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Using high-spatial-resolution multispectral imagery alone is insufficient for achieving
highly accurate and reliable thematic mapping of urban areas. Integration of
lidar-derived elevation information into image classification can considerably improve
classification results. Additionally, traditional pixel-based classifiers have some limita-
tions in regard to certain landscape and data types. In this study, we take advantage of
current advances in object-based image analysis and machine learning algorithms to
reduce manual image interpretation and automate feature selection in a classification
process. A sequence of image segmentation, feature selection, and object classification
is developed and tested by the data sets in two study areas (Mannheim, Germany and
Niagara Falls, Canada). First, to improve the quality of segmentation, a range image of
lidar data is incorporated in an image segmentation process. Among features derived
from lidar data and aerial imagery, the random forest, a robust ensemble classifier,
is then used to identify the best features using iterative feature elimination. On the
condition that the number of samples is at least two or three times the number of fea-
tures, a segmentation scale factor has no particular effect on the selected features or
classification accuracies. The results of the two study areas demonstrate that the pre-
sented object-based classification method, compared with the pixel-based classification,
improves by 0.02 and 0.05 in kappa statistics, and by 3.9% and 4.5% in overall accuracy,
respectively.

1. Introduction

Since airborne laser scanning or light detection and ranging (lidar) systems have become
widely used for the acquisition of three-dimensional (3D) data, a variety of lidar-based
approaches to urban thematic mapping have been developed over the last two decades
(Brenner 2010). In the early period of lidar techniques, lidar data, as a single data source,
were researched in a number of applications, including building detection (Maas and
Vosselman 1999; Vögtle and Steinle 2003; Li and Guan 2011) and tree inventory (Zimble
et al. 2003; Brandtberg 2007). Although use of lidar data alone has advantages for urban
object detection, some limitations exist, such as data gaps caused by wet buildings and
roads, and recognition problems regarding buildings and trees. Therefore, in recent years,
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research on urban mapping has involved the integration of lidar data with data sources
including IKONOS (Shan and Lee 2003), QuickBird (Chen et al. 2009), SPOT-5 (Alonso
and Malpica 2010), GeoEye (Yu et al. 2011), and aerial images (Huang et al. 2008;
Khoshelham et al. 2010; Guan et al. 2013). The philosophy behind the integration of lidar
and optical imagery is that the strengths of one data type can compensate for the weaknesses
of others. For example, being short of spectral information, lidar data have high classifica-
tion confusion between man-made and natural objects, whereas multispectral image data
have increasing classification confusion between spectrally identical objects in intricate
urban landscapes.

In the field of remote sensing, studies on urban thematic mapping (or urban land-
use/land-cover classification) have become an essential component in analysing the
interactions between human activities and physically environmental changes. In most urban
areas, the focus is on the following four main objects: buildings, trees, grass, and bare
ground (Rottensteiner et al. 2005; Huang et al. 2008; Guo et al. 2011; Guan, Li, and
Chapman 2011). Buildings and bare ground, as dominant objects in urban areas, character-
ize important information relating to urban landscape and human activities. Undoubtedly,
they are widely used in many applications, including (1) urban solar energy potential map-
ping and collection, (2) 3D city modelling, (3) geographical information system (GIS)
database updating, (4) environmental planning, (5) engineering surveying, and (6) topo-
graphical mapping. Moreover green infrastructure, an interconnected network of green
space, conserves natural ecosystem values and functions and provides associated bene-
fits to human populations (Benedict and McMahon 2002). As two important elements of
green infrastructure, Tree and Grass are primarily chosen for analysis of the quantity and
quality of green space, which includes energy exchange and hydrological modelling, heat
island effect, 3D modelling, and climate change. Therefore, understanding the spatial dis-
tribution of human activities and physical environment at various levels plays a critical role
in sustainable development.

A number of classification methods for urban thematic mapping have been well devel-
oped, ranging from (1) unsupervised mean-shift (Melzer 2007) and ISODATA (Germaine
and Huang 2011) algorithms, through (2) supervised classification methods that include
traditional maximum likelihood (Haala and Walter 1999), a recently-vigorous machine-
learning-encompassing a support vector machine (Secord and Zakhor 2007; Mallet, Bretar,
and Soergel 2008; Guan et al. 2011) and random forests (Chehata, Guo, and Mallet 2009;
Guo et al. 2011), to (3) object-based classification or object-oriented classification, or
object-based image analysis (Guan et al. 2011; Yu et al. 2011). A traditional pixel-based
classification is often inadequate for high-resolution multispectral images in the complex
urban environment (Zhou and Troy 2008), as it suffers from the well-known salt-and-pepper
effect. To overcome this situation, several object-based classification methods have been
proposed, in which neighbouring pixels are grouped together into image objects in a process
called segmentation. These image objects are then classified according to their attributes,
such as colour/value, shape, texture, or context (Lehrbass and Wang 2012). Owing to
improvements in image segmentation, it has been claimed that object-based classification
methods can classify land-cover/land-use efficiently (Duveiller et al. 2008). Since 2000,
there has been a sharp increase in the popularity of object-based classification methods
as opposed to pixel-based classification methods (Gamanya, De Maeyer, and De Dapper
2009; Blaschke 2010).

Feature selection is a commonly used process in land-use/land-cover classification,
wherein a subset of features available from the data is selected for applying a classifier.
In this way, the selected subset contains features that most contribute to classification.
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In the context of remote sensing, feature selection is generally defined as a task to remove
irrelevant and/or redundant features. Although a plethora of features can be extracted
from both lidar point clouds and optical imagery, how to choose features for a given
set of classes is an open problem for effective object recognition. It is well known that
the subjective selection of features affects the quality of classification accuracy. Even for
widely acclaimed object- and knowledge-oriented classifiers, it is difficult to decide which
descriptive features are truly significant. Furthermore, most classifiers are limited to differ-
ent types of input data and diverse environmental conditions. Since there is no easy way
to decide the optimal number of features in advance, one can try a greedy feature selec-
tion until an acceptable level of accuracy is reached. Pineda-Bautista, Carrasco-Ochoa,
and Martínez-Trinidad (2011) discussed two ways to eliminate redundant and irrelevant
features: traditional feature selection for all classes and class-specific feature selection.
In contrast with traditional feature selection, which selects a single feature for discrimi-
nating all classes, the class-specific feature selection algorithm selects a subset of features
for each class. In most cases, features vary with landscape type for each expected class,
but current feature selection algorithms have also been proposed for individual classifiers.
Thus, a general framework for selecting optimal features is required.

Ensemble learning algorithms (e.g. bagging and boosting) have received increasing
interest because a set of classifiers has a better classification performance than a single
classifier (Breiman 1996). A random forest can be considered as an improved version
of bagging. Compared with bagging and boosting, a random forest is characterized by
computational efficiency, robustness to outliers and noises, and useful internal estimates
of error, strength, correlation, and variable importance. In the remote-sensing domain,
random forests have achieved promising classification accuracy for hyperspectral (Wang,
Waske, and Benediktsson 2009), multispectral (Stumpf and Kerle 2011), and multisource
data (Gislason, Benediktsson, and Sveinsson 2006). Due to the classification complexity
of multisource data, commonly used parametric classification methods are inappropriate.
The random forest, as a nonparametric classification algorithm, should be of great interest
for multisource data by providing an estimate of an individual variable importance index.
Therefore, it is of importance to investigate the influence of each predictive feature for
selecting the best features when lidar data and aerial imagery are used in a classification
model.

This article is organized as follows. Section 2 describes two study sites and data; in
Section 3, the proposed object-based classification method for urban mapping is addressed
by lidar and image feature extraction, image segmentation, random forest-based class-
specific feature selection, and accuracy assessment. The experimental results are presented
and discussed in Section 4. Finally, Section 5 concludes the article and suggests future
research directions.

2. Study areas and data

2.1. Test data set 1: Mannheim, Germany

Mannheim, a city in southwestern Germany, is located at the confluence of the River Rhine
and the River Neckar in the northwest corner of the state of Baden-Württemberg, and is
unusual among German cities in that the streets and avenues in the central area are laid
out in a grid pattern, just like most North American cities and towns. The data set repre-
sents a dense urban area with relatively flat elevation, ranging from approximately 89.83 to
159.71 m. It contains variously sized buildings of different orientations, as well as trees
and grass interspersed among buildings. Laser scanning data covering the central area were
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Figure 1. Test data sets: (a) colour orthoimage and (b) lidar range image of area in Mannheim
(Germany); (c) colour orthoimage, and (d) lidar range image of area in Niagara Falls (Canada).

acquired in 2004 by a Falcon II sensor – the fibre-based system from TopoSys® GmbH
(Biberach, Germany). The airplane flew at an average height of 1200 m above mean sea
level, with a camera on board for 0.5 m resolution colour aerial photographs. The average
point density and point spacing within the test site is about 4 points/m2 and 0.5 m, respec-
tively. The lidar data set records both range (first and last returns) and intensity information
of the laser pulse, as shown in Figures 1(a) and (b).

2.2. Test data set 2: Niagara Falls, Canada

Niagara Falls is a city located on the Niagara River in the Golden Horseshoe region of
Southern Ontario, Canada. There are a school, a shopping plaza, and more than 300 res-
idential and commercial buildings in this study area. The study area and its vicinity are
relative flat, with elevations ranging from approximately 148.71 to 178.11 m. Land-cover
components are typical of those in urban and suburban scenes, including houses with both
flat and pitched rooftops, impervious concrete and asphalt surfaces such as parking lots,
sidewalks, and roadways, and pervious vegetation surfaces such as trees and grass. The lidar
data, containing first and last returns and intensity information, were acquired in 2004 by
an Optech ALTM 3100 system at an average height of 1190 m above mean sea level, with
a DSS 301 SN0039 camera on board for 0.5 m resolution colour aerial photographs, as
shown in Figures 1(c) and (d). The horizontal and vertical accuracies of lidar data are
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0.6 and 0.15 m (1 standard deviation), respectively. Similar to the Mannheim data set, the
average point density and point spacing within this study site is about 4 points/m2 and
0.5 m, respectively.

3. Method

Similar to a pixel-based classification method, the proposed object-based classification
method uses all possible spectral and non-spectral bands as inputs. However, the difference
between them is that each pixel in the former is identified separately, whereas in the latter,
all pixels belonging to an object are grouped or clustered together for object identification
(Walter 2004).

3.1. Lidar and image features

The classification scheme described is based on the integration of lidar data and multi-
spectral aerial imagery, because the two types of data are complementary. Aerial imagery
provides high-resolution and multispectral information in the visible range of the spectrum,
while lidar data provide accurate geometric information and intensity in the near-infrared
range of the spectrum. Multi-return characteristics of lidar systems also offer unique
penetration information about vegetation. To combine lidar and multispectral data, we
transformed lidar point clouds into a 2D range image. An overview of features used in
this study is listed in Table 1, including spectral-based and lidar height/intensity-based
features.

Spectral-based features. The RGB bands were used as three individual spectral fea-
tures after a process of low-pass filtering or smoothing. Besides spectral information
of an image region, the spatial properties, relationships between grey levels in neigh-
bouring pixels which contribute to the overall appearance of the image, should be
taken into account. The grey-level co-occurrence matrix (GLCM) proposed by Julesz
(1962) and later by Haralick, Shanmugam, and Dinstein (1973) is considered to be
one of the most popular methods to measure texture.

Lidar-based geometric features. Although the 2D lidar range image was used in the
land-cover classification scheme described, lidar height-based features were directly
calculated from original 3D point clouds in a given spherical neighbourhood. Mainly
determined by point density, the given sphere is required to contain at least six points.

Lidar-based intensity features. In Jutzi and Gross (2009), intensity information is
the physical power of incoming echoes, considered as the synonym for amplitude,
reflectance, or energy in the terminology of laser scanning. As a consequence, lever-
aging intensity shows promise for recognizing objects in urban scenes. Similarly,
GLCM was used for the intensity image to obtain eight textural measures in this
study.

3.2. Segmentation

In this study, multiresolution image segmentation (MRIS) embedded in eCognition
Developer software (Trimble®, Munich, Germany) was used to obtain a series of non-
overlapping segments. MRIS, a commonly used algorithm in Earth Science, is a region-
growing segmentation algorithm that starts from seed points and groups their adjacent
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pixels according to a criterion of homogeneity, based on a user-defined threshold of seg-
mentation scale (Benz et al. 2004). The segmentation scale is specified to directly control
the sizes of segments. The greater the user-defined scale parameter, the larger the average
size of segments. Additionally, the defining segments can be adjusted by relative weighting
parameters of colour and shape. However, it is somewhat difficult to segment and classify
high-spatial-resolution aerial imagery due to high spectral heterogeneity within classes.
To overcome this issue, a lidar range image used as an additional band was integrated
into the segmentation process. All mixed bands (blue, green, red, and grey values of the
lidar range image) were equally weighted. The fused image was then partitioned into non-
overlapping segments consisting of groups of relatively homogeneous pixels. To evaluate
the impact of segmentation scales on the feature selection and class separability, image
segmentation was performed at 11 different scale parameter settings (10, 20, 30, 40, 50,
55, 60, 70, 80, 90, and 100). Segmentation results generally vary with the data used and
the scenes processed. It is reasonable to assess and compare segmentation results obtained
at different scales for the same scene rather than at the same scale for different scenes.
The colour criterion was given a default weight of 0.9, while the shape was assigned with
the remaining weight of 0.1. These parameters were determined by visual interpolation of
the image segmentation results, where segments were considered to be internally homoge-
nous. After image segmentation, geometric and spectral features from lidar data and aerial
imagery were calculated for each segment.

3.3. Random forests

The random forest classifier is an ensemble learning technique developed by Breiman
(2001) based on a combination of a large set of decision trees, classification and regres-
sion trees (CART). Each tree is trained by selecting a random set of variables and a random
sample drawn from the training data set. The training data are sampled with replacements
to create a data set. This technique is often referred to as ‘bootstrapping’. Based on the
‘bootstrapping’ technique, two-thirds of the training data, termed inbag data, are used to
construct the tree, and the remaining one-third, known as the out-of-bag (OOB) data, are
used to test the constructed tree for internal evaluation of its performance. The average mis-
classification over all trees is known as the OOB error estimate. The OOB error estimate
is unbiased in predicting the performance of machine learning as an internal measurement,
and thus it is unnecessary to use a separate test data set for validation.

There are two parameters: the number of variables (M) in the random subset at each
node and the number of trees (T) in the forest. The selection of parameter M has consid-
erable influence on the final error rate. Both correlation between trees and the strength
(classification accuracy) of individual trees in the forest increase with increase in M .
The error rate is proportional to the correlation, but inversely proportional to the strength
(Joelsson, Benediktsson, and Sveinsson 2008). M is generally set to the square root of the
number of features (Gislason, Benediktsson, and Sveinsson 2006). Because random forest
is fast and does not overfit, T can be as large as possible, although due to the memory limit
of the machine, T is usually several hundred (Horning 2010); in this study, it was set to 100.
According to Rodríguez-Galiano et al. (2011), random forest is insensitive to the value of
M once the error has converged, and M alters classification accuracy only slightly.

Besides classification, random forest also provides a measure of variable importance.
Variable importance measures the importance of the predictive variables (features) based
on the permutation importance measure. Specifically, the process for an individual tree
is defined as follows. (1) The original training data are re-sampled randomly to create
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‘bootstrap’ samples (TrainO), each divided into an inbag and an OOB sample, from which
a CART is constructed and validated. (2) Assuming that there are m features collected from
remotely sensed data, a subset M = √

m features is randomly selected and tested for the
best split at each node of CART based on the Gini impurity. The Gini impurity attains its
maximum if each class occurs with equal probability; whereas it achieves its minimum if
all randomly selected pixels at a node belong to only one class, that is, it is a pure node
with a zero misclassification rate. Thus, CART selects the best split of the features as that
split for which the reduction in impurity is highest. (3) To estimate a variable importance,
a major voting scheme is used to evaluate votes from each tree in the forest. For exam-
ple, for each tree j the OOB samples (OOBf

j ) of feature f are first run through to assess

the classification accuracy and obtain the OOB error estimate (EBf
j ) on the OOBf

j samples.

Afterwards, a random permutation of feature f in the OOBf
j samples is performed to obtain

perturbed samples denoted by (OOBf
j )′ and the corresponding OOB error estimate(EBf

j )′.
The importance of variable f per tree j is computed by

FIf
j = (OOBf

j )′ − OOBf
j . (1)

The importance score for feature f is then calculated as the mean importance over all trees:

FIf = 1

T

∑
T

FIf
j . (2)

As a reliable indicator for providing measures of variable importance, the random variable
permutation can simulate the absence of variable f from the forest (Guo et al. 2011) and
provide varying different prediction accuracies before and after permutating the variable
f . Following variable permutation, the importance score is represented by the decrease
in correct class votes averaged over all trees. Thus, the greater the decrease in average
predictive accuracy, the more important the feature f .

3.4. Feature selection based on random forests

Features from segments in the training samples are submitted to a process of selection.
In this case, random forest-based feature selection was applied. To select optimal features,
we leveraged a random forest algorithm (Breiman 2001) implemented in the ‘Random
Forest’ package within the R environment.

Aiming to select optimal and uncorrelated features for the achievement of a good
predictive performance, we employed a backward feature elimination proposed by Diaz-
Uriarte and Alvarez de Andres (2006) for biological application by iteratively fitting a
random forest. We first computed measures of feature importance to obtain an initial
variable ranking and then proceeded with an iterative backward elimination of the least
important variables. In each iteration, the least important features (by default, 20%) were
eliminated and a new random forest was built by training with the remaining features for
the assessment of OOB errors. The iterative procedure proceeded until the set of fea-
tures leading to the lowest OOB errors of a forest was selected. The backward stepwise
selection allows us to put all features into the random forest and eliminate unnecessary
or partially correlated features one by one, according to the scores obtained from internal
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validation of the random forest. Therefore, there is no prior knowledge of feature selection
required.

3.5. Accuracy assessment

Both training and reference data are indispensable in supervised classification schemes.
Training samples, as inputs to yielding a classification map, represent the spectral and
geometrical signatures of each class. As a result, the choice of training method is as impor-
tant as the choice of classifier, and it influences classification accuracy (Campbell 2006).
Reference data are required for systematic comparison with the classification results for fur-
ther accuracy assessment, referred to as external validation. To collect the ground reference
data for this research, pixels were randomly selected by the ‘Create Random Points’ tool in
ArcGIS 10 (ESRI®, Redlands, CA, USA), with a minimum allowable distance of 1 m. Each
location was then investigated and labelled using higher-spatial-resolution remotely sensed
data based on human visual interpretation. To reduce the effects of geometric misregistra-
tion, eight pixels surrounding the reference pixel were investigated, and then the class with
the highest frequency of occurrence was assigned to the reference pixel (Jensen 2005).

In order to determine the accuracy of classification results, an error matrix (Congalton
1981), also known as a confusion matrix, was built for each map. Producer’s and user’s
accuracies for each class were calculated along with overall accuracy and kappa statistics
(Congalton and Green 2009).

4. Results and discussion

4.1. Variable importance by global and per-class context

In this section, we describe experiments carried out for two study areas to calculate the
importance of the contribution of each variable to both the general classification model and
the classification of each category. Figure 2 shows the variable importance for training
samples for each feature when all features were put into the random forest. The vari-
able importance is demonstrated by mean OOB decrease in accuracy. According to the
OOB mean decrease in accuracy in both cases, the most relevant among those 48 features
include nDSM , eigenvalue-based anisotropy, and intensity GLCM. The contribution of cer-
tain aerial image-based GLCM measures (e.g. Ent., Corr., S-M) and lidar-based eigenvalue
measures (e.g. planarity, linearity) is smaller than that of the rest of the input variables.
Regarding the mean OOB decrease in accuracy, Figure 2 shows that the contribution of
feature nDSM is the highest for all classes, with values up to 0.1344 and 0.1236 for the
Mannheim and Niagara Falls data sets, respectively. In terms of decreased accuracy of
OOB, height-related features such as eigenvalue-based anisotropy, NH, NHFL, are also very
important.

Table 2 shows the importance of the contribution of each variable to the random
forest classification, and demonstrates how those features impact the class separability
of the classification scheme. For example, nDSM is the most important variable as it
enables us to divide an image into high-rise (buildings and trees) and low-rise (ground and
grass) objects. Thus, classification confusion between spectrally identical and elevation-
ally different objects can be reduced, and classification accuracy significantly improved.
As Mannheim and Niagara Falls are typical of the style of Western cities, there is a similar
pattern of variable importance of the random forest. Moreover, variable lidar-NDVI has a
special role in the classification of trees and grass. The reason behind this phenomenon is
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Figure 2. Variable importance of each feature demonstrated by mean OOB decrease in accuracy for
two data sets, (a) Mannheim and (b) Niagara Falls.

that trees differ in both intensity and spectral content between the two cases because of sea-
sonal differences. Like NDVI, lidar-NDVI generally helps to differentiate between urban
areas and bare soils, which are covered by some grass in the spring season (Yuan and Bauer
2005).

To eliminate less important and better correlated variables/features, an iterative back-
ward elimination scheme was used. In the present study, the number of trees (T) was set
at 150 and the number of split variables at 4. Generally, a default value of split variables
is a good choice regarding OOB error rate. Figure 3 shows the recursive feature elimina-
tion process for Mannheim and Niagara Falls using mean OOB decrease in accuracy. Mean
OOB decrease accuracy for both study areas rises with a decrease in numbers of variables
from 48 to 10; the kappa statistics of the object-based classification increase accordingly,



International Journal of Remote Sensing 5177

Ta
bl

e
2.

Pe
r-

cl
as

s
va

ri
ab

le
im

po
rt

an
ce

in
te

rm
s

of
m

ea
n

O
O

B
de

cr
ea

se
in

ac
cu

ra
cy

,r
an

ki
ng

of
im

po
rt

an
ce

fr
om

to
p

to
bo

tt
om

.

M
an

nh
ei

m
N

ia
ga

ra
Fa

ll
s

T
re

e
G

ra
ss

G
ro

un
d

B
ui

ld
in

g
T

re
e

G
ra

ss
G

ro
un

d
B

ui
ld

in
g

In
te

ns
it

y-
G

L
C

M
-

M
ea

n
nD

SM
nD

SM
nD

SM
nD

SM
nD

SM
nD

SM
nD

SM

nD
SM

In
te

ns
it

y-
G

L
C

M
-

M
ea

n
N

H
�

Z
N

H
F

L
In

te
ns

it
y-

G
L

C
M

-M
ea

n
N

H
N

H

N
H

F
L

N
H

F
L

�
Z

In
te

ns
it

y-
G

L
C

M
-M

ea
n

�
Z

L
id

ar
-N

D
V

I
�

Z
N

H
F

L

N
H

�
Z

In
te

ns
it

y-
G

L
C

M
-S

M
E

A
N

H
�

Z
In

te
ns

it
y-

G
L

C
M

-M
ea

n
E

P

�
Z

L
id

ar
-N

D
V

I
N

H
F

L
In

te
ns

it
y-

G
L

C
M

-S
M

L
id

ar
-N

D
V

I
N

H
F

L
N

H
F

L
�

Z

L
id

ar
-N

D
V

I
H

F
L

E
A

N
H

F
L

In
te

ns
it

y-
G

L
C

M
-M

ea
n

H
F

L
R

G
B

-G
L

C
M

-
H

om
o

H
F

L

E
A

R
G

B
-G

L
C

M
-

H
om

o
In

te
ns

it
y-

G
L

C
M

-M
ea

n
N

H
H

F
L

E
A

E
A

L
id

ar
-N

D
V

I

In
te

ns
it

y-
G

L
C

M
-

S-
M

E
A

H
F

L
L

id
ar

-N
D

V
I

In
te

ns
it

y-
G

L
C

M
-S

-M
In

te
ns

it
y-

G
L

C
M

-S
-M

R
G

B
-G

L
C

M
-

M
ea

n
R

G
B

-G
L

C
M

-
H

om
o

R
G

B
-G

L
C

M
-

H
om

o
In

te
ns

it
y-

G
L

C
M

-
S-

M
R

G
B

-G
L

C
M

-
H

om
o

H
F

L
R

G
B

-G
L

C
M

-
H

om
o

N
H

In
te

ns
it

y-
G

L
C

M
-S

-M
In

te
ns

it
y-

G
L

C
M

-S
-M

H
F

L
N

H
L

id
ar

-N
D

V
I

R
G

B
-G

L
C

M
-

H
om

o
E

A
R

G
B

-G
L

C
M

-
C

on
t

H
F

L
E

A



5178 H. Guan et al.

0.06

0.05

0.04

0.07

0.03

0.8

0.7

0.6

0.5

0.9

0.4
48 39 36 30 26 22

Number of  features

15 10 8

K
a

p
p
a

48 39 36 30 26 22

M
e
a
n
 d

e
c
re

a
s
e
 a

c
c
u
ra

c
y

15 10

Classification accuracy

Feature selection

8

Niagara

Mannheim

Figure 3. Classification accuracy of two data sets at different number of features selected by iterative
feature elimination.

because the backward feature selection would eliminate some redundant and partially cor-
related features. However, the kappa statistics slowly decrease when the number of features
is below 10, indicating that an excessive elimination of features can be counterproductive.
For the two cases, the 10 potent features retained included lidar-NDVI, lidar height-based
measures (nDSM , �Z, NHFL, �H), lidar intensity GLCM (Mean and S-M), and aerial
image-based GLCM (Homo.). Correspondingly, classification accuracies of each feature
group at the fine scale of 10 are shown at the foot of Figure 3. Although the features
selected change from one city to the other, classification accuracies exhibit similar trends.
Figure 3 shows that the selected minimal features with a low OOB error rate can improve
classification performance.

4.2. Effects of scale on feature importance and selection

The quality of segmentation largely determines the accuracy of final urban classification
results because a segment rather than a pixel is considered as the unit to be investigated.
As increasing segmentation scales lead to larger segment sizes, the features selected based
on the random forest will be different between scales and, as a result, the classification
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results will be affected. The larger the segments, the fewer the samples selected for the
estimation of the OOB errors. According to Diaz-Uriarte and Alvarez de Andres (2006),
standard OOB errors increase with decrease in the number of samples because a feature
selection method can deteriorate strongly if the number of features is larger than the
number of samples. Although the number of features used in the present study is 48,
the number of samples was at least 2–3-fold the number of features, even at the largest
segmentation scale.

Figure 4 shows the classification accuracy of the two cases at eleven segmentation
scales when features are gradually eliminated in terms of OOB errors. Theoretically, the
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Figure 4. Kappa statistics at different segmentation scales for (a) Mannheim data set, (b) Niagara
Falls data set, and (c) standard error for eleven scales.
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predictive accuracy could be increased by using a smaller number of features with fewer
correlated relationships. As shown in Figures 4(a) and (b), the classification accuracies
of the two cities exhibit the same upward trend when the number of selected features is
between 48 and 10. This is because the method of iterative feature elimination reduces some
redundant and partially correlated features. However, the classification accuracy slowly
decreases when the number of selected features is below 10, indicating that an excessive
elimination of features can be counterproductive. In fact, at a certain segmentation scale,
classification accuracy would reach its peak at a set number of features. For example, for
most segmentation scales, the best performance would be obtained when the number of
features is 10.

The classification accuracy of these two cases decreases at larger segmentation scales
for the same number of selected features. However, the standard error (SE) of the kappa
statistics for all eleven scales changed slightly, from 0.015 to 0.047 (Figure 4(c)). Although
the features selected depend on the study scene and data characteristics such as segmen-
tation scale, some features common to the two cases are significant for classification.
Undoubtedly, geometric features such as nDSM , NH, NHFL, and lidar-NDVI have a consid-
erably impact on all test cases. The variable importance ranking of these features displays
low variability among different segmentation scales. The lidar-derived nDSM helps to
reduce OOB errors because it contains elevated objects. Thus, the use of nDSM can
effectively reduce classification confusion between spectrally identical or similar objects.
Furthermore, both NH and NHFL (a lidar-based vegetation index with respect to the first
and last echoes) are ranked higher in most cases, indicating that lidar-derived geometric
features significantly contribute to classification results. Lidar-NDVI, another indicator for
vegetation detection that combines lidar intensity and spectral information, also plays a
critical role in the classification process. In addition, the most suitable texture measures –
image-based GLCM-Homo and lidar intensity GLCM-Mean – are included in the features
selected for recognizing man-made objects and grass, respectively.

Figure 5 shows the resultant image of the object-based classification. Visual inspection
indicates that the four classes of interest are separated from each other very well. Buildings
are completely detected and classified. Other objects (e.g. cars, poles) not belonging to the
four classes of interest are removed as miscellanies. However, some classification errors
of trees occur along streets because these trees are not high enough to contribute to the
separation of tree objects in the MRIS segmentation process.

(a) (b)

Figure 5. Object-based classification maps of (a) Mannheim data set and (b) Niagara Falls data set.
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4.3. Comparison of pixel-based and object-based classification

To further assess the object-based classification described above, an experiment was con-
ducted to compare the performance of the proposed object-based classification method
with the pixel-based classification method, both of which were based on the random for-
est. To obtain the desired classification accuracy, the number of training pixels should at
least be equal to tenfold the number of variables used in the classification model (Jensen
2005), and the number of pixels in such a group should not be larger than 10 (Congalton,
Oderwald, and Mead 1983) for a parametric classification approach. The final accu-
racy assessment of the object-based classification was performed at a segmentation scale
(55) selected. According to previous analyses, the number of features selected was 10 for
acceptable classification performance. Similarly, we also employed the method of iterative
feature elimination to obtain the optimal features for pixel-based classification. The exper-
iments showed that the optimal number of feature was 12 at the highest mean decrease in
accuracy.

Table 3 compares pixel-based and object-based classification. The results show that
object-based classification attains higher overall accuracy, kappa coefficient, producer’s
accuracy, and user’s accuracy than the pixel-based classification for most classes. For the
Mannheim and Niagara Falls data sets, the overall accuracy of the object-based classifi-
cation was 4.5% and 3.9% higher than that of the pixel-based classification, respectively.
The kappa coefficients of pixel-based classification were 0.3 and 0.5 higher than those of
object-based classification for these two data sets.

In object-based classification, trees had producer’s accuracy of 92.1% and 89.6%, and
user’s accuracy of 78.7% and 80.2% for the Mannheim and Niagara Falls data sets, respec-
tively. This shows an increase of 3.0% and 8.8% in producer’s accuracies and 1.7% and
5.1% in user’s accuracies, respectively. This improvement is probably due to the enhanced
quality of image segmentation that overcomes dramatic spectral variation of trees in the
scenes by integrating lidar elevation and spectral information.

In regard to grass, compared with pixel-based classification, object-based classifica-
tion showed an increase of 0.2% and 3.4% in producer’s accuracy, and a growth of 2.0%
and 3.9% in user’s accuracy for the Mannheim and Niagara Falls data sets, respectively.
Although we used variable lidar-NDVI, a primary indicator to identify grass, neither clas-
sification methods could accurately distinguish grass from low-rise vegetation in user’s
accuracy.

Building achieved low classification accuracy in pixel-based classification, probably
due to the proximity of buildings to trees and confusion between buildings and bare ground.
This confusion is not too surprising, as these classes have a certain spectral similarity.
In object-based classification, Building showed an increase of 0.9% and 1.4% in producer’s
accuracy and increase of 0.3% and 14.5% in user’s accuracy for the Mannheim and Niagara
Falls data sets, respectively. This accuracy improvement is due to the integration of eleva-
tion data and spectral information and the implementation of variable nDSM , both of which
could reduce classification confusion between buildings and bare ground.

Object-based classification outperformed pixel-based classification except for the
user’s accuracy of bare ground in the Mannheim data set, where it achieved 3% lower
accuracy. Misclassification errors might have been caused by some grassy areas mistak-
enly segmented and classified as bare ground (Figure 5(a)), despite the use of variable
lidar-NDVI.

The experimental results indicate that the object-based method using random forest-
based feature selection can produce an incremental improvement in classification accuracy
when applied to lidar data integrated with high-spatial-resolution aerial imagery. However,
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due to landscape complexity, classification performance could be weakened by segmenta-
tion. This challenge can be overcome by the further development of a robust segmentation
algorithm that regenerates segmentation results using the best feature subset retrieved by
random forest-based feature selection.

5. Conclusions

Previous classification schemes from lidar data and aerial imagery are highly reliant on
a subjective selection of suitable features, making it difficult to adapt them to new city
types and data sets. To resolve such issues, this study employed random forest and image
segmentation for feature selection and land-cover classification. A variety of features from
both lidar data and imagery were investigated, and the optimal features selected by the ran-
dom forest were calculated through the lowest mean OOB decrease in accuracy. Although
the optimal features selected varied from case to case, a number of lidar, spectral and
intensity-based features were selected in both cases in this study. Lidar-derived nDSM ,
NHFL (a variant of vegetation index calculated by first and last echoes), lidar-NDVI,
intensity-based GLCM-Mean, and spectral-based GLCM measures provide complemen-
tary information to identify the classes of interest, which are useful for urban mapping
using lidar data and aerial imagery, even for other types of remotely sensed data.

By grouping neighbouring pixels of the same characteristics into segments, object-
based classification can overcome the salt-and-pepper effect that often occurs in pixel-based
classification. This article applied MRIS to obtain a series of segments at different scales.
The impact of segmentation scales on random forest-based feature selection was inves-
tigated. Although larger scales produced smaller training samples for the random forest,
the optimal features selected at eleven scales had little influence on classification accura-
cies. Moreover, by integrating the lidar-derived range image into the segmentation stage as
an additional band, the quality of image segmentation was improved. Comparison between
pixel-based classification and the object-based classification demonstrates that object-based
classification was superior by 0.02 and 0.05 in kappa statistics, and by 3.9% and 4.5% in
overall accuracy for the Mannheim and Niagara Falls data sets, respectively. Therefore,
improvement in urban land-cover classification accuracy can be improved not only by
the combination of lidar data and aerial imagery, but also by the integration of random
forest-based feature selection and object-based classification.
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