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The Greater Toronto Area is the most vital economic centre in Canada and has experienced rapid 
urban expansion in the past 40 years. This research uses Landsat images to detect the spatial and temporal
dynamics of urban expansion in the Greater Toronto Area from 1974 to 2014. We quantitatively analyzed
the extent of urban expansion and spatial patterns of growth from classified Landsat images. We then 
integrated our expansion findings with population data to observe the relationships between urban growth
and population. We found that the Greater Toronto Area had significant growth of 1115 km2, expanding
mainly in radiated and ribbon expansion modes. There was substantial correlation between urban 
extent and population in the period of study. These results demonstrate the efficacy of combining statistical
population data with remote sensing imagery for the analysis of urban expansion.

1. Introduction

Urbanization represents the absorption of less
developed areas, such as agricultural and forest
land, by built-up areas, such as residential and 
commercial land. Some researchers suggest that
urban expansion is an indicator of a region’s 
economic vitality [Yuan et al. 2005]. Urban expan-
sion is typically a product of the development of
suburban areas into high-density built-up areas and
the replacement of rural areas with low-density
built-up areas. Urban expansion not only affects 
the economics in the region, but also influences
ecosystem balances, as reflected in changes in
water quality and receding agricultural and forest
areas [Squires 2002]. As a result, studies of urban
expansion are quite important for local or regional
planners, as well as policy makers in helping them

to make reasonable and effective decisions for
planning, environmental management, and land
resources integration [Yuan et al. 2005; Dewan and
Yamaguchi 2009].

Decision-makers require the latest geographi-
cal information on urban sprawl patterns in both 
quantitative and qualitative ways; therefore, it is
important to keep geospatial information of urban
expansion up to date. In recent years, remotely-
sensed images have become a great data source 
for urban expansion research. There are an increas-
ing number of studies that focus on using remote
sensing technology to monitor urban dynamic
changes. Some studies have shown that remote
sensing can provide an accurate measure of land
use and land cover (LULC) changes, which are 
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La région du Grand Toronto est le centre économique le plus important au Canada et a connu une
expansion urbaine accélérée au cours des 40 dernières années. Cette recherche utilise des images Landsat
pour détecter les dynamiques spatiale et temporelle de l’expansion urbaine de la région du Grand Toronto
entre 1974 et 2014. Nous avons analysé, sur le plan quantitatif, l’expansion urbaine et les tendances 
spatiales de croissance à partir des images Landsat classifiées. Ensuite, nous avons intégré nos résultats
aux données de population afin d’observer les liens entre la croissance urbaine et la population. Nous avons
déterminé que la région du Grand Toronto avait connu une importante croissance de 1 115 km2 de même
qu’une expansion principalement dans les modes en rayonnement et en ruban. Il y a eu une importante 
corrélation entre l’étendue urbaine et la population pendant la période étudiée. Ces résultats démontrent à
quel point il est efficace de combiner les données statistiques de population et les images de télédétection
pour analyser l’expansion urbaine.
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able to represent urban expansion, especially at
medium scales [Yuan et al. 2005; Schneider 2012;
Bagan and Yamagata 2012]. Compared to traditional
LULC monitoring methods, such as field surveys,
remote sensing offers a more efficient, cost
-effective, and less labor-intensive technique in
detecting LULC changes. Mapping LULC changes
at various spatial and temporal scales is facilitated
using remote sensing techniques [Elvidge et al.
2004]. For instance, at small scales, the Moderate
Imaging Spectroradiometer (MODIS) sensors can
provide daily image products at 250 m and 500 m
spatial resolution, and the Advanced Very High
Resolution Radiometer (AVHRR) sensors can 
supply 1.1 km resolution images every 12 hours.
Since the first Landsat satellite was launched in
1972 (initially as ERTS-1), the Landsat series of
satellites have been collecting multi-spectral data 
at 80 m (1972–1982) and 30 m (1982–present) 
spatial resolution and at 16 or 18 days temporal
resolution. Since they are easily accessible through
the United States Geological Survey (USGS)
Landsat Data Archive, and have relatively high
spatial resolution and long historical data archive,
Landsat images have been commonly used to detect
LULC changes at different scales [Manandhar et al.
2009]. Images of Landsat Multispectral Scanner
(MSS), Landsat Thematic Mapper (TM), Landsat-7
Enhanced Thematic Mapper Plus (ETM+), and
Landsat-8 Operational Land Imager (OLI), were
used in this study for collecting LULC change
information for the study area.

Change detection is “the process of identifying
differences in the state of an object or phenomenon
by observing it at different times” [Singh 1989].
Change detection methods that have been used 
for analyzing dynamic LULC changes include
Principal Component Analysis, Write Function
Memory, and Change Vector Analysis [Singh 
1989]. All these methods can be classified into 
pre-classification and post-classification techniques
[Yuan et al. 1998], wherein the pre-classification
methods produce change/non-change maps. Although
they are effective at documenting overall change,
they cannot demonstrate the nature of the infor-
mation change [Singh 1989]. The post-classification
algorithm requires the user to classify images
before generating the “from-to” change maps.
Although the accuracy of post-classification
change detection methods rely heavily on the 
accuracy of classification results, thematic maps
and valuable “from-to” change maps can be 
generated by the whole procedure of the post-
classification method [Fu 2014]. As a result, many

studies focusing on LULC change and urban
expansion apply post-classification comparison
change detection methods to identify specific 
categories of LULC, and thus explore the change
pattern and change effect on the surrounding 
environment [Abd El-Kawy et al. 2011; Yuan et al.
2005; Sundarakumar et al. 2012; Peiman 2011; Tan et
al. 2010].

In this study, the post-classification comparison
change detection approach was used, necessitating
the selection of an appropriate classification 
algorithm. Since unsupervised classifiers need a
large amount of work during the post-classification
period, various supervised classification methods
have been developed, such as Minimum Distance
[Wacker and Landgrebe 1972], Maximum Likelihood
(MLC) [Otukei and Blaschke 2010], and Artificial
Neural Network (ANN) [Erbek et al. 2004]. 
Compared with traditional statistical classifiers
(e.g. MLC), the Support Vector Machine (SVM) 
classifier is a different type of classification 
algorithm. SVM is a method based on the statistical
learning theory and the structural risk minimization
method and has had an excellent track record of
image classification [Schneider 2012; Huang et al.
2002; Yang 2011]. Based on the previous studies,
the SVM, MLC, and ANN classifiers were 
tested, and their relative performances were 
evaluated.

Satellite-based LULC changes in the Greater
Toronto Area (GTA) have been the focus of 
several previous studies. For example, Martin and
Howarth [1989] used SPOT multispectral imagery
to detect the landscape’s change in the City of
Scarborough, a small part of the GTA. An object-
oriented classification of IKONOS images of the
City of Mississauga within the GTA, was reported
by Lackner and Conway in 2008. Ferrato and 
Forsythe [2013] compared classification results
from Earth Observing-1 Hyperion hyperspectral
data with Landsat and SPOT data through iterative 
self-organizing data analysis. Although they 
validated the relative information content of each
of the satellite data sources, they only used one year
for classifying the land use, thereby limiting their
ability to provide a dynamic change analysis of 
the study area. Hu and Ban [2008] used Landsat and
RADARSAT images to monitor urban changes in
the GTA between 1988 and 2002. Similarly, Li and
Zhao [2003] presented a bi-temporal change detec-
tion study using Landsat TM images, which only
focused on the City of Mississauga. Though they
were able to successfully show changes, their study
only identified “from-to” changes based on two
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years and they only applied a single classifier 
in their classification process. Forsythe [2002],
Furberg and Ban [2008], and Tole [2008] proposed
the use of multiple Landsat images to monitor
urban sprawl. Conway and Hackworth [2007] used
the Normalized Difference Vegetation Index
(NDVI) to detect the urban land cover variation
through Landsat images in the GTA with an over
90% overall classification accuracy. However, only
two or three images were used to represent the
urban expansion trend of decades. Overall, most of
these studies used few images and only one classi-
fication algorithm to carry out an assessment of
long period dynamic change that did not cover the
entire GTA.

This research expands on these studies by
examining the dynamic changes in the processes 
of urban expansion of the GTA over a period of 40
years. We applied multiple classification methods
and evaluated LULC changes of bi-temporally 
(i.e. between years) and multi-temporally (i.e.
across all years) from Landsat data sets at 5-year
intervals from 1974 to 2014. Our study focused on
the quantitative and qualitative analysis of regional
urban expansion. Another objective of the study
was to analyze the relationship between popu-
lation and urban expansion. Population as one of
the driving factors for urban expansion analysis 
has been playing an important role of urban 
development monitoring. Ma and Xu [2010] pointed
out that population growth would lead to increased
demand by urban residents on land resources and
urban space such as residence ad traffic and public
facilities. Silván-Cárdenas [2010] used fine spatial
resolution images for population estimation in
small areas and  proposed that population estima-
tion using remotely-sensed images is receiving
more attention. Thus, we examine the relationship
between population and urban expansion over 
the last 40 years.

2. Study Area and Data
2.1 Study Area

The study area (see Figure 1) is located in
Southern Ontario, Canada, including the City of
Toronto, and Regions of Durham, Halton, Peel, and
York [Statistics Canada 2011]. This area covers 
7752 km2, and is located between Lake Ontario 
and Georgian Bay of Lake Huron. The GTA is 
the economic centre of Canada and is an important
metropolitan area for foreign investment, trade
flows, and a hub for exchanges of culture, religion,

and technology. It is also the biggest city in Canada
due to a large net migration involving immigra-
tion, non-permanent residents, interprovincial and
intra-provincial migration that has occurred over
the past several decades. This study area includes 
various types of land cover types: lakes and rivers,
high and low density urban areas, and rural area 
(agriculture land, forest landscapes, grassland).
According to Statistics Canada [1976; 2011], the
population of the GTA in 2011 was 6 054 191, a
90% increase from 1976.

2.1 Data Description

Images from the Landsat-1 and -2 Multispectral
Scanner (MSS), Landsat-5 Thematic Mapper (TM),
Landsat-7 Enhanced Thematic Mapper Plus
(ETM+), and Landsat-8 Operational Land Imager
(OLI) were the main data sets used in this study
(Table 1). All these images were acquired from 
the Landsat Data Archive held by the USGS, 
and most were cloud free. We obtained these
images in level-one product format. In order to
obtain high-quality results of analysis, most of
these data were acquired in the summer season
from June to September. All images were projected 
in the World Geodetic System of 1984 (WGS84)
and Universal Transverse Mercator (UTM) 
coordinates. Image pre-processing was performed
using the software Environment for Visualizing
Images (ENVI) version 4.8, PCI Geomatica 2013,
and ArcMap version 10.1. During the image 
pre-processing, layer stacking for each image was
performed first, followed by overlapping images
registration. The PCI Geomatica ATCOR module
was used to carry out atmospheric correction for
each image, based on unique features of data 
acquisition, including date and time, sensor type,
coordinates of the image centre, atmospheric 
definition area, and atmospheric condition. Finally,
images from each year were mosaicked by geo-
referenced based mosaicking tool in ENVI, with
colour balance using and clipped to the bounds 
of the study area. The GTA boundary and region’s
boundaries were provided by Statistics Canada
[2011], and the Lake Ontario boundary acquired 
for DMTI Spatial Inc., Ontario [2014]. 

Population changes over the last four decades
were used to foster an understanding of the urban-
ization process of the GTA, dating back to 1976
[Statistics Canada 2011]. The population data of the
GTA were acquired from Statistics Canada from
1976 to 2011 at 5-year intervals [Statistics Canada
2011]. The data were then used to analyze the 
relationship between the population and urban
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Year Day of the year Sensor Bands Pixel Size
1974 187, 223, 240 MSS 4, 5, 6, 7 60 m
1979 170, 171 MSS 4, 5, 6, 7 60 m
1984 237, 238 TM 1, 2, 3, 4, 5, 7 30m
1989 203, 233 TM 1, 2, 3, 4, 5, 7 30m
1994 174, 178, 185 TM 1, 2, 3, 4, 5, 7 30m
1999 246, 271 ETM+ 1, 2, 3, 4, 5, 7 30m
2004 172, 179 TM 1, 2, 3, 4, 5, 7 30m
2009 178, 217 TM 1, 2, 3, 4, 5, 7 30m
2014 192, 199 OLI 1, 2, 3, 4, 5, 6, 7, 9 30m

Figure 1: Study area – the Greater Toronto Area (GTA).

Table 1: Satellite images with 5-year intervals used in this study.G
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expansion. A set of full-colour 10–20 cm resolution
digital orthoimages in 2009 were acquired from 
the Geospatial Centre, University of Waterloo as a
reference map for accuracy assessment in 2009.

3. Methods
The analysis methods can be divided into three

parts: image classification, change detection and
analysis, and urban expansion analysis as shown in
Figure 2. All image processing was performed
using ENVI 4.8 and ArcMap 10.1.

3.1. Image Classification

Selecting an appropriate algorithm to classify
the imagery during the initial stages of this 
analysis was vital, as the quality of the classified
images directly impacted the performance of the
change detection. To generate consistent classi-
fication results, an appropriate classification
method was determined first. In this paper, the
supervised MLC, SVM, and ANN algorithms 
were applied to the 2009 mosaic. Training samples
were selected for the six Level-2 classes in the 
classification scheme listed in Table 2. A false

colour combination (near infrared band as red, red
band as green, and green band as blue) of the
reflective spectral band dataset for 2009 was used
to choose training samples for those three class-
ification algorithms. A Jeffries-Matusita (JM) 
distance report was automatically generated to
illustrate the spectral separability of the training
samples. JM distance is a separability function that
detects the average distance between a pair of
classes that directly relates to the probability of
how accurate a resultant classification will be
[Schmidt and Skidmore 2003]. Values range from 
0 to 2, and the value is asymptotic to 2, meaning
that the training samples selected are more separa-
ble. After applying classification algorithms, a 
3 x 3 majority filter was applied in order to remove
the salt-and-pepper noise, as a larger size filter
would decrease the accuracy of the final results.

After classification, a statistical accuracy
assessment was built to assess the accuracy of 
classification maps. In order to reduce the cost and
time, and to ensure it is large enough to generate 
an appropriate error matrix, a general guideline to
collect sample size is a minimum of 50 samples 
for each class [Congalton and Green 1999]. Based 
on the 2009 orthoimagery, 600 pixels (100 samples
for each Level-2 category) were randomly selected
from the classified image of 2009. Selected pixels

Figure 2: The workflow chart of this study.

Table 2: Image classification categories.

Level-1 category Level-2 category Description

Urban area
Residential Low-density built-up areas, e.g. houses
Commercial High-density built-up areas, e.g. commercial areas and parking lots

Non-urban area

Barren Cropland Fallow / harvested agriculture areas
Water-body River, lake, and pond areas

Forest Forest cover areas
Vegetation Grassland, parks, and agricultural area in productionG
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were manually validated against the orthoimagery.
The overall accuracy, the user’s accuracy (the 
probability that a classified pixel is really in that
category) and the producer’s accuracy (the proba-
bility an area is correctly classified) were calculat-
ed through the error matrix [Congalton 1991]. An
advanced measure of interclass agreement, the
Kappa coefficient, was also calculated. The Kappa
coefficient provides a better interclass discrimi-
nation than the overall accuracy statistic alone
[Fitzgerald and Lee 1994]. 

3.2 Change Detection

In the change detection analysis process, the
post-classification comparison change detection
method was applied to detect land use and land
cover changes. Post-classification comparison 
separately classifies multi-temporal images into
thematic maps, and then implements a comparison
of the classified images on a per-pixel basis 
[Alphan et al. 2009]. This approach can produce
change maps that show a complete matrix of changes
by properly coding the classification results of 
two dates. Before applying the change detection,
the LULC classes were combined into Level-1 
categories (as shown in Table 2): the urban area 
and the non-urban area, since we only wanted to
examine which area was developed into urban 
area (the built-up area), and this step can help
decrease the impact of classification errors. 
Bi-temporal and multi-temporal change maps were

generated to analyze the spatial patterns of the
urban expansion.

3.3 Statistical Urban Expansion
Analysis

Both the rate and spatial structure of urban
expansion vary across time [Bagan and Yamagata
2012]. We calculated the rate of urban expansion
using the Land Use Change Index (LUCI), as
shown in equation (1) [Haregeweyn 2012]. This 
has been shown to be a significant index for 
assessing urban expansion [Bagan and Yamagata
2012].

(1)

where Ua and Ub indicate the area of a land use
class at Time a and Time b, respectively. 
T indicates the time period from Time a to Time b.
If T’s unit is in years, then LUCI will be the
annual rate of change in the area for this class. 
In our case, the LULC class was the overall 
urban class. At the same time, we carried out a
Pearson correlation coefficient analysis to analyze
the correlations between the urban areas and the
population. 

4. Results and Discussion
4.1 Classification Accuracy

An error matrix was built to assess the accura-
cy of the classification results before choosing an
appropriate classifier across all time periods. As
shown in Table 3, the overall accuracy of the SVM
classifier was 92.63%, and the Kappa coefficient
was 0.90. In comparison, the MLC algorithm 
had an overall accuracy of 85.34%, with a Kappa
coefficient of 0.83, and the ANN algorithm had 
an overall accuracy of 91.48%, with a Kappa 
coefficient of 0.89. Both the MLC algorithm and
ANN algorithm were inferior compared to the
SVM. The user’s and producer’s accuracies of
commercial areas and barren cropland in SVM
were much better than the results from the ANN
and MLC. Therefore, we proceeded to classify 
the remaining images from the other years with the
SVM classifier. During the classification process,
we combined the Level 2 categories together into
either urban area or non-urban areas. This process
reduced misclassification.  

MLC ANN SVM
Level-2 category UA PA UA PA UA PA 

Vegetation 0.88 0.95 0.86 0.99 0.90 0.97
Residential 0.90 1.00 0.95 0.95 0.93 0.97
Commercial 0.85 0.83 0.95 0.83 0.93 0.90

Barren Cropland 0.91 0.78 0.93 0.70 0.96 0.83
Water-body 1.00 0.97 1.00 1.00 1.00 1.00

Forest 0.98 0.91 0.98 0.90 0.94 0.88
Cloud 0.50 1.00 1.00 0.50 1.00 0.33
Shadow 0.60 1.00 0.50 1.00 1.00 1.00

Overall accuracy (%) 85.34 91.48 92.63
Kappa coefficient 0.83 0.89 0.90

(UA = user’s accuracy; PA = producer’s accuracy)

Table 3: Accuracy assessment comparison between different classifiers for
the 2009 imagery.
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4.2 Map Changes and Analysis

By counting the number of pixels of each
image, the bi-temporal change detection results
indicated an increase in the GTA’s urban area of
1115 km2 (from 1122 km2 in 1974 to 2237 km2 in
2014, as shown in Figure 3). By extracting and
overlaying the urban area of the multitemporal
classification results, the urban expansion map 
was compiled, including 10-year intervals from
1974 to 2014 (Figure 4). Based on Figures 3 and 4,

some important spatial patterns could be observed.
The spatial urban expansion in the GTA mainly 
followed two types: radiated expansion mode,
which is a typical tendency of urban growth that
from urban centres to adjoining non-urban areas 
by a series of concentric circles [Burgess 2008]; 
ribbon expansion mode, which is a combination
type of border [Stan 2013] and enclave [Stan
2013] types, which the growth was starting with,
several centres along the lakeshore of Lake
Ontario. 

Figure 3: The bi-temporal change detection from 1974 to 2014.
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1974–1979 1979–1984 1984–1989 1989–1994 1994–1999 1999–2004 2004–2009 2009–2014

Annual growth rate (%) -1.1 2.2 4.3 1.9 0.7 3.6 0.1 1.4

Mean annual growth rate (%) = 1.6

Figure 4: The multi-temporal change detection from 1974 to 2014.

Table 4: Annual growth rate of the urban area between 1974 and 2014.
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The GTA expanded outward from the City of
Toronto, as well as laterally along Lake Ontario’s
lakeshore. In addition, regional centres of Peel,
Durham, and York also expanded. In 1974, many 
of the regional centres within the GTA existed in
isolation, as shown in Figure 4, and the cities could
be clearly identified individually. From 1974 to
1991, regions around the City of Toronto witnessed
a significant growth along their boundaries with
Toronto. In the 1990’s, the regions of Peel, York,
and Durham developed rapidly. All these regions
expanded outward from their regional centres.
After 2004, York Region’s urban expansion began
to slow down, while the outside regions (Durham,
Peel and Halton) had a considerable growth of 
urban areas. From 2009 to 2014, the largest 
expansion occurred in the southwest part of the
GTA. For instance, Brampton expanded northeast 
toward the City of Vaughan. After 40 years of
development, some smaller urban centres had 
connected with each other, such as Richmond Hill
and Markham. Furthermore, some cities located
along Lake Ontario, such as Burlington, Oakville,
and Ajax, experienced significant development.
Regions of Peel and Halton had the largest increase
in urban area in the GTA. Overall, the urban 
development in the GTA takes the form of outward
extension and expansion from these urban centres,
especially from the City of Toronto.

4.3 Statistical Analysis of Urban
Expansion and Population

To explore the long-term population and urban
growth of the GTA, we calculated the urbanized
extent for each 5-year period from our classified
imagery and graphed them with population data
(Figure 5). As seen on this chart, both population
and urban areas experienced constant growth in 
this time period. Correlation analysis shows that
urban expansion is directly correlated to population
increase. The Pearson correlation coefficient (r)
between the population and the urban area was
0.979 (p<0.01), which identifies strong correlation
between the population and the urban area in the
GTA. 

The mean annual growth rate of the urban area
over the 40 years was 1.6% (Table 4). There was
significant urban expansion during two periods.
The periods between 1984–1989 and 1999–2004
saw increases of 4.3% and 3.6% in annual growth
rate of the urban area, respectively. A slightly neg-
ative trend of 1.1% in 1974–1979 may have been
the result of misclassification, as these images 
were acquired by Landsat-1 at 60 metres pixel size

and only 4 bands were available for the classifica-
tion process. The period between 2004 and 2009
had a lower annual growth rate of 0.1%. This may
be due to two main factors: the low urban growth
rate in 2004–2009 and the lower classification
accuracy of the 2004 image. 

According to Bhatta [2010], urban expansion
can be caused by a variety of reasons such as pop-
ulation growth, economic growth, independence of
decision, industrialisation and etc. As Stan [2013]
pointed out, the three main forces that result in
urban expansion are “a growing population, rising
incomes, and falling commuting costs.” Thus,
when we explored deeper into the population
changes during these 40 years, we discovered that
the two significant periods of urban growth mir-
rored the population growth over the same time.
The mean annual population growth rate over the
40 years was 1.9%, however during the two 5 year
periods between 1986–1991 and 1996–2001, more
substantial increases were observed of 2.6% and
2.0% were observed respectively. From 1976 to
2011, the annual population growth rate ranged
between 1.5% and 2.6%. The lowest annual popu-
lation growth rate was found in the period of 
1976–1981 at 1.5%. It is obvious that urban expan-
sion is typically delayed by a few years following a
large increase in population, as the city requires
time to respond. The fluctuations in the annual
growth rate of the urban area and the annual popu-
lation growth rate were relatively consistent. 

5. Conclusion
In this paper, dynamic changes of the urban

growth trend of the GTA were successfully detected
using a series Landsat images acquired over time.
The selection of an accurate classification process
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Figure 5: Population growth and urbanization in the GTA from 1974 to
2014.
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was an important part of this study, as it determined
the reliability of the final change detection results.
In our tests, we found that the SVM classification
method performed better than the MLC and ANN
approaches. We noted that urban growth occurred
mainly in a radiated expansion mode, in which the
city expanded outward from the City of Toronto.
The GTA also expanded in a ribbon expansion 
mode along Lake Ontario. Furthermore, the urban
expansion was strongly correlated to increases in
population. There are some limitations in this 
study. Firstly, because images were acquired from
different sensors, during the classification period, 
a different number of bands were used. Secondly,
the training samples and classification results were
only validated in 2009 due to lack of reference
images.

In conclusion, Landsat images can be used to
examine the LULC changes of the metropolitan
area in long time series. The extent and spatial 
patterns of the GTA’s urban expansion were both
analyzed quantitatively and qualitatively in the
study. It is feasible to integrate Landsat imagery
and census data to study urban expansion of 
metropolitan areas or even of a global scale 
study over time. Since urban development policy
making or urban planning usually need modeling 
of the urban growth tendency, knowing the urban 
historical development patterns and present devel-
oping situation are meaningful. Therefore, these
results can be used for the regional governments 
or planners to make decisions regarding GTA’s
development in the future. 
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