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Iterative Tensor Voting for Pavement Crack
Extraction Using Mobile Laser

Scanning Data
Haiyan Guan, Jonathan Li, Senior Member, IEEE, Yongtao Yu, Michael Chapman, Hanyun Wang, Member, IEEE,

Cheng Wang, Member, IEEE, and Ruifang Zhai

Abstract—The assessment of pavement cracks is one of the
essential tasks for road maintenance. This paper presents a novel
framework, called ITVCrack, for automated crack extraction
based on iterative tensor voting (ITV), from high-density point
clouds collected by a mobile laser scanning system. The proposed
ITVCrack comprises the following: 1) the preprocessing involving
the separation of road points from nonroad points using vehicle
trajectory data; 2) the generation of the georeferenced feature
(GRF) image from the road points; and 3) the ITV-based crack
extraction from the noisy GRF image, followed by an accurate
delineation of the curvilinear cracks. Qualitatively, the method is
applicable for pavement cracks with low contrast, low signal-to-
noise ratio, and bad continuity. Besides the application to GRF
images, the proposed framework demonstrates much better crack
extraction performance when quantitatively compared to existing
methods on synthetic data and pavement images.

Index Terms—Georeferenced, intensity, iterative tensor voting
(ITV), ITVCrack, mobile laser scanning (MLS), pavement crack
extraction.

I. INTRODUCTION

PAVEMENT cracks, as the most common type of asphalt
concrete-surfaced pavement distress, can be caused by

fractures due to excessive loading, fatigue, thermal changes,
moisture damage, slippage, or contraction. Usually, in regard
to shape and position, cracking is grouped into one of the
following types: fatigue, longitudinal, alligator, edge, reflection,
block, and transverse [1], [2]. In the past, crack inspection and
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evaluation involved high degrees of subjectivity and hazardous
exposure, as well as low production rates. Until now, visual
inspection techniques have been explored for evaluating pave-
ments. These techniques involved the capture of, mostly on
video and cameras, images collected using specially equipped
vehicles.

Dynamic-optimization-based methods effectively handle
blurry and discontinuous pavement images [3]–[5]. However,
most of them are computationally intensive. The effective-
ness of the thresholding-based segmentation methods, based
on either grayscale discontinuity or similarity [6]–[9], mostly
depends on the pavement environment and material, leading
to unreliable crack extraction results. Although wavelet-based
transforms, such as beamlet, contourlet, and their variants, are
another common type of technique for crack extraction [10],
[11], due to the anisotropic properties of wavelets, they often
fail to process cracks with high curvatures or poor continuity.
Mathematical-morphology-based methods have been used to
detect cracks in pavement images [12]. However, these algo-
rithms are limited to three structural elements (i.e., disk, line,
and square) and by the choice of parameters. A number of
efforts on crack extraction have been made in the fields of
artificial intelligence, data mining, machine learning, and neu-
ral networks [13]–[15]. However, the selection of parameters
depends on crack variations and image quality. Additionally,
image-/video-based crack extraction algorithms suffer from the
influence of several environmental factors, such as the follow-
ing: 1) shadows cast by trees and moving vehicles; 2) weather
conditions; and 3) imaging time of day, which has the greatest
impact on the visibility of road surfaces.

In recent years, mobile laser scanning (MLS) has become a
rapidly developing technology, particularly for accurate corri-
dor mapping (e.g., railroads, highways, and roads) because this
technology enables the collection of millimeter-level survey-
grade data in unprecedented detail at highway speeds and at
less than traditional survey costs [16]. Along a corridor, MLS
systems capture (and represent by 3-D point clouds) the follow-
ing: visible trees, bridges, streetlight poles, buildings, power
lines, road markings, cracks, etc. Therefore, data collected
from a single mission can be used for multiple tasks without
further field visits, thus increasing data usability and efficiency.
More importantly, MLS systems enable zero-traffic-impact data
acquisition about road corridors because less congestion occurs
at night. Thus, in terms of abundant and detailed data, safety,

0196-2892 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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and efficiency, MLS systems are recognized for their ability to
enrich the available 3-D databases of geographical information
systems for transportation-related applications [17].

However, the ability of MLS systems to capture highly dense
point clouds presents a great challenge in postprocessing of a
very large volume of MLS data in order to obtain readable
and comprehensive information about cracks. For example,
a Trimble MX-8 system that integrates two Riegl VQ-250
laser scanners can produce up to 35 GB of data in 20 min.
In particular, road points account for a large proportion of
the scanned data. Thus, an interpolation method that converts
unorganized 3-D point clouds into a 2-D grayscale image
is considered for feature extraction using established image
processing algorithms.

MLS intensity data that physically reflect the power of the
received echoes [18] have been widely used to automatically
extract different types of street-scene objects [19], such as
highly reflective road markings [20] and even illuminated
structures (e.g., tunnels and culverts) [21]. Based on intensity,
MLS data are interpolated into a georeferenced feature (GRF)
image, in which a crack is typically represented as a curvilinear
structure. However, compared to a real pavement image, a
GRF image contains a large amount of noise. In addition,
owing to the particle materials of asphalt concrete-surfaced
roads, curvilinear cracks in the GRF image are represented with
nonuniform intensity, low contrast with their surroundings, and
low signal-to-noise ratio (SNR). Therefore, the aforementioned
methods fail to extract cracks from the GRF images.

Tensor voting, a perceptual grouping method, as proposed
in [22], is more powerful and efficient than the other methods
for inferring curvilinear structures from noisy and corrupted
data. Developed on the foundation of Gestalt psychology, the
tensor voting method is based on tensor representations of
image features and nonlinear voting. In the 2-D case of tensor
voting, input data are first encoded as structure-aware tensors,
where the structures are either points or curves in the feature
space. The support information of proximity and continuation
constraints propagates from tensor to tensor in a neighborhood
through a voting process, by which the saliencies of the percep-
tual structures can be estimated from noisy and corrupted data
in the form of votes. The more votes received by a given tensor,
the higher the probability of a salient feature being present at
the corresponding location [23]. Although noniterative tensor
voting (ITV) is claimed to provide good results in many cases,
an iterative version of the tensor voting framework demon-
strated that revoting more effectively deals with complex data
configurations as well as improves the orientation estimation
at the input primitives and the overall curve inference results
[24], [25]. The efficacy of the ITV framework, which combines
tensor voting and iterative voting, was discussed and proven
in [26] for the ill-defined curvilinear structures of medical
cell membranes. The algorithm performed in [27] starts by
encoding every pixel in the image as an unoriented ball tensor.
Through ball tensor voting, all of the tensors obtain their
preferred orientations, which indicate the potential curvilinear
structures. A set of iterative stick tensor voting procedures is
then imposed. Each iteration aims at refining the previous result
at gradually reduced scales. Therefore, the iteration operation

enhances the concentration of the votes over promising curvi-
linear structures.

Given that the cracks in the GRF images are represented
as diffused and heterogeneous curvilinear structures, an ITV
scheme is adopted to improve crack grouping and inference.
Compared to traditional tensor voting algorithms, the modified
ITV algorithm has the following two distinctions: 1) Prior to
sparse voting, crack candidates are segmented and encoded as
unit ball tensors. Due to the use of crack candidates, rather
than all of the pixels in the image, the processing complexity
is dramatically reduced. 2) In each iteration (in the form of
dense voting), we consider both ball tensor voting and stick
tensor voting, rather than stick tensor voting alone, for refining
salient curvilinear structures by gradually reducing the aperture
of the stick voting field. Dense ball-and-stick tensor voting can
preserve many subtle curvilinear crack details.

In this paper, we develop a novel framework, called
ITVCrack, for automated crack detection from MLS data. We
first propose a curb-based road edge extraction algorithm that
separates road points from nonroad points using MLS data.
After classifying the MLS data, we interpolate the road points
into GRF images using a modified inverse distance weighted
(IDW) algorithm. We then extract cracks using modified ITV
and morphological thinning.

The rest of this paper is organized as follows. Section II
defines the tensor voting framework. Section III details the pro-
posed ITVCrack. Section IV states three data sets for validating
ITVCrack and discusses the experimental results. Section V
concludes our work.

II. TENSOR VOTING FRAMEWORK

Tensor voting consists of two components: tensor calculus
for representation and nonlinear voting for data communication
[26]–[32]. In 2-D, a second-order, symmetric, and nonnegative
definite tensor is represented by a 2 × 2 matrix, decomposed as

T = (λ1 − λ2)e1e
T
1 + λ2(e1e

T
1 + e2e

T
2 ) (1)

where λ1 and λ2 (λ1 > λ2) are the eigenvalues; e1 and e2
are the corresponding eigenvectors. Geometrically, the tensor
is visualized as an ellipse shaped by the tensor’s eigenvectors’
directions and eigenvalues’ magnitudes. Specifically, the size
and shape of a tensor are given by its eigenvalues, while the
orientation is determined by the corresponding eigenvectors.
The tensor’s shape defines the structural type of interest (such as
curves), and its size represents the saliency. The first term in (1)
is termed stick tensor, indicating an elementary curve element
with e1 as its curve normal. The second term is called ball
tensor, indicating a perceptual structure without any preferred
orientations. For example, a crack pixel in the GRF image is
represented by a stick tensor and visualized by a thin ellipse,
whose major axis indicates the estimated preferred orientation
e1 and whose length (λ1 − λ2) represents the saliency of the
estimation.

Based on the tensor representation in 2-D, an input is first
encoded as a tensor. If the input has no orientation, then it is
encoded as a ball tensor with the eigenvalues of λ1 = λ2 = 1,
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Fig. 1. (a) Vote generation. (b) Magnitude (saliency) of the 2-D stick voting
field. (c) Magnitude (saliency) of the 2-D ball voting field.

in the form of the 2 × 2 identity matrix T =

[
1 0
0 1

]
. If the

input has the orientation �n(nx, ny), then it is encoded as a stick
tensor with the eigenvalues of λ1 = 1 and λ2 = 0, in the form
of the 2 × 2 matrix

T =

[
nxnx nxny

nxny nyny

]
.

After the inputs have been encoded as tensors, their infor-
mation is propagated to their neighbors following the Gestalt
principles of smoothness, proximity, and good continuation.
This propagation is termed tensor voting. As presented in
Fig. 1(a), two tensors, positioned at O and P with normal

⇀

N
in the o−xy coordinate system, are named the voter and the
receiver, respectively. The arc from O to P is the simplest way
to model their smoothness and proximity. Let L denote the dis-
tance between the voter and the receiver; let θ denote the angle
between the tangent to the osculating circle at the voter and the
line going through the voter and the receiver. The arc length s
and the curvature κ are given by s = θL/ sin(θ) and κ =
2 sin(θ)/L, respectively. Thus, the path from O to P , defined
by an osculating circle, is the most likely smooth path, given the
assumption of the voter and the receiver belonging to the same
perceptual structure. This is a consequence of the path main-
taining a constant curvature. Thus, the vote at P is defined as

V (P ) = DF (s, κ, σ)NPN
T
P⎧⎨

⎩
NP = NO [− sin(2θ), cos(2θ)]T

DF (s, κ, σ) = e
−
(

s2+cκ2

σ2

)
(2)

where NP and NO are the normals to the tangents to the same
osculating circle at P and O, respectively. DF (s, κ, σ) is the
saliency decay function. The scale parameter σ is viewed as
a measure of smoothness and is the only free parameter for
users. The coefficient c, which controls the degree of decay, is
defined as

c = −16 log(0.1)× (σ − 1)/π2. (3)

The voting field serves as a look-up table that stores the
precomputed votes cast by both stick and ball voters at their
neighboring receivers at various distances and angles. Similar
to linear convolution, this precomputed look-up table can accel-
erate the voting process. The tensor voting framework provides
two forms of voting fields: stick voting field [see Fig. 1(b)] and
ball voting field [see Fig. 1(c)]. The extent of the voting field is

controlled by the scale parameter σ. A small σ corresponds to
a small voting neighborhood; it makes the voting process local,
leading to higher susceptibility to outlier corruption but better
preservation of details. On the other hand, a large σ corresponds
to a large voting neighborhood; a large σ enforces a higher
degree of smoothness, thus assisting in noise removal. The stick
field is limited to exist only for |θ| ≤ 45◦, and θ is called the
field aperture. Beyond this scope, the smoothest path from O
to P cannot be represented by the osculating circle formed by
the tensors at O and P . To compute a vote cast by a tensor, the
voting field is aligned to the tensor. Then, the magnitude and
the orientation of the receiver can be looked up from the voting
field.

Each input collects all of the votes cast by the tensors in its
neighborhood and integrates them into a new tensor, eventu-
ally revealing behavioral coherence among the image primi-
tives. Vote accumulation is performed by tensor addition: more
specifically, the summation of 2 × 2 matrices. For example, the
resulting tensor at P can be represented by

TP =
∑

TOV (P ) (4)

where TP is the summation tensor obtained by accumulating all
of the votes V (P ) from its neighbors TO at location O. Thus,
after the votes are cast from tensor to tensor and accumulated
by tensor addition, a new tensor at P is generated for structure
extraction. The expected structures can be interpreted from the
tensors. For example, in 2-D, if the new tensor at P has λ1 −
λ2 > λ2, then this indicates a curve with the estimated normal
e1 at that location. However, because outliers receive only
inconsistent contradictory votes, the difference between the
eigenvalues is small, leading to low saliency. Low saliency, in
turn, indicates that the point in question is noise to be removed.

There are two types of voting in the voting process: sparse
tensor voting and dense tensor voting. Sparse voting restricts
tensors to cast votes to only other tensors, while dense voting
involves tensors casting votes to all locations within their
neighborhood, regardless of the presence of tensors or the lack
thereof.

III. DESCRIPTION OF ITVCRACK

The proposed ITVCrack includes three steps: preprocessing,
GRF image generation, and ITV-based crack extraction. The
input to the ITVCrack algorithm is unorganized MLS point
clouds, and the output is a group of curvilinear cracks. In this
paper, we explore the application of MLS data to crack extrac-
tion. Cracks extracted from MLS data might require repair due
to point resolution; as a result, we focus on extracting the type
and location of pavement cracks and not the crack width.

A. Preprocessing

In most urban cities, curbs, which are nearly vertical sur-
faces, separate roads from sidewalks or green spaces. Based
on this phenomenon, we propose a curb-based road extraction
method. In this method, sharp jumps in height (representing
curbs), which are used to identify road edges, are detected from
the MLS data.
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Fig. 2. Road surface extraction. (a) Data profiling. (b) Sample of a profile.

Moreover, vehicle trajectory data, which provide real-time
position information about a vehicle, facilitate curb-based road
extraction. Perpendicular to the trajectory data, we cross sec-
tion, at intervals, the MLS data into a number of profiles as
thin as a few centimeters, as shown in Fig. 2(a). Empirical
analysis shows that, to keep enough points for curb detection,
a suitable profile size is 30 cm, and a suitable interval length
is 3 m for nearly straight roads and 1 m for sharp-turning
roads. Fig. 2(b) shows one of the profiles, on which curbs are
clearly demonstrated as vertical lines connecting road surfaces
and sidewalks. Thus, two simple thresholds, namely, slope
and elevation difference, are used to detect curbs—profile by
profile.

Specifically, we first resample points for a profile to form
a pseudoscan line with a given sampling size. The sampling
size is dependent on the point density. In this paper, given the
average point space of 2–6 cm, we set the sampling size to
5 cm. Then, we calculate the slope and elevation difference of
two consecutive sampling points on the pseudoscan line. Most
countries’ street design and construction manuals specify that a
curb is a nearly vertical surface, with a height generally ranging
from 10 to 30 cm. Accordingly, for curb detection, we define 25
and 8 cm as the maximum and minimum elevation difference
thresholds, respectively, and 75◦ as the slope threshold. For
a point on the pseudoscan line, if 1) the slope is larger than
the given slope threshold and 2) the elevation difference in
the vicinity of the point is in the range between the maximum
and minimum elevation difference thresholds, then the point is
labeled as a curb candidate; otherwise, it is labeled as a noncurb
point.

All curbs detected from the profiles are quite sparse because
we section the MLS data along the vehicle trajectory data at
certain intervals. Therefore, constrained by the trajectory data,
we use a cubic spline interpolation method to generate two
smooth road edges that separate road points from nonroad
points.

B. GRF Image Generation

Then, we interpolate the extracted road surface point clouds
into a GRF image by a modified IDW method. The traditional
IDW interpolation method estimates the value of a given cell
by averaging all of its point values. The closer a point is to the
center of the cell, the higher its weight in the averaging process.
This weight is termed distance weight. As we investigate the
applicability of MLS intensity data to crack extraction, the

Fig. 3. Histogram analysis for a GRF image.

IDW method is modified by introducing intensity weight into
the calculation of cell values. A point’s intensity weight is
proportional to its intensity value, i.e., a point with higher
intensity is given a greater intensity weight. Image spatial reso-
lution is determined by point density. A detailed description and
discussion of GRF image generation and relevant parameters is
found in [20].

Asphalt pavements mainly contain the following: 1) rocky
components that probably vary with geological regions and 2)
asphalt mixtures that are made up of a variety of chemical com-
ponents. Thus, shadows and increasing surface roughness cause
reflectance differences of up to 7%–8% in the near infrared
range between the actual pavement and high severity cracks
[33]. In addition, concave-shaped cracks in the visible/near-
infrared range make noncracked areas brighter. Furthermore,
compared to road surfaces, deeper layers, exposed by cracks,
contain higher contents of the original asphalt mix, thereby in-
creasing hydrocarbon absorption, which highlights the cracks’
contrary spectral signals. Thus, the visual appearance of cracks
in the near-infrared range is usually darker than that of the
normal road surface. Based on this observation, an optimal
threshold can be found to segment potential crack pixels from
noncrack pixels by making use of image histograms and an
objective function derived from information theory. Without
noise, it would be successful to segment cracks from the
background by means of a bimodal histogram structure. How-
ever, a huge amount of noise is scattered in a GRF image.
Therefore, the image histogram in Fig. 3 displays no obvious
peaks and valleys, resulting in the issue of finding the optimal
separation value (TE). As a result, we adopt the maximum
entropy sum method to detect possible crack pixels by maxi-
mizing the information measures between crack and noncrack
pixels [34].

C. ITV-Based Crack Extraction

Fig. 4 shows the flowchart of the ITV-based crack extraction
algorithm. After thresholding, we assume that P = {p1, p2,
p3, . . . , pi, . . . , pn} is the crack candidate data set, where n is
the number of crack candidates; pi is the ith crack candidate.
First, as crack candidate pi has no orientation preference, it is
initially encoded, in the form of a 2 × 2 identity matrix, by a
ball tensor with unit saliency. After construction of the tensor
space, a first round of sparse voting is performed using the ball
voting field with σball.

After large-scale sparse ball voting, all tensors corresponding
to crack candidates obtain rough orientations (e1 and e2) and
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Fig. 4. Proposed ITV-based crack extraction algorithm.

magnitudes (λ1 and λ2). However, mapped cracks are inaccu-
rate and lack saliency; therefore, a round of stick voting is re-
quired to refine the orientations and to obtain a saliency map of
cracks. By nature, curvilinear structures in tensor representation
should have high λ1 − λ2 values, i.e., crack candidates with
λ1 − λ2 values that are smaller than the ball-saliency threshold
Γball are ruled out in this step. Eliminating the tensors with
low stick saliencies increases computational efficiency because
fewer crack candidates participate in ball-and-stick voting.

Each oriented crack candidate is further encoded as a stick
tensor. A round of dense voting is then executed using the stick
field. According to eigendecomposition, although ball tensors
have no orientation preferences, they can still cast meaningful
information to other tensors, contributing to the saliency con-
centration. For example, a potential curve could be influenced
by two nearby ball tensors. Thus, we adopt both ball voting and
stick voting using the stick voting field with σball−stick for the
saliency map.

Usually, after the dense ball-and-stick voting process, curvi-
linear structures are enhanced on the resulting saliency map.
However, the cracks of interest are presented with much noise
and a low contrast with their surroundings. Only one round of
dense ball-and-stick voting (namely, a combination of ball-and-
stick voting) could not achieve a good saliency map for the
cracks. An iterative scheme is thus proposed to gradually refine
the previous results of the dense ball-and-stick voting.

For each iteration, dense ball-and-stick voting is employed
using the stick voting field with σball−stick. A stick saliency
thresholding similar to the aforementioned ball-saliency thresh-
olding is subsequently used to remove the resultant tensors
with low λ1 − λ2 values, i.e., only the tensors with λ1 − λ2

values larger than the stick threshold Γstick will go to the
next iteration. As such, each iteration refines the previous one.
With the iterative scheme, the tensors with high λ1 − λ2 values
appear to be concentrated and accurate with little disturbance
and interference from the tensors with low λ1 − λ2 values; thus,
we call this ITV.

Using dense ball-and-stick voting, the curvilinear structure
becomes gradually more concentrated and accurate as the num-
ber of iterations increases, which means that the field aperture
θ for the stick field can be correspondingly reduced to focus on
the promising votes for enhanced results. For the stick field,
let θmax and θmin denote the maximum and minimum field

apertures, respectively. Also, let Δθ denote the voting aperture
step. The number of iterations is calculated as

N = (θmax − θmin)/Δθ + 1. (5)

For example, for the ith iteration, we employ the stick field
with the field aperture of θi(θi = θmax − (i− 1)Δθ) for dense
voting. Apart from assigning the voting aperture step for cal-
culating the number of iterations, we can also empirically
predefine N to stop the iterative processing. Finally, with ITV,
a refined crack probability map is generated to enhance the
crack pixels, simultaneously suppressing the background and
the noise.

To further remove noise and obtain cracks in the crack prob-
ability map, a four-pass-per-iteration morphological thinning
algorithm [26] is applied. This algorithm serves to thin the
cracks to their median axes, by peeling off their boundary
pixels. After implementation, the algorithm proposed in [35]
produces a converged 8-connected one-pixel-thick skeleton.

IV. RESULTS AND DISCUSSION

The stability and capability of ITVCrack were evaluated using
synthetic data, pavement images, and GRF images. To objec-
tively evaluate the performance, we used the manual interpreta-
tions of the crack curves in these images as the ground truth.

A. Data Sets

The following three data sets were used in this study.

1) Two groups of synthetic data created with two differ-
ent noise models. The first group was generated with the
standard additive white Gaussian noise model, while the
second group was created with the multiplicative gamma
noise model. In many cases, noise in pavement images is
found to be additive in nature with uniform power in the
whole bandwidth following the Gaussian probability dis-
tribution. In addition, multiplicative gamma noise, in the
form of speckles, normally appears in laser-based images,
thus degrading the quality of the images and affecting the
performance of the image processing techniques [36]. All
synthetic images are 200 × 200 pixels.

2) A group of 1.5-mm ground sample distance (GSD)
pavement images taken by a Canon IXUS 125HS
camera with a megapixel count of 16.1. This group
contains three images with the size of 300 × 255 pixels.

3) A group of GRF images interpolated from MLS point
clouds acquired on April 23, 2012, by a RIEGL
VMX-450 system in a tropical urban environment,
Xiamen, a port city in southeast China. The 25-km
two-way four-lane road surveyed contained an increased
number of cracks in its surface due to the hot and
wet weather and the increased load caused by an ever-
increasing traffic flow. This complete survey was con-
ducted once in a forward direction and once in the reverse
direction at an average speed of 50 km/h. A 105-m
section of the road that contained 8.4 million points was
selected. Using the vehicle trajectory, the road section
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was first segmented into road and nonroad points in the
preprocessing stage. Then, given that the point density on
the road surface was as high as 4000–7000 points/m2, a
2-cm GSD was used for generating a GRF image from the
segmented road points. From the GRF image, we selected
five areas that contained a variety of cracks, ranging from
small cracks that were a few centimeters in width to large
alligator cracks that were up to 10 cm wide.

B. Quantitative Assessment Measures

To quantitatively evaluate the crack extraction results, we
used a buffered Hausdorff distance metric (H(A,B)) by com-
paring the detected cracks with the human-labeled cracks [3],
[37]. A = {a1, a2, . . . , ap} and B = {b1, b2, . . . , bq} are the
finite pixel sets corresponding to identical locations within the
extracted crack image and the human-labeled image, respec-
tively. The Hausdorff distance metric is given by

H(A,B) = max (h(A,B), h(B,A)) (6)

where

h(A,B) = max
a∈A

min
b∈B

‖a− b‖ (7)

and ‖ • ‖ is the Euclidean norm of the pixel sets A and B.
The function h(A,B) is called the directed Hausdorff distance
from A to B, describing the degree of difference between two
shapes. h(A,B) identifies the point a ∈ A that is the farthest
from any point in B and measures the distance from a to its
nearest neighbor in B. Essentially, h(A,B) ranks each point in
A based on its distance from the nearest point in B and then
uses the distance corresponding to the highest ranking point.
We used a buffer of size L to create a searching region, within
which the Hausdorff distance metric was adopted to evaluate
the crack extraction performance based on the ground truth. In
the evaluation, the scoring measure (SM) is calculated by

SM = 100− H(A,B)

L
× 100. (8)

The value of SM ranges from 0 to 100. The higher the value
of SM, the better the crack extraction performance. Considering
that the cracks in the three data sets were not wider than
3 pixels, we assigned L = 5 pixels for computing the values
of SM.

C. Synthetic Data Tests

The synthetic data set is used to investigate the applicabil-
ity of ITVCrack, in which the following five parameters are
used: σball, σball−stick, Γball, Γstick, and Δθ. Among these five
parameters, the thresholds Γball and Γstick are both used to
delete tensors with low stick saliencies and preserve tensors
with high stick saliencies. Two scales of voting, namely, σball

and σball−stick, control the neighborhood sizes for the sparse
ball voting and the dense ball-and-stick voting in the iterations,
respectively. In addition, the voting aperture step Δθ is used to
control the number of iterations.

Fig. 5. Two groups of the synthetic data set. (a) Synthetic data with additive
Gaussian white noise. (b) Synthetic data with multiplicative gamma noise.

Fig. 5(a) and (b), respectively, illustrates the synthetic images
corrupted with additive and multiplicative noises with dif-
ferent variances. The processing parameters are σball = 10.0,
σball−stick = 3.0, Γball = 0.4, Γstick = 0.05, and Δθ = 20◦.
Through visual inspection of the sample results, all parameters
were defined and used for two groups of the synthetic image
data sets, as well as throughout subsequent comparative exper-
iments. As shown in Fig. 5(a), the synthetic data are corrupted
by a set of additive noises following a zero-mean normal
distribution (m = 0) with five different variances (σ = 0.1, 0.2,
0.3, 0.4, and 0.5). In this group, the SM values of the detected
curves exceed 97 for all five values of σ, demonstrating that the
ITVCrack algorithm is noise robust and capable of preserving
the details of curvilinear structures. In Fig. 5(b), the syn-
thetic data are corrupted by a set of multiplicative noises with
five different variances (σ = 0.05, 0.10, 0.15, 0.20, and 0.25).
Again, the SM values of all five detected curves exceed 95,
indicating that ITVCrack can handle cracks, which have low
contrasts with their surroundings (such as asphalt concrete-
surfaced pavements) in the GRF image.

D. Comparative Tests With Pavement Images

In order to further evaluate the performance and feasibility
of our ITVCrack method, we compare it with two newly pro-
posed methods—FoSA (F∗ seed growing) [4] and CrackTree
[38]—for extracting cracks in the real pavement images. The
dynamic-optimization-based method, suggested in [3], outper-
forms the other five methods for segmenting low-SNR images.
We also selected it for comparison [39]. In working toward
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Fig. 6. Comparison of ITVCrack with the other approaches using the pave-
ment images. (a) Image 1. (b) Image 2. (c) Image 3.

TABLE I
SM VALUES OF FOUR CRACK EXTRACTION METHODS

the objectives of this study, we conducted an experimental
study to compare the performance of existing crack extraction
methods. It is accepted that crack detectors are neither perfect
nor universally applicable. Although most of them work in most
situations and with most data types, they will fail under certain
environmental conditions.

Fig. 6 shows the results obtained using each of the four
existing crack extraction methods. Table I lists the SM values of
the extracted cracks, in comparison with the ground truth. In the
CrackTree method, three parameters were selected as follows:
the voting scale σ = 11, the edge-length threshold Le = 10,
and the path-length threshold Lp = 60. The FoSA algorithm
maintains the searching radius at 24. As shown in Table I,
given the high spectral and spatial resolutions of the pavement
images, most algorithms achieve a good performance in crack
extraction. However, the FoSA algorithm achieves a lower SM
value (76.09) for image 2, compared to the other images. This
might be spectral inconsistency around the cracks in image 2.
Thus, this algorithm mistakenly identified the boundary of the

Fig. 7. Comparison of ITVCrack with the other approaches using the GRF
images. (a) Crack 1. (b) Crack 2. (c) Crack 3. (d) Crack 4. (e) Crack 5.

TABLE II
SM VALUES OF THREE CRACK EXTRACTION METHODS

slightly dark area as a crack, thereby leading to a higher false
alarm rate.

Similarly, the dynamic optimization method deals poorly
with image 3, as indicated by the SM value of 33.77. This might
be caused by the low contrast between the crack pixels and
their surroundings. The dynamic optimization method, using
connected component analysis, detects cracks from such local
information as density, relative area, bounding box, and line
similarity. For this reason, low contrast in a local window might
cause the algorithm to inadequately extract crack information
for connected component analysis. As expected, our ITVCrack
attained stable performance for all three types of images.
Qualitatively, all cracks were extracted completely (see Fig. 6).
Quantitatively, Table I suggests that ITVCrack outperforms the
other three algorithms, as indicated by the SM values being
higher than 90%.

E. Comparative Tests With GRF Images

The tests on the synthetic images and pavement images
indicated that ITVCrack can extract all possible sharp curvilin-
ear structures in the presence of severe noise. In comparison
with the pavement images, cracks in the GRF images show
lower contrast with their surroundings and lower SNRs with
a huge amount of noise. In order to evaluate the effectiveness
of ITVCrack for these noisy and corrupted GRF images, we
compared it with the aforementioned algorithms in this section.
The first row in Fig. 7 shows five cracks sectioned from the GRF
image. Cracks 1, 2, and 5 have the size of 200 × 200 pixels, and
cracks 3 and 4 have the size of 250 × 150 pixels.

Given the low spectral resolution of the GRF images, the
searching radius r in the FoSA algorithm must be smaller in
order to obtain a consistent window for seed growing. However,
the small searching radius r makes it difficult to represent the
seed-growing path of cracks. Moreover, spectral inconsistency
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Fig. 8. Sensitivity tests with parameters. (a) σball. (b) σball−stick. (c) Δθ.

caused by the point sampling pattern of the MLS data leads to
the failure of the FoSA algorithm to adequately extract cracks.
This algorithm might work for cracks if relevant preprocessing
procedures, such as filtering, are employed.

The comparison of the results of the other three methods is
shown in Fig. 7. The quantitatively compared results are listed
in Table II. The proposed ITVCrack maintained a much more
stable performance than CrackTree and dynamic optimization
because the SM values for ITVCrack range from near 94 to 97.
In addition, visual inspection shows that the extracted cracks
are quite complete. These quantitative and qualitative results
demonstrate that our algorithm achieves a stable performance
for not only the pavement images but also the noisy GRF
images. The dynamic optimization method achieves a poor
performance for the complex shaped cracks in the GRF image.
Due to the robustness of tensor voting under the conditions of
low SNR and low spectral contrast, the tensor voting based
CrackTree also outperforms dynamic optimization. However,
compared to CrackTree, the proposed ITVCrack, following an
iterative processing pattern, enhances promising, salient curvi-
linear cracks and suppresses surrounding noise by gradually
reducing the voting aperture. Thus, ITVCrack can preserve
many more crack details.

F. Parameter Sensitivity Analysis With GRF Images

Among the five parameters (σball, σball−stick,Γball,Γstick,
and Δθ), histogram analysis suggests values of Γball = 0.4
and Γstick = 0.05. In this section, we designed three groups of
experiments to investigate the sensitivity of ITVCrack to the
selection of the scale parameters σball and σball−stick, and the
voting aperture step Δθ.

Fig. 9. Runtime for the GRF and pavement images.

In the first group, we maintained σball−stick = 3.0 and Δθ =
20◦ and varied σball from 10.0 to 6.0 with an interval of 1.0.
Fig. 8(a) shows the experimental results for these five cracks.
As shown in Fig. 8(a), the SM values of the extracted cracks
dramatically vary with the parameter σball, which increases
from 6.0 to 9.0. However, the SM values tend to be stable as the
parameter σball changes from 8.0 to 10.0. The reason behind
this phenomenon might be that a large σball implies long-range
interactions, leading to a higher degree of smoothness (i.e.,
greater noise removal), thus improving extraction performance.
As such, in our study, the best crack extractions were obtained
at σball = 9.0 or 10.0.

Next, we used σball = 10.0 and Δθ = 20◦ and varied
σball−stick from 3.0 to 6.0 with an interval of 1.0. Fig. 8(b)
shows the results for these five cracks. As shown in Fig. 8(b),
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Fig. 10. Quantitative comparisons between the methods using all pixels and crack candidates encoded as ball tensors. (a) Processing time. (b) SM values.

Fig. 11. Quantitative comparisons between the methods using stick voting alone and ball-and-stick voting in the iterations. (a) Processing time. (b) SM values.

when σball−stick is 3.0, the proposed ITVCrack achieved a
relatively stable performance, indicated by the SM values being
higher than 95%. The values of SM quickly decreased when
σball−stick increased from 4.0 to 7.0. This is because, unlike
σball in the sparse voting process (which is given a large value
to remove noise), σball−stick in the iteration process requires
a small scale in order to preserve crack details. Due to the
large amount of noise removed by σball in the sparse voting
process, iterative dense voting is able to enhance the cracks by
preserving their details. In this paper, the σball−stick value of 3.0
obtained the best crack extraction performance.

Finally, we used σball = 10.0 and σball−stick = 3.0 and var-
ied Δθ from 5◦ to 40◦ with five different Δθ settings (namely,
40◦, 20◦, 13◦, 10◦, and 8◦). We used the maximum field aperture
(θmax = 45◦) and the minimum field aperture (θmin = 5◦). The
voting aperture step Δθ determines the number of iterations
(N) in the dense voting process. Therefore, according to (5),
the ITVCrack algorithm was performed in five different itera-
tions (5, 4, 3, 2, and 1). As shown in Fig. 8(c), when Δθ is
between 10◦ and 15◦ (which entails three or four iterations),
the SM values of all five cracks exhibit good performance.
The explanation for this phenomenon is that, in the iterative
dense voting process, each iteration refines the previous one
by gradually reducing the diffusion of votes and focusing the
votes on only promising curves. It has been found, however, that
although dense voting allows pixels to be interpolated for filling
discontinuity, excessive iterative dense tensor voting (small Δθ)
produces overly smooth crack curves due to over interpolation.
Consequently, some crack details could be missed, resulting in
a decrease in SM values.

G. Computational Efficiency

Our analysis indicates that the proposed ITVCrack, because
it gradually concentrates on the promising crack curvilinear
structures by refining previous results, is capable of extract-
ing cracks from noisy and corrupted GRF images. However,
iteration results in increased required computation time. Fig. 9
shows the runtime for eight pieces of crack data, including
five GRF images and three pavement images. As shown in
Fig. 9, the runtime grows as the number of iterations increases.
However, for all cracks, the runtime growth rates are low.
The reason is that the algorithm iteratively employs a saliency
thresholding scheme to delete pixels with low saliency and
gradually focuses the votes on only promising curves. The first
round of dense ball-and-stick voting, particularly ball voting,
occupies the majority of the processing time. We also found
that, compared to the five GRF images, the runtime for the three
pavement images is much shorter in spite of their larger sizes.
This is because the GRF images contain much more noise than
the pavement images, and ITVCrack takes considerable time to
concentrate the promising cracks.

Rather than all pixels, only the crack candidates binarized
from the GRF images are the input to be encoded as ball tensors.
As a result, the computational cost, as shown in Fig. 10(a),
is reduced by 10%–25% for all five GRF images, yet as
shown in Fig. 10(b), the values of SM dramatically increase
by 5%–40%. With little interference from noncrack pixels,
the proposed ITVCrack concentrates on crack candidates, thus
improving the ITVCrack’s performance and stability for crack
extraction, as shown by SM values about 95. Traditional tensor
voting algorithms generally use a dense stick voting process for
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gradually concentrating on curvilinear structures. However, as
we mentioned, a ball tensor contains implicit stick information
after ball voting according to eigendecomposition. Fig. 11(a)
and (b) shows the comparative results between dense stick
voting and dense ball-and-stick voting in each iteration. We
found that the algorithm using only stick voting dramatically
reduced the computational cost by 90%. However, the accuracy
of the extracted cracks is unstable as the SM value ranged
from 75.93 to 94.50. On the other hand, ball-and-stick voting
preserves many subtle curvilinear crack details, entailing a
higher degree of accuracy; however, it leads to the disadvantage
of an increase in computational costs. In order to overcome
the aforementioned shortcoming, a parallel environment or a
multithread scheme may be considered.

V. CONCLUSION

We have proposed ITVCrack, an ITV-based framework for
extracting cracks in road surfaces from MLS point clouds.
The presented ITVCrack combines the following: 1) curb-
based road extraction; 2) GRF image generation; and 3) ITV-
based crack extraction. The performance of ITVCrack was
validated by the synthetic data, the pavement images, and
the GRF images. Quantitatively, our algorithm demonstrated
much better crack extraction performance when compared with
the other crack extraction methods. Specifically, ITVCrack
achieved the following: 1) the SM values of over 97 and 95 for
the additive-noise-corrupted and multiplicative-noise-corrupted
synthetic data, respectively; 2) the average SM value of 91.5 for
the pavement images; and 3) the best SM values, ranging from
near 94 to 97, for the GRF images.

One limitation is the intensive computation required due to
the iterative operations involved in the tensor voting process,
particularly dense ball voting. However, because the voting
process of each tensor is independent, this disadvantage could
be ameliorated by future research on distributed computing.
Using a multithread scheme in a parallel environment, the com-
putational burdens can be distributed to each parallel procedure,
indicating that computational performance will be improved
and time complexity will be greatly reduced. In addition,
ITVCrack is scale independent and has been shown to perform
equally well on images with high spatial resolution. As the
progressing technology of laser scanning permits higher point
densities, this is a feasible property of future GRF images.
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