
 

 

EXTRACTION OF STREET TREES FROM MOBILE LASER SCANNING POINT CLOUDS 

BASED ON SUBDIVIDED DIMENSIONAL FEATURES 

 
 Pengdi Huang1, Yiping Chen1*,  Jonathan Li1, 2, Yongtao Yu1, Cheng Wang1, Hongshan Nie3 

 
1Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and 

Engineering, Xiamen University, Xiamen, Fujian 361005, China (ypchenhk@gmail.com) 
2GeoSTARS Lab, Department of Geography and Environmental Management, University of Waterloo, 

Waterloo, Ontario N2L 3G1, Canada 
3Hunan Intelligent Things Technology Co.,Ltd., Changsha, Hunan 410000, China 

 

ABSTRACT 

 

This paper proposes a method for automated extraction of 

street trees in a typical urban environment from 3D point 

cloud data acquired by the mobile laser scanning system. 

First, the algorithm utilizes the voxel-based method to 

remove the ground points from the scene. Second, the 

Euclidean distance clustering is adopted to cluster points 

into individual objects. The eigenvalues of neighborhood 

covariance matrix and the corresponding normalized 

centroid distance are computed for each point to obtain the 

subdivided dimensional features. Finally, the statistical 

component features and horizontal information are 

calculated for object detection. The experiment results show 

the feasibility of the proposed algorithm. 

 

Index Terms— Mobile laser scanning, 3D point clouds, 

dimensional features, street tree detection, centroid-distance 

 

1. INTRODUCTION 

 

With the improvement of urban greening requirements, a 

large amount of vegetation is planted on both sides of a 

street such as landscape trees (called “street trees” in this 

paper). These trees are carefully positioned so as not to 

block street luminaries, and not influence utility lines above 

or below the ground. However, street trees still raise security 

problems. The climate and external forces make the weak 

vegetation a potential safety hazard. For example, a falling 

branch could injure a pedestrian or indiscriminate growth of 

the street trees could cover a sign pole, creating an 

obstructed view. Laser scanning technology has been 

promoted and widely applied to surveying and mapping 

fields in recent years. In particular, a mobile laser scanning 

system, with high accuracy, acquisition speed, and density of 

data sets, provides a systematic way to inventory urban 

vegetation. Therefore, research and the application value of 

tree extraction from point clouds are attracting more and 

more attention. 

The inventory of urban street trees has been mostly 

accomplished by aerial images [1]. For point clouds, some 

researchers also launched targeted works of tree detection on 

3D data sets. For forest inventory, a two-step method, which 

includes cluster searching and point density analysis, was 

presented in [2] to detect trees in a horizontal cross section .  

The following two approaches were presented in [3] to 

segment tree regions: (1) computing the eigenvalues of the 

covariance matrix for cylindrical and spherical environments, 

and (2) using the features of the echoes without 

neighborhood information. In [4], a method for tree 

detection was designed to first calculate the local 

geometrical features to locate foliage points, then to cluster 

similar points for retrieving individual trunks based on 2D 

morphological operations. In [5], the matched RGB imagery 

color values acquired by digital cameras were used as 

segmentation clues. Then, an elevation layer of points was 

divided after segmentation, followed by use of a 

discriminant rule to segment individual trees. A novel 

descriptor for simultaneously modeling the local and global 

geometric structures of a shape was proposed in [6] for 

roadside tree retrieval.  

In previous studies, the main thought was to design 

descriptors or features (e.g., color, shape, local geometrical 

descriptor) relative to the prominent part (e.g., foliage, trunk) 

of the tree, with the result relying on the performance of the 

descriptor in each small computing unit. 

Rather than emphasizing the local characteristics of 

trees, the purpose of this paper is to develop a new workflow 

with a focus on objective geometrical component 

proportions (See [7]) for automated detection of street trees 

in the urban road environment. The paper presents the 

results on street tree detection obtained using 3D point cloud 

data acquired by a RIGEL VMX-450 system. 

 

2. OVERVIEW 

 

This paper aims at deriving a street vegetation map layer, as 

well as single tree extraction, from point cloud data in an 
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efficient way. The process of our method is shown as 

follows. 

 

In the pre-processing stage, we firstly segment the 

objects located above the ground by ground removal and 

Euclidean distance clustering so that the canopy and tree 

branches are not easily separated.  

In the feature computing stage, we calculate the 

normalized centroid distance and the local geometrical 

features of off-ground objects. Then a feature criterion is 

derived and each point judged according to corresponding 

geometrical behaviors.  

The street tree detection includes feature quantity and 

object recognition. We carry out the geometry component 

statistics proportion for each object. Then, the Support 

Vector Machine (SVM) is adopted as a classifier. Besides, 

the horizontal distribution information of an object is added 

to help detect street trees. 

 

3. METHOD 

 

3.1. Pre-processing 

 

3.1.1. Ground removal 

Computing the dimensional feature of all points acquired by 

the mobile LIDAR system requires a large amount of 

calculation. To reduce the amount of calculation, we adopt 

the ground removal algorithm in [8] to separate ground 

points and off-ground points. 

Essentially, the ground removal algorithm is a region 

growing judging criterion. The data is subdivided into 

voxels as the basic calculation unit. The voxel, whose z 

value lies below an assigned ground threshold, Zground=10 m, 

is considered as a suspected ground voxel. Then, we grow 

the suspected ground voxel upward to a height greater than 

Hoff-ground=1.6 m. The growth rule judges the connectivity of 

the nine neighboring voxels above a query voxel. If the 

voxel fails to touch Hoff-ground , the points which are included 

in this voxel are regarded as ground points and further 

removed. As shown in Fig. 2(b), ground points are removed 

and off-ground points are reserved for further clustering. 

 

3.1.2. Clustering 

After ground removal, Euclidean distance clustering is 

adopted to cluster points into individual objects from 

unorganized point clouds. Considering the distance between 

two objects, we use a search radius, d=0.2 m, to implement 

clustering. After clustering, those objects consisting only of 

a few points are not regarded as trees and further abandoned. 

Due to the error presented by the ground filter, points on the 

bottom of each object under h=0.1 m are removed.  

Clustering operation achieves the connection between 

the trunk and canopy of a street tree; thus, parts of street 

trees need not be further located. As shown in Fig. 2(c), the 

off-ground objects are successfully labeled by color coding.  

 

3.2. Features extraction 

 

Considering the different geometric detail and structural 

complexity of objects on point clouds, we improve the 

adaptation of the local geometrical descriptor. A saliency 

geometrical feature to describe the local point distribution 

by using principal component analysis was adopted in [9]. 

Let the covariance matrix of one 3D spatial point set be: 
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indicates the center of gravity of the neighboring point set, 

which is additionally helpful to our algorithm. Then the 

covariance matrix, C, is decomposed to calculate the three 

eigenvalues ),,( 210  , where 210   . For street trees 

Fig.1. Workflow of street tree extraction. 

(a)                                            (b) 

(c) 

Fig.2. Illustration of ground removal: (a) raw data, (b) 

off-ground points, and (c) labelled off-ground objects. 
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in point clouds, the volumetric structure is produced when 

the laser through the canopy of vegetation and the 

eigenvalues of inside points are followed with 210   . 

In fact, some quantitative criteria have been designed to 

measure local geometrical features based on eigenvalues of 

the covariance matrix. In [10], the artificial neural network 

was adopted to train and classify raw points into planar, 

linear or scatter points. Particularly, [7] presented a simple 

judging formula to discriminate those three dimensional 

behaviors as follows: 

 ),)(,)max((arg 22110 NNNqV              (2) 

where qV indicates the local geometry behaviour of the 

query point; the subscript N means the normalization, and 

ii   . In addition, one salience feature, which 

calculates the Euclidean distance between the query point 

and the center of gravity of a neighboring point set for point 

cloud registration, was proposed in [11]. Inspired by those 

above methods, we decided to use the normalized centroid 

distance to subdivide three dimensional features. In this 

paper, we distinguish the local geometrical behaviors of a 

single point as five categories containing linear, edge, planar, 

cambered and scatter points. Particularly, the normalized 

centroid distance, d, is defined as the ratio of the distance 

between the center of gravity of a neighboring point set and 

the query point, q , to the searching radius R as follow:  

RXXd q /
2

                                 (3) 

where ),,( qqqq zyxX   denotes the Cartesian coordinate of 

the query point. This equation measures the location of the 

query point in its neighborhood. If the query point is far 

removed from the neighborhood center, it is possibly an 

edge or convex behavior with a large value of d.  

After computing the normalized centroid distance, d, of 

each point neighborhood, the descriptor is rebuilt as a vector 

),,,( 210 d . In the case of the situation that dimensional 

features are sensitive to the edge of an object, we prefer   

rather than  and classify the point as qV  based on the 

above judging formula. To adapt to different geometric 

behaviors, the threshold Ld =0.15 and Pd =0.2 are 

empirically set to subdivide linear points into linear and 

edge points, planar points into planar and cambered points, 

respectively.  

In general, it is intuitively plausible that tree objects 

contain more scatter and cambered structures than man-

made objects, which have a neat body structure. As shown in 

Fig. 4, our proposed descriptor describes the street trees in 

greater geometric detail. Moreover, the scatter points (green) 

are distributed mainly in crown as shown in Fig. 3 (a). On 

the contrary, as shown in Fig. 3 (b), bus stops are presented 

as facades that retain a large number of planar points (grey) 

and fewer cambered points (purple). The edge points of 

objects are correctly detected and colored blue; linear points 

are colored yellow and distributed in the slender linear 

structure only. 

 
3.3. Tree detection 

 

For feature quantization of objects, we firstly use the above 

criteria to determine the geometrical categories of each off-

ground point. Then, considering the strong stability of the 

overall composition, the proportion of five geometrical 

behaviors of one object are counted as a feature vector. Thus, 

one five-dimensional vector is matched with one 

unidentified object. Moreover, the shapes of street trees vary 

with changing species. To span the difference in the wide 

gap of various street trees, two principal direction standard 

deviations of object horizontal projection (indicating the 

horizontal distribution of objects) are added as auxiliary 

features. 

For classifying off-ground objects, the SVM algorithm 

is adopted as a classifier to recognize the objects as street 

trees and non-tree objects, respectively. LibSVM [12], the 

algorithm implementation platform, is applied with RBF 

kernel function and select appropriate parameters in C++ 

codes. Moreover, the ground truth labeling and feature 

normalization have been made before using SVM. 

 

4. RESULTS AND DISCUSSION 

 

The experimental datasets used in this paper were acquired 

by a RIGEL VMX-450 system. The location of the point 

cloud data we adopted was acquired on the Island Ring 

Road in the City of Xiamen, in which there are a variety of 

tropical trees on both sides of the road. The diversity and 

arrangement of the street trees is a challenge for automated 

detection. We used half of the data as the training dataset, 

the other half as the test dataset to verify the results. The 

detection results are summarized in Table I. 

In our test dataset, the 186 clean objects and fifteen 

overlapping objects were extracted. Two classes of clean 

objects containing 112 street trees and 74 non-tree objects 

were manually labeled before classifying. The true positives 

(TP) are the number of tree objects that are correctly 

detected; the false positives (FP) are the number of missed 

Fig.3. Illustrations of (a) and (b) local geometrical 

feature distributions on various objects 

(a)                                                 (b) 
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trees after detection. Similarly, true negatives (TN) and false 

negatives (FN) measure the corresponding results of non-

tree objects. 

 

TABLE I. Detected result of street trees 

Clean 
Overlapping F1-score 

TP FP TN FN 

109 3 63 11 15 89.53% 

 

In Table I, overlapping means that, within a cluster, the 

street tree targets overlap non-tree targets. Hence, a separate 

result discussion is required for the overlapping object. The 

result of detecting overlapping objects as trees (quantity n) 

adds to both the number of true positives (TP) and false 

negatives (FN). Particularly, the results show that, the fifteen 

overlapping objects were all detected as trees, so n=15. And 

the evaluation equation for the entire data was built as 

follow. 

Precision: FP)nn)/(TP(TPP   

Recall: n)FNn)/(TP(TPR 2                           (4) 

F1-score: )/(2 RPPRF                                            

Finally, the precision (P) of 97.64%, the recall (R) of 

82.67% and the F1-score (F) of 89.53% were obtained from 

our test data set. The typical visual results are shown in Figs. 

4. The street trees (shown in green in Fig. 4(c) and (d)) were 

effectively extracted from the point cloud data. Conversely, 

road surface, buildings, or cars (presented in grey) were 

separated. 

 

5. CONCLUDING REMARKS 

 

Extraction and detection of street trees on point clouds 

acquired by mobile laser scanning systems facilitate the 

digital management and inventory of urban street trees. We 

improve the dimensional features to further subdivide for 

classifying through increasing the geometric detail and 

discrimination to the street trees. Besides, the geometry 

proportion feature was developed to adapt to the diversity 

and variety of street tree shapes. The results of our proposed 

method show the feasibility of our method to detect street 

trees. However, it is difficult to separate the objects when 

the street trees and non-tree objects are too close. In addition, 

some street trees miss their structural features because of 

withering leaves or incomplete scanning. In future work, the 

explicit segmentation of objects overlapping with street trees 

will be further studied for more complicated scenes. 
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Fig.4. (a) and (b) two test datasets, (c) and (d) detected 

street trees. 
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