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ETVOS: An Enhanced Total Variation Optimization
Segmentation Approach for SAR Sea-Ice

Image Segmentation
Tae-Jung Kwon, Jonathan Li, Senior Member, IEEE, and Alexander Wong, Member, IEEE

Abstract—This paper presents a novel enhanced total variation
optimization segmentation (ETVOS) approach consisting of two
phases to segmentation of various sea-ice types. In the total varia-
tion optimization phase, the Rudin–Osher–Fatemi total variation
model was modified and implemented iteratively to estimate the
piecewise constant state from a nonpiecewise constant state (the
original noisy imagery) by minimizing the total variation con-
straints. In the finite mixture model classification phase, based on
the pixel distribution, an expectation maximization method was
performed to estimate the final class likelihood using a Gaussian
mixture model. Then, a maximum likelihood classification tech-
nique was utilized to estimate the final class of each pixel that
appeared in the product of the total variation optimization phase.
The proposed method was tested on a synthetic image and various
subsets of RADARSAT-2 imagery, and the results were compared
with other well-established approaches. With the advantage of
a short processing time, the visual inspection and quantitative
analysis of segmentation results confirm the superiority of the
proposed ETVOS method over other existing methods.

Index Terms—Optimization, synthetic aperture radar (SAR),
sea ice, segmentation, total variation.

I. INTRODUCTION

S EA-ICE condition monitoring in polar regions is very
important for various applications, including scientific re-

search, particularly in the context of global climate changes.
Sea ice has a high albedo due to its color and the fact that
most of the sunlight that interacts with the sea-ice surface is
reflected back into the atmosphere resulting in cold climates
in polar regions. The current trend of rising temperatures in
polar regions will likely warm the Arctic because of the loss
of sea ice that will reduce the amount of sun rays that are
reflected causing the sea ice to melt and become weakened.
This trend consequently leads to a bigger problem of global
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climate change that will cause severe consequences to human
life and Earth’s natural environment. Having acknowledged
the importance of sea-ice monitoring, the amount of synthetic
aperture radar (SAR) sea-ice images acquired by Canada’s
RADARSAT-1 and -2 that are received daily at the Canadian
Ice Service (CIS) and processed by trained sea-ice analysts is
overwhelming. Hence, there is a great need for an automatic
sea-ice monitoring system.

One of the key advantages of using SAR for sea-ice monitor-
ing is that it uses microwave rays in the electromagnetic spec-
trum, which can penetrate rain, clouds, and other atmospheric
substances, resulting in good monitoring capabilities during
the day and night. Moreover, SAR has proved to be the most
important tool for the detection of sea ice [1]–[6]. However,
the segmentation of SAR sea-ice images is a very difficult task
due to the presence of a multiplicative noise known as speckle.
Not only does speckle noise degrade the quality of SAR images
but it also makes it a very challenging task to extract tonal and
texture information from images. A good example of a SAR
sea-ice image adversely affected by speckle noise is shown in
Fig. 1. Although there is a clear visible distinction between
the two different classes, there seems to be no difference in
statistical distribution of pixel values as shown in the unimodal-
shaped histogram.

If the statistical distribution of pixel values forms a uni-
modal shape, then accurate segmentation is not possible since a
computer would recognize this image as containing only one
class with similar intensity values. However, this is not true
as there is an apparent difference observed from Fig. 1. This
behavior is believed to occur mainly due to the presence of
speckle noise, which is the most influential contributing factor.
Existing approaches available for automatic segmentation of
SAR sea-ice images include a global histogram thresholding
[7], dynamic local thresholding [8], Gamma mixture models
[9], K-means clustering [10], modified neural networks [11],
Markov random field model [12], and Gaussian mixture model
(GMM) [13]. These methods were developed based on the
investigation of global tonal characteristics from the entire
image and have drawbacks and weaknesses. Mechanisms built
based on global tonal characteristics tend to ignore spatial
relationships between pixels, making them very difficult to
implement in a highly noise-contaminated image such as SAR
sea-ice images. Other conventional yet robust denoising filters
such as Lee adaptive filter [14], Kuan filter [15], Frost filter
[16], and speckle-reducing anisotropic diffusion method [17]
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Fig. 1. (a) Subset scene from RADARSAT-2 sea-ice image. (b) Histogram
generated using subset.

are widely used to denoise images prior to the application of
a segmentation scheme, and many of these filters are currently
available in commercial image processing software packages.

However, these methods do not perform well when particu-
larly dealing with images that contain significant speckle noise.
Apart from deriving a segmentation result by exploiting spatial
and tonal relationships between pixels, other approaches to
analyze texture characteristics have been studied as well [18],
[19]. Moreover, some of the texture-based approaches devel-
oped so far include gray-level co-occurrence probabilities [20],
[21] and Gaussian Markov random fields [22], [23]. However,
these texture-based segmentation schemes have a weakness,
i.e., pixels located near texture boundaries are likely to be
misclassified. More importantly, some of these methods can be
computationally intensive resulting in longer processing times
and therefore is not well suited for operational use. Thus, the
main contribution of this paper is to use a novel enhanced total
variation optimization segmentation (ETVOS) approach to first
reconstruct the piecewise constant state to be able to better
separate the existing classes and to classify distinct features in
a timely fashion.

This paper is organized as follows. The underlying method-
ology behind ETVOS is presented in Section II. In Section III,
experimental results including data description and analysis,
testing on a synthetic image, results and discussion of the
proposed method, and comparison with other methods are

addressed. Lastly, Section IV provides a summary of this work
and recommendations for future work.

II. METHODOLOGY

The ETVOS method consists of two main phases: Phase I—
extended total variation optimization—and Phase II—finite
mixture model classification. In Phase I, a total variation op-
timization approach based on a set of constraint penalties is
used to provide a rough estimate of the piecewise constant
state separating the classes in the original image. In Phase II, a
finite mixture model classification strategy is employed on the
results from Phase I to classify distinct features including land,
seawater, and various sea-ice types that appear in SAR sea-ice
imagery. Thus, with the combination of the two phases together,
a full and comprehensive segmentation algorithm, ETVOS, can
be realized.

A. Phase I—Extended Total Variation Optimization

SAR sea-ice segmentation can be formulated as an optimiza-
tion problem, where the goal is to estimate the segmented image
denoted as u given the observed SAR image denoted as f by
optimizing the energy function E. Let f and u be defined on
discrete grids with f and u taking on nonnegative values.

One approach for solving this inverse problem is through the
utilization of the Rudin–Osher–Fatemi total variation (ROFTV)
model. Based on the ROFTV model, the observed SAR image
f can be represented as a combination of the piecewise constant
state u and noise state η as given by

f = u× η. (1)

In other words, by utilizing the ROFTV model, the goal
is to progressively evolve a nonpiecewise constant state f ,
in which classes are nonseparable due to noise, artifacts, and
other image details, into a piecewise constant state u where
the total variation of the image is minimized and the classes
are well delineated. In the process of estimating such state, the
total variation minimizers in the space of function of bounded
variation help preserve edges or boundaries of the objects in
the image by allowing discontinuities [24]. Therefore, we are
able to theoretically arrive at a clean state with sharp boundaries
between different classes. Given the multiplicative relationship
in (1), the problem of image segmentation can be formulated
into the minimization problem based on the ROFTV model
[25]. Since the original ROFTV model is expressed using a
continuous formulation, it has been rewritten in a discrete form
to better handle the SAR segmentation problems

û = argmin
u

[
α
∑
i

|log f(i)− log u(i)|2

+ β
∑
i

∑
j

ω(i, j) |u(i)− u(j)|
]

(2)

where log f − log u represents the data fidelity term
specifically designed for SAR segmentation to handle the
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multiplicative nature of the underlying speckle noise, i denotes
a site in the grid, ω is the weight of total variation penalty term
where its value is nonnegative, |u(i)− u(j)| denotes the finite
intensity difference between neighboring pixels, and i and j
are two interacting pixels at two different sites of the grid. The
first term of (2) is to ensure that the minimized solution does
not deviate from the allowed range, while the second term is
the initial total variation term that penalizes pixel intensity
differences within regions to enforce piecewise constant in u.

It is well understood that, by penalizing pixel intensity dif-
ferences with its immediate neighbors, the edges or boundaries
of the objects are better preserved but is limited in handling
high noise levels. To remedy this limitation, one can take spatial
closeness of pixel values into account via extending the spatial
neighborhood being considered to improve statistical resilience
to noise, as well as incorporating a spatial penalty term that
enforces spatial closeness between pixels in a variable manner.
Furthermore, to further improve boundary preservation while
maintaining efficiency, an additional penalty term that penal-
izes gradient differences can be incorporated into the ROFTV
model, as large gradient differences are indicative of boundary
crossings between two classes or regions.

Based on the aforementioned motivations, in the proposed
ETVOS approach, we extend upon the existing ROFTV model
with two additional total variation penalty weight terms: 1) a
penalty weight term that enforces spatial closeness and 2) a
penalty weight term that penalizes gradient differences. These
additional penalty weight terms are incorporated to better re-
flect the task of SAR sea-ice image segmentation, where we
wish to preserve the boundaries between different sea-ice types
under the presence of high speckle noise. The first additional
total variation penalty weight term introduced into the extended
model is the spatial difference term denoted by ωd(i, j) which
enforces spatial closeness since spatially distant pixels are less
likely to belong to the same sea-ice region. Note that the
spatial difference term is modeled with Gaussian functions
based on the numerous experimental tests and can be further
expressed as

ωd(i, j) = e
− 1

2

(‖i− j‖2
σ2
d

)
. (3)

The term ωd(i, j) penalizes the spatial distance between pixels
so that homogeneity of surrounding pixels is enforced. The term
σd is the standard deviation for pixel difference, and as its value
gets larger, the stronger spatial closeness is enforced.

The second additional penalty weight term introduced into
the extended model is the gradient difference weight term
denoted by ωk(i, j), which enforces low gradient differences
since pixels with large gradient differences are less likely to
belong to the same region. Similar to the spatial difference
penalty weight term, the gradient difference between pixels can
be modeled and further articulated as

ωk(i, j) = e
− 1

2

(
‖k(i)− k(j)‖2

σ2
k

)
(4)

where k(i) and k(j) are the gradients at two interacting pix-
els i and j, respectively. The term σk denotes the standard

deviation of the gradient difference between pixels. Similar
to the mechanism built for computing an intensity difference,
the gradient difference is enforced between pixels since large
gradient differences will have a smaller likelihood of belonging
to the same class.

Therefore, with these additional weighting penalties, the final
discrete formulation of the SAR image segmentation prob-
lem based on the proposed extended ROFTV model can be
written as

û = argmin
u

[
α
∑
i

|log f(i)− log u(i)|2

+ β
∑
i

∑
j

ωd(i, j)ωk(i, j) |u(i)− u(j)|
]
. (5)

As can be seen in (5), the spatial and gradient penalty
weight terms ωd(i, j) and ωk(i, j), respectively, have been
incorporated to the extended ROFTV model to better estimate
the piecewise constant where classes can be easily separable. To
solve this problem in an efficient manner, an iterative weighted
optimization strategy known as the diagonal normalized steep-
est descent (DNSD) algorithm is employed to approximate u.
Details regarding the implementation of the DNSD algorithm
used in the proposed method can be found in [26] and [27].

Theoretically, running the optimization detailed in (5) to
convergence would provide us with the piecewise constant
state that represents the segmented image u. However, from a
practical perspective, running this strategy to convergence to
achieve steady state can be computationally expensive. How-
ever, throughout the course of numerous tests, it has been found
that even running a limited number of iterations can provide
good approximations of the piecewise constant state. Fig. 2(a)
and (b) shows the products of the first phase of the proposed
ETVOS method utilizing all three penalty terms as noted earlier
and the standard ROFTV model, respectively, for the scene
shown in Fig. 1(a). The statistical distribution of Fig. 2(a) drawn
from the proposed method clearly demonstrates that the rough
approximation of the piecewise constant state has a multimodal
shape, indicating that the inherent image noise and other arti-
facts have been significantly eliminated. On the other hand, the
statistical distribution of Fig. 2(b) obtained from using the stan-
dard ROFTV method shows an improved but still largely uni-
modal shape indicating that there is considerable less statistical
discrimination between the different classes. These results indi-
cate that the inclusion of the additional penalty terms helps pro-
vide better class discrimination when handling SAR imagery.
Such a comparison shows that the proposed ETVOS provides
better statistical class delineation than the standard ROFTV by
taking two additional total variation constraints made specifi-
cally for addressing the SAR image segmentation problem.

Since the approximation of the piecewise constant state has
a multimodal shape as shown in Fig. 2(a), a faster alternative
global classification strategy can now be employed on the
results from Phase I to determine the final segmented results.
Motivated by this observation, the proposed method utilizes a
finite mixture model classification strategy in the second phase
to determine the final segmented results based on the results
from Phase I.
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Fig. 2. Histograms generated from the application of the first phase using
(a) the proposed ETVOS method and (b) the standard ROFTV method for the
scene shown in Fig. 1(a).

B. Phase II—Finite Mixture Model Classification

In Phase II, a GMM is employed to find how many different
classes there are and their associated parameters in the approx-
imation of the piecewise constant û. Let n be the number of
components within the mixture model.

Furthermore, let l be a class label, where l ∈ 1, . . . , n, and Θ
be the set of parameters to be estimated for the mixture model

Θ = {μ1, . . . , μn, σ1, . . . , σn, P (u = 1), . . . , P (u = n)} (6)

where μ, σ, and P (u) denote the mean at the center of each
Gaussian distributed parabola, standard deviation, and prior
probability of an observed subclass component within the mix-
ture model, respectively. The goal is to precisely model the
underlying distribution. With such a model, the probability of
observing û can be expressed by

P (μ̂|Θ) =

n∑
j

p(û, l = i|Θ). (7)

To estimate Θ, expectation maximization (EM) [28] is per-
formed as follows:

Θt+1 = argmax
Θ

m∑
j=1

n∑
i=1

(lj = i|ûj ,Θt) ln p(lj = i, ûj|Θ)

(8)

where

p(lj = i|ûj ,Θt) =
p(ûj |lj = I,Θt)P (lj = i|Θt)

n∑
v=1

p(ûj |lj = v,Θt)P (lj = v|Θt)
(9)

is the probability of the label for pixel j having a class label
index i, given the piecewise constant state u and set of param-
eters Θ, t denotes the iteration, v indicates a dummy variable,
and m and n represent the number of pixels in the image and the
number of components within the mixture model, respectively.

Finally, once unknown parameters are determined using EM,
the maximum likelihood (ML) estimate of the final class l
(target area or nontarget area) at pixel x can be obtained by
calculating the following:

l̂(x) = argmax
l

p (û(x)|l) . (10)

III. EXPERIMENTAL RESULTS

A RADARSAT-2 image covering a sea area nearby the
Province of Newfoundland, Canada, was used in this study, as
seen in Fig. 3(a), since it contained various sea-ice types that
have been verified by trained sea-ice analysts at CIS. The image
was acquired in the HH polarization mode using ScanSAR
Wide beam with the full incidence angle range of 20◦ to 49◦

at 22:29:36 on March 16, 2009, and its spatial resolution had
been degraded to 100 m for the enhancement of sea ice, which
is ideal for sea-ice detection. Due to a large size of the original
image (4239 by 4221 pixels), a smaller subset of this image
was used to enable a relatively shorter processing time. To have
a better understanding of the data set, each distinct region has
been labeled as land, ocean, and sea ice as shown in Fig. 3(a).

To validate the proposed algorithm in detecting various sea-
ice types in a more convincing fashion, the analytical data that
confirms sea-ice types was necessary. The CIS website has an
archive in which daily regional ice charts are available as shown
in Fig. 3(b). The regional ice chart provides the series of egg
codes in a simple oval form, which details the sea-ice concen-
trations, stages of development, and form of the ice for each
segment of sea-ice-covered regions [29]. By carefully analyzing
the egg codes for each segment of the study area, it was found
that there were mainly two different types of sea ice presented:
1) “Egg-Code 4” representing gray ice with a thickness of
10–15 cm and 2) “Egg-Code 1” representing medium first-year
ice with a thickness of 70–120 cm. However, the egg code does
not give more detailed local-scale information such as where
exactly the gray ice and the first-year medium ice are located
within each segment. Thus, different sea-ice types present in the
data set in a smaller scale (within each segment) were analyzed
from the theoretical aspect as an alternative approach along
with the information obtained from investigating the regional
ice chart confirming that there are two different sea-ice types
on the area of interest.

SAR backscatter in sea-ice imagery depends on the surface
roughness and the dielectric constant of sea ice or open sea-
water [12]. The dielectric constant of sea ice decreases as the
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Fig. 3. (a) RADARSAT-2 sea-ice image. (b) Daily regional ice-chart covering
study area.

degree of salinity decreases. If there is a lower dielectric con-
stant, then the amount of backscattering is high. This implies
that the thicker sea ice will tend to be brighter in color because
its salinity is near zero. On the other hand, new or fresh sea ice
tends to be darker in the image since it has a higher dielectric
constant; as a result, the amount of backscattering is low.
Knowing how various sea-ice types appear in the SAR imagery
and with additional knowledge obtained from investigating the
egg codes, the number of different sea-ice types can be carefully
determined. Fig. 4 shows a subset taken from a concentrated
sea-ice region.

As shown in Fig. 4, three main classes can be extracted
from the subset of the image: The circles indicate the relatively
thicker ice, possibly being medium first-year ice with a thick-

Fig. 4. Subset taken from the sea-ice region.

Fig. 5. Synthetic sea-ice image.

ness of 70–120 cm (observed higher backscatter return); the
triangles indicate the fresh/thin ice, possibly being gray ice with
a thickness of 10–15 cm (observed lower backscatter return);
and the rectangles identify the seawater (observed very low or
no backscatter return). It is important to emphasize that three
distinctive classes have been categorized by means of visual
inspection with the aid of prior knowledge including varying
surface feature characteristics to SAR signals and analysis
of egg codes as discussed previously to help make the right
decision. However, the authors want to point out that such
analysis can be slightly different from reality. For example, the
regions in rectangles could possibly be covered with very thin
ice that appears to be equally dark as the seawater. In order to
determine whether the detected feature is purely seawater or
a very thin ice-covered region, sample intensity values of the
seawater were collected from the other part of the same image
and compared with the intensity values extracted from the
regions in rectangles, where their intensity values were found
to be similar; hence, it was concluded that the detected feature
was seawater. Unless there are additional data revealing what
regions were actually present at the time of the image acquisi-
tion, analysis has to be done using both the underlying signal
difference characteristics of various sea-ice types and seawater
and prior knowledge from examining the ice chart containing
egg codes. To support this method, even trained sea-ice experts
at CIS rely on visual inspection and backscattered values as was
done in this paper. Thus, making reliable assumptions based
on visual inspection and other conceptual-based knowledge is
regarded as very important in sea-ice analysis.

A. Experiment I—Using Synthetic Data Under Noise

In this paper, the performance of ETVOS under various
noise levels was investigated using synthetic data. A synthetic
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Fig. 6. Segmentation results on a synthetic image at different speckle noise levels using four methods.

sea-ice image was created for this experiment, consisting of two
different gray levels representing seawater and sea ice, as shown
in Fig. 5.

To validate the effectiveness and the robustness of the pro-
posed algorithm under noise, multiplicative speckle noise at 11
different noise levels has been applied, ranging between σ2 =
0.01 and σ2 = 0.50 (increase at an increment of 0.05). The
methods used to compare with the proposed ETVOS include
the widely used global segmentation methods that are based
on the K-means clustering [10] and GMM [13]. In addition to
these two methods, we also applied one additional segmentation
scheme. According to [30], the segmentation performance can
be improved significantly when applying a speckle filter such
as Lee [14], Kuan [15], and Frost [16] followed by K-means
clustering. These speckle filters have been well recognized for
their effectiveness and robustness; as a result, they are currently
available in almost all remote sensing software packages. As
such, the Frost filter was utilized to first eliminate speckle noise,
and then, K-means clustering was used to segment each class
in SAR sea-ice imagery.

Fig. 6 shows the comparisons of segmentation results using
three methods including K-means, GMM, and Frost + K-
means with the proposed ETVOS method and shows how each
method performs under different speckle noise levels. The test
images carried artificial speckles with variances of 0.01, 0.25,
and 0.50 at low, mid, and high noise levels, respectively.

As shown in Fig. 6, the proposed ETVOS method outper-
forms the rest of the three other methods. As the severity of
speckle noise embedded in the synthetic image increases, it
is well observed that the rest of the methods fail to segment
two distinct classes. Also, note that GMM and K-means seg-
mentation methods fail to an extreme extent. This is mainly
due to their segmentation schemes that only take a global tonal
characteristic into account making them very weak in removing
speckle noises. On the other hand, the segmentation results de-
rived from our proposed method well differentiates two classes.
Such strong results are obtained due to the three penalty terms
that were incorporated into the extended ROFTV model, with
the spatial difference penalty term helping to deal with speckle
noise, while the intensity and gradient difference penalty terms
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Fig. 7. F1 score for comparison of four methods at varying noise levels.

help to well preserve boundaries. Hence, the segmentation
results using a synthetic test image under different noise levels
help to illustrate the effectiveness and the robustness of the
proposed ETVOS method.

To see these results shown in Fig. 6 in a quantitative fashion,
we have performed the F1 score test, which is widely used
to validate the accuracy of test data. It also provides a good
measure of how each test method performs under different
environments (in our case, different test methods and noise
levels). The general formula for F1 score derived based on van
Rijsbergen’s effectiveness measure [31] can be expressed by

F1 =
2TP

2TP + FN + FP
(11)

where TP , FP , and FN denote true positive, false positive,
and false negative, respectively. By implementing F1 score test,
we can observe how accurately the segmentation results are
matched with the ground truth image (the original synthetic im-
age) whose F1 score value varies between zero being absolutely
no match and one being a perfect match.

Fig. 7 summarizes the F1 scores of four different methods at
varying speckle noise levels.

It can be observed that the F1 score analysis illustrates
the improved segmentation accuracy of the ETVOS method
in a quantitative fashion over the other tested segmentation
methods. Notice that F1 score of the proposed ETVOS method
shows the relatively consistent pattern as shown in flat line
whereas F1 score derived from other methods decreases as the
amount of embedded noise σ2 increases. This drop is particu-
larly noticeable for K-means and GMM, as both experienced
a dramatic fall between the σ2 values of 0.01 and 0.05. The
Frost + K-means segmentation method shows a relatively
better performance than those two without having F1 values
to drop quickly. However, its relatively better segmentation
performance gets poorer as the noise level increases. Through
the quantitative validation with respect to its original synthetic
image, the proposed ETVOS approach has been demonstrated
to provide strong segmentation accuracy under high speckle
noise.

B. Experiment II—Using Real SAR Sea-Ice Imagery

In this section, experimental results of the proposed ETVOS
method, along with three other methods (GMM, K-means, and

Fig. 8. Subsets of real RADARSAT-2 SAR sea-ice imagery used for testing.

TABLE I
SUMMARY OF TESTED IMAGES

Frost + K-means) on real SAR sea-ice imagery, are pre-
sented along with discussions stating which methods produce
more promising result. Testing of the proposed method and
other methods listed were performed on four test subsets of
RADARSAT-2 sea-ice imagery, which are shown in Fig. 8. The
size and the number of classes that were seen from the four
test subsets are described in Table I. It is important to note that
the number of classes has been determined strictly by visual
inspection with underlying knowledge of sea-ice characteristics
and egg-code analysis as described earlier.

Fig. 9 shows the segmentation results of the proposed
ETVOS method and three aforementioned segmentation
methods using four test images. The overall segmenta-
tion results produced by GMM clustering, K-means, and
Frost + K-means show that, while the boundaries of sea-ice
areas and seawater are visible, they appear very noisy. The
general impression of the results obtained by K-means and
GMM clustering approaches is particularly noisy, and such a
poor performance is due to the fact that they are global segmen-
tation methods, which only consider global tonal characteristics
making them very sensitive to speckle noise while ignoring
local spatial relationships. On the other hand, the segmenta-
tion results produced by the proposed ETVOS method well
preserved the boundaries of seawater and sea ice in all tests.
The segmentation results that are derived from the combination
of the well-known Frost denoising filter with K-means have
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Fig. 9. Segmentation results on four test sets of real SAR sea-ice imagery using the tested methods.

proved their effectiveness by Marques et al. who showed that it
could bring a noticeable improvement when compared to using
K-means by itself. This is true to some extent when analyzing
Tests 1 and 2 when the Frost filter was somewhat sufficient to
suppress the underlying noise distribution, although the final
segmentation results still contain an ample amount of random
noise. On the other hand, the ETVOS evidently segmented two
regions containing medium first-year sea ice and seawater as
demonstrated in the results of Tests 1 and 2. For Tests 3 and
4, the three other test methods performed poorly when three
different classes were present. Since the intensity variation of
pixels between gray sea ice and medium first-year sea ice is
low, all other segmentation methods except for the proposed
ETVOS failed to define each different class in an accurate
manner; rather, they often confused medium first-year sea ice
with gray sea ice as illustrated by many wrongly classified
pixels. Furthermore, results drawn from three other methods
for Test 3 show that gray sea ice and seawater are completely
mixed as one homogeneous region. This occurs mainly due

to the inadequate ability of defining the intensity/gradient dif-
ferences within two regions failing to pick out two analogous
intensity values. Moreover, a supposedly homogeneous region
containing, for instance, first-year sea ice in all four test images,
has been misclassified mostly as seawater due to the insufficient
capability of defining the spatial closeness to enforce the homo-
geneity within the region. This is mainly due to the absence
of spatial difference penalty term. Conversely, the proposed
ETVOS equipped with three penalty constraints was able to
amply reduce the overall noise level and satisfactorily segment
regions in a desired manner.

The proposed ETVOS method well supports its possibility
to be applied for operational use, as the processing time was
short, approximately 8, 12, 16, and 31 s for test subsets 1,
2, 3, and 4, respectively. The computer used for the test-
ing is equipped with Intel dual-core CPUs at 2.4 GHz and
3 GB of RAM. Therefore, it was shown that the proposed
ETVOS approach produces superior results compared to other
methods.
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IV. CONCLUSION

This paper has introduced a novel SAR sea-ice image seg-
mentation algorithm called ETVOS. This approach first uses
an extended total variation optimization phase to construct the
piecewise constant state via three total variation constraints.
After the classes in the piecewise constant state has become
clearly separable, an EM approach is then utilized to learn a
GMM. Finally, an ML classification is performed to assign
each pixel into a final class. Based on our experimental results,
the proposed method produces a very satisfactory result when
compared to other well-established methods. Although a longer
processing time is required when incorporating the texture
information of sea ice to the proposed ETVOS method, it can be
beneficial in helping to better analyze images with multiple sea-
ice types. Thus, the study of efficient implementation algorithm
combining texture characteristics with the proposed method is
highly recommended for future work.
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