixels. Then, in the predictive phase, we
demonstrate that performance is significantly improved by consider-
ing the spatial coherence of the output labels. Experimental results
show that the proposed approach provides high quality width estima-
tion results on roads in various terrains.
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1. Introduction

Road width estimation from satellite images is a fundamental problem in remote sensing
image processing. Accurate roadwidth informationmakes it easier to survey road networks in
vast rural areas. In the past decade, road width estimation, relying on a steady road extraction
method, has receivedmuch attention. Recentmethods employmulti-stage (Unsalan and Beril
2012; Shi, Miao, and Debayle 2014; Zang et al. 2016) schemes to further improve road
extraction performance, while the road width is estimated by some empirical schemes.
Using spectral, shape, and gradient features, Ünsalan et al. (Unsalan and Beril 2012) con-
structed a graphical description of the road primitives and then proposed a graph-based
topology analysis scheme to refine the road map. Based on a pre-trained spectral-spatial
classifier, Shi et al. (Shi, Miao, and Debayle 2014) developed a multi-step road centerline
extraction scheme, which significantly improves detection robustness. In these works, road
width is estimated by an empirical approach (Unsalan and Beril 2012) or a spectral intensity
approximation (Shi, Miao, and Debayle 2014).

Using an aperiodic directional structuremeasurement, Zang et al. (Zang et al. 2016, 2017)
proposed a structure aware road extraction scheme by exploiting the aperiodic directional
structure measurement along with a guided remote sensing image enhancing scheme.
However, road width is simply estimated by an adaptive thresholding scheme.

On the other hand, the development of deep neural network (Hinton and Salakhutdinov
2006) provides a new idea for road network extraction. Mnih and Hinton (Volodymyr and
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Hinton 2010) first proposed a multi-level network to assign each pixel a label to denote
whether it belongs road region or not. Cheng (Cheng et al. 2017) proposed a cascaded end-
to-end convolutional neural network (CasNet) to address the road segmentation and
centerline extraction tasks, such approach work well for the urban roads with explicit
spectral features. Wei et al. (Wei, Wang, and Mai 2017) modified traditional convolutional
neural network to refine the road structure from aerial images. Saito et al. (Saito, Yamashita,
and Aoki 2016) use the convolutional neural network to extract terrestrial objects from aerial
imagery and got pretty good results. These learning based methods have provided inter-
esting inspirations for the road width estimation.

Based on these works, we found that few of the road network extraction approaches
proposed a systematic analysis of road properties, such as roadwidth estimation or pavement
material detection, etc. In this work, we propose a learning based approach to provide the
accurate estimation of road width; the basic assumption is that, in previous works (Shi, Miao,
and Debayle 2014; Zang et al. 2016)the road centerline was appropriately extracted. Themain
contribution of this paper relies on the following: 1) We propose a simple, yet effective,
descriptor to describe the intensity distribution of the context at the road centerline pixel.
Such a descriptor is then employed to train a CNN to provide a pixel-wise probability of the
width at each road pixel. 2) In the predictive phase, we propose an optimization based label
scheme, which takes into account the spatial coherence of the data. Such a scheme demon-
strates significant improvement of the estimation performance in our experiments.

2. Methodology

The overall framework of our approach is shown in Figure 1. With the given road centerline
and a set of manually labeled samples, we first propose a road width descriptor to describe
the road pixel distribution on a local patch centered on the target pixel. Then, the

Figure 1. The workflow of our approach.
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established features, alongwith the labels, are employed to train a CNNmodel to generate a
probability map describing roads with different widths. For the prediction, by considering
the spatial coherence of data, the labeling process is modeled by a proposed optimization
problem, which can then be solved by classic graph cut methods.

2.1. Road width descriptor

Our descriptor is established based on the following two observations: 1) The spectral
performances of road pixels and background are visually distinguishable; 2) For roads with
different widths, the pixel intensity distribution at local areas can be very different. Based on
these two observations, it is desired that the descriptor have identifiable responses to roads
with different widths and be designed simply to acquire a satisfactory timely performance.

The descriptor is actually a two-dimensional histogram of the road pixel intensity
distribution for a certain patch. One of the dimensions is the radius; the other dimension
is the intensity. To cover the maximum width of a road, we first cut a patch around each
road pixel. Then, to count the intensity distribution of the pixels around the center, we
build an 8� 8 2D-histogram, the first dimension denotes the radius of the circle and the
second dimension denotes the intensity of the image. The range of a road intensity
(common range is [0, 255]) is quantified into eight equal subintervals–Ij ðj 2 1::8f gÞ. The
radius of the maximum inscribed circle in a patch is also divided into eight equal
subintervals to obtain eight concentric circles–Ci ði 2 1::8f gÞ.

Figure 2 shows an example of the descriptor structure. Figure 2 (a) shows a typical patch
center at a road centerline pixel. Around the center pixel, eight concentric circles (highlighted
in red) are established; the radius of the maximum circle is half the patch length. Figure 2 (b)
shows the structure of the descriptor; the radius of the maximum inscribed circle and the
maximum intensity of the pixels in the patch are divided into eight equal subintervals to form
an 8� 8 matrix.

The value of each element, denoted as Ni;j, represents, in the circle, Ci, the ratio
between the number of pixels (with intensity in the range Ij�1Ij) and the total number of
pixels. Mathematically, the matrix is expressed as follows:

median

min median

max

max

Figure 2. Example of a descriptor. (a) is the visualized result of the constructed concentric circles;
(b) is the structure of the descriptor.
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Vðj; iÞ ¼ Ni;j � 255
Ki

(1)

where Vðj; iÞ is the visualized value of each element in the matrix; Ki is the total number
of pixels in circle, Ci. Then, to form an image for visualizing and training, all the values in
our matrix are re-scaled to [0, 255].

Figure 3 shows a group of examples of our descriptor. The patches of roads with
various widths are shown in Figure 3 (a) to Figure 3 (c). The response of the proposed
descriptor is shown in Figure 3 (d) to Figure 3 (f). With a change in road width, the
intensity distribution of the patches is very different. For the wider road, the pixel
intensities in the innermost circle tend to be distributed in the brightest (or darkest)
area, depending on the spectral performance of the road. By contrast the pixel inten-
sities for a narrow road appear to distribute uniformly.

2.2. Road width estimation via cnns

Using the designed width descriptor along with a set of manually labeled training
samples, CNNs (Krizhevsky, Sutskever, and Hinton 2012) are employed to provide the
initial probability that each road centerline pixel belongs to each width category.
Training a set of weights, W, and bias, b, we find the minimum error between the test
data and the samples, which is written as follows:

argmin
W;b

X
li 2 L

PliðIði; jÞ;NIði; jÞÞ � PliðSði; jÞ;NSði; jÞj j
 !

(2)

(a) (c)

(d) (f)

(b)

(e)

Figure 3. The diagram of the descriptor. Where (a)-(c) are road patches with different widths, (d)-(f )
are the visualized results of the proposed descriptor.
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where Plið�Þ describes the probability that the road centerline pixel belongs to the width
class, li. L is the set of all thewidth labels. NIði; jÞ andNSði; jÞ are certain neighborhoods of the
input image Iði; jÞ and training samples Sði; jÞ, respectively, centered at position, ði; jÞ.

As shown in Figure 4, the structure of the network contains three convolutional layers
and one fully connected layer. The kernel number is 32 for the first and second
convolutional layers, and 64 for the third layer. The kernel sizes of all the three
convolutional layers are 5� 5, and the kernel size of the pooling layer is 3� 3. The
convolutional, local response normalization, pooling, and fully connected layers are
denoted by Conv, Lrn, Pool, and Fc, respectively.

At training time, a neural network is trained by minimizing the cross-entropy loss
between the predicted sample and the training sample. Denoting label domain,
L ¼ l1; l2; � � � lnf g, and the score function of the ith sample, xi, under weight, wlj , as:

Slji ðxi;wljÞ ¼ xi � wlj þ b (3)

Then, for each sample, xi, the cost function is written as:

Ei ¼ �SlTi � log10Ci þ log10
Xln
j¼l1

eS
lj
i þlog10Ci (4)

where lT is the manually labeled width class of sample, xi; Ci, a constant for program

implementation, is set in our system at the value of log10Ci ¼ �max Slji .
With these definitions and employing the stochastic gradient descent algorithm, we find

the set of optimal weights, W, and bias, b. Specifically, the classification dataset is divided into
three parts: training, validation, and test. Each time, we use 256 examples of the training and
validation dataset to train themodel. Theweights,wiþ1, are updatedby amomentumvalue, δ,
as follows:

wiþ1 : ¼ wi þ δiþ1 (5)

where i is the iteration index and δiþ1 is the momentum variable. The whole training
process is repeated until either of the following two conditions is satisfied: (1) The

Convolutional 1

Pooling 1

Convolutional 2 Pooling 2

(Convolutional 3 + Pooling 3)

Fully connected

Figure 4. The structure of our learning network.
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accuracy of prediction in the test dataset is greater than 95%; (2) There are a total of
65,000 iterations. The update rule for weight, w, is written as:

δiþ1 : ¼ 0:9� δ� 0:0005� � � wi � � � @L
@wi

� �
Di

(6)

Here themomentum is set at 0.9, andweight decay is set at 0.0005; the learning rate, �, is set

at 0.0001. @L
@wi

D E
Di

is the average over the ith batch, Di, of the derivative of the objective with

respect to W, evaluated at wi. After the model is trained, a pixel-wise probability map on
road centerlines is constructed. Each element of themap is a n-dimensional vector denoting
the probability that the pixel belongs to each width category -li; i 2 ½1; n�. With this map, a
labeling scheme is designed to provide the final estimation of the road width.

2.3. Spatial coherent width labeling

Using the initial probability distribution, we assign a label to each road centerline pixel to
denote which width class it belongs to. A straight forward way to achieve this is to confirm
the label according to the maximum element of the probability vector. However, there is a
problem inherent in such a simple way. As shown in Figure 5, different spectral bands
represent different widths. The widest and narrowest roads are denoted by red and blue,
respectively. The zoomed-in patches show some typical ‘misrecognition’ points. Such cases
occur because adjacent pixels may acquire different labels.

Obviously, a more reasonable way to assign the label is to not only consider the
probability value, but also take into account the spatial coherence of the pixels. In other
words, two adjacent pixels should have the same label. Based on such a consideration,
we propose an optimization scheme to model the labeling problem. Specifically, denot-
ing the label set L ¼ l1 � � � lnf g, the cost function is written as:

Figure 5. A classic result by using the straightforward labeling scheme, in which the widest,
narrowest and middle width roads are denoted by red, blue and green, respectively.
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argmin
L
ðDðPÞ þ αSðLÞÞ (7)

where Dð�Þ is the data term defined by the probability map, P; Sð�Þ is the smoothing term
defined by the label set, L. The data term is written as:

DðPÞ ¼ 1� probðp; liÞ; (8)

where probðp; liÞ is the probability that pixel p belongs to the width class li. α is a
balancing factor to determine how the spatial coherence affects the results. In our
experiments, the typical range of α is [0.1, 1].

The smoothing term, Sð�Þ, designed to indicate the influence from its neighbors when
labeling the pixel, p, is defined as:

Sðlp; lqÞ ¼
X
q2Np

signðlp; lqÞ
p� qj jj j (9)

where Np is a certain neighborhood of pixel p. Here Np, containing twelve nearest
neighbors of pixel, p, is defined in a one-dimensional domain. The width classes of the
road patch centered at pixels, p and q, are indicated by lp and lq, respectively. The sign
function signðlp; lqÞ equals zero if lp ¼ lq; otherwise, it equals one. p� qj jj j indicates the
distance between pixels p and q.

Previous work (Boykov and Funka-Lea 2006), demonstrated that such an optimization
model, having the classical form of Markov Random Fields (MRF), is solvable by classical
graph cut methods. The essence of the smoothing term is to add a penalty for two
adjacent pixels with different labels. The closer the two pixels are, the larger the penalty,
thereby attaining coherent spatial labeling results.

3. Results and analysis

Our approach is implemented based on C++ programming on a PC with a 3.2GHz Intel Core
i5–3200 CPU and 4G RAM. Several experiments were designed to comprehensively evaluate
the algorithm. First, applied for testing were images from different satellite sensors, such as
Pleiades-1A, Gaofen2 and Aerial, which involved various motorways, arterial highways and
rural roads. We also evaluated our approach on the Pleiades-1A remote sensing image of
Shaoshan City, China, where reference data was obtained by ground survey and provided by
the China Transport Telecommunications & Information Center.

3.1. Evaluation on images from various satellites

Roadwidth descriptor evaluation. To evaluate the observations of our roadwidth descriptor, we
apply the simple k-means algorithm to divide 5000 samples into different classes. These
samples are collected from various satellites, such as Pleiades-1A, Gaofen2 satellites and
Aerial images. The test region include the city of Shaoshan and Yiyang, in Hunan province,
China. All the samples are downsampled to a uniform resolution (1 m). In the experiment, the
number of class categories is chosen from 2–5, and corresponding classification correctness
are 85.7%, 83.2%,74.5% and 67.3% respectively. Overall, the result is consistent with our
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expectation when the number of class categories is appropriately set. While as the increase of
the number of class categories, the size of the descriptor should also change accordingly.

Road width estimation evaluation. To comprehensively evaluate the performance of our
approach, inputs from various sensors, such as the Pleiades-1A, Gaofen2 satellites, and Aerial
image (Pleiades-1A satellite and Aerial images are with resolution of 0.5 m, Gaofen2 satellite
image is with resolution 1 m), are applied for testing. Figure 6 shows the results of our road
width estimation approach. Manually labeled ground truths, corresponding to the Pleiades-
1A, Gaofen2 satellites, and Aerial images are shown in Figure 6 (a), (b), (c), respectively. Roads
with different widths are marked with different spectral bands. Table 1 shows the relationship
between the spectral bands and road widths. The roads in the Pleiades-1A image are basically
from a rural area, and the widths range from 3m to 6m; the roads in the Gaofen2 and Aerial
images are from a rural-urban fringe area, and the widths range from 4 m to 25 m.

Our estimated results are shown in Figure 6 (d), (e), (f ). As shown, most of the errors occur
in the crossroads, or areas where the roads are mixed with the adjacent buildings. In these
cases the intensity distribution of the road patches is significantly changed, thus leading to
the errors, as shown in the zoomed in patches. However, these errors are easily corrected in
the following road network vectorization process. The final performance, in practical
applications, is even better.

3.2. Evaluation on various regions

We also select three typical road width estimation works including the proposed approach,
and evaluate the kilometre statistics of these works on the remote sensing image of Shaoshan
City. The road centerline of this paper and approach (Xia et al. 2017) are extracted by (Zang
et al. 2016). The image is recorded by a Pleiades-1A satellite with resolution 0.5 m and size

(a) (b) (c)

(d) (e) (f)

Figure 6. Our road width estimation results. (a)-(c)are the manually labeled ground truthes corresponding
to the Pleiades-1A, Gaofen2 satellites and Aerial images; (d)-(f ) are our results. In these figures, red, blue and
green indicate the widest, narrowest and middle width roads, respectively.
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28; 648� 37; 929 pixels. The ground truth of the kilometres of roads with different widths are
provided by the China Transport Telecommunications & Information Center. In such experi-
ment, we employ 3000 samples to train thewhole CNNs, and the training time is less than two
hours due to the created width descriptor. Then in the test phase, each road centerline pixel is
assigned awidth label, and it takes about 4 hours for the entire Shaoshan image. The statistical
results are shown in Table 2. Where all the roads, according to the technical standard, are
quantified in four levels, as shown in Row 1; the ground truth along with the results of the
three methods are shown in Rows 2 to 5, respectively.

As the results show, most of the roads in Shaoshan City are country roads with widths less
than 10 m, and the proposed approach got the best ratio of the relative error (less than 10%).
Also the proposed approach got the best performance for the motorways and arterial high-
ways, which have widths ranging from 20 m to 25 m, with relative error only 3.6%, which is
satisfactory. The relative errors of all the threemethods for the feeder highways, ranging from
10 m 20 m, are fairly high because the total length of these roads is rather small.

To evaluate the estimation accuracy, we divide the image into small patches (with size
1000� 1000 pixels), and collect the statistics of the approaches (Xia et al. 2017; Guan, Wang,
and Yao 2010) and our method. The images are collected by Pleiades-1A and Gaofen2
satellites and Aerial image for Shaoshan and Yiyang city, in Hunan province, China. The
image sizes are 28; 648� 37; 929, 17; 656� 28; 413 and 22; 231� 29; 874 pixels, and the
resolutions are 0.5 m, 1 m and 0.5 m respectively. All the samples are rescaled to the same
resolution (1 m), and use the same road width classification standard, as shown in Table 2. We
also compare the results to the latest deep neural networks Residual Network (ResNet) (He
et al. 2016) and VGG (Simonyan and Zisserman 2015), and for both of the networks, we also
add our labeling scheme. The results are shown in Table 3. From the results, it is viewed that
the performance of the learning based approaches are rather impressive, while the statistics
between ResNet, VGG and our approach are rather close, and in this paper we choose simple
CNNs for its efficiency and simple network structure.

Table 1. Correspondence relationship between various spectral bands and road width ranges.

Sensor
Road width in red

band (m)
Road width in green

band (m)
Road width in yellow

band (m)
Road width in blue

band (m)

Pleiades-1A 3.8–5.5 3.1–3.8 N/A 2.5-3.1
Gaofen2 14.0–20.0 8.0–14.0 4.5–8.0 3.0–4.5
Aerial image 18.0–26.0 9.0–18.0 N/A 4.0–9.0

Table 2. Evaluation results of recent works for lengths of roads with various widths.
Road width range (m) 3–5 5–10 10–20 20–25

The true lengths of roads with different widths(km) 591 211 33 167
Xia et al. (2017) road length (km) and error (%) 493 (16.6%) 279 (32.2%) 20 (39.4 %) 190 (13.8%)
Guan, Wang, and Yao (2010) road length (km) and error (%) 517 (12.5 %) 273 (29.3%) 42 (27.3%) 215 (28.7%)
The proposed method road length (km) and error (%) 543 (8.1%) 227 (7.5%) 51 (54.5%) 161 (3.6%)

Table 3. Road width estimation correctness of various methods.
Results of Xia
et al. (2017)

Results of Guan, Wang,
and Yao (2010)

Results of
ResNet

Results of
VGG

Results of pro-
posed method

Average classification
correctness

69.25% 72.82% 83.24% 82.00% 81.60%
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4. Conclusions

In this letter, we presented a learning based approach for accurate and stable road width
evaluation from remote sensing images. The main contribution of this paper relies on the
following: (1) a simple, yet effective, descriptor to describe the context of the road region
distribution at the center pixel, and (2) an optimization based label scheme, which takes into
account the spatial coherence of the data. Experiments on images from various satellites and
statistics about Shaoshan city show that our approach provides stable evaluation results for
various kinds of roads.
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