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ABSTRACT
Understanding and assessing the landslides is immensely important to
scientists and policy-makers alike. Remote sensing conventional methods
and modelling approaches in geographical information system (GIS) tend
to be limited to authentic quality and spatial coverage. This study aims to
identify challenges and quality of landslides assessment based on
remotely sensed data by the mean of existing works of the literature and
practices we attempted in the Zagros and Alborz Mountains in Iran and
the red rock shield Lake, China. Remote sensing data for landslides
investigations require a high-resolution digital elevation model (DEM)
from either aerial photography, satellite images, airborne laser scanning
(ALS) or terrestrial Light Detection and Ranging (LiDAR) derived in order to
enable a reliable and valid output performance. This paper presents
weaknesses and strengths of the existing remote sensing techniques in
the last decades and further provides recommendations for a reliable
approach to the future landslide studies. Also, this study estimates the
operational use of state-of-the-art technologies (i.e. unmanned airborne
vehicle (UAV)) for landslides assessment in the near future that is a realistic
ambition if we can continue to build on recent achievements. However,
this paper does not deliver a detailed methodology of a DEM generation
from the remote sensing approach for landslides assessment.

KEYWORDS
Landslide; remote sensing
and GIS; DEM; ALS; LiDAR;
UAV

1. Introduction

Disasters triggered by natural hazards are an unparalleled threat to sustainable development. Disas-
ter risk managers and decision-makers depend greatly on the detailed and reliable assessment of
risks to prevent or lessen the adverse effects of disasters. Landslides are the movement of a mass of
rock, debris (Mohamed et al. 2016) or earth down a slope (Highland et al. 2008; Farrokhnia et al.
2011). Definition of the landslide is diverse and reflects the complex nature of various disciplines,
such as geology, geomorphology and soil engineering (Highland et al. 2008; Jebur et al. 2014). We
consider landslides as a general term, and it uses to describe the downslope movement of soil and
rock under the effects of gravity (Cruden 1991).

Remote sensing technologies such as Light Detection and Ranging (LiDAR) provide advanced
products and tools that support these efforts. A visualization-like digital elevation model (DEM)-
derived remote sensing techniques is a basic tool for the hazards loss reduction, land-use planning,
particularly in mountain areas. Landslide investigations involve several qualitative or quantitative
approaches and are discussed in many scholarly research papers (Wu & Sidle 1995; Pack et al. 1998;
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Lee et al. 2002; Zhou et al. 2003; Schulz 2004;Watts 2004; Pradhan et al. 2006; Yilmaz & Yildrim
2006; Schulz 2007; Ercanoglu et al. 2008; Yalkin 2008; Pradhan & Buchroithner 2010; Pradhan &
Pirasteh 2010; Yilmaz 2010; Goetz et al. 2011;Choi et al. 2012; Solaimani et al. 2013; Zarea et al.
2013; Jebur et al. 2014; Lee et al. 2014; Su et al. 2015). Moreover, the amount and the quality of avail-
able data such as DEM, appropriate methodology of analysis, and modelling are significant to the
landslide susceptibility mapping (Carrera et al. 1991; Montgomery and Dietrich 1994; Pack 1995;
Dai & Lee 2002; Pack & Tarboton 2004; Huabin et al. 2005; Evans et al. 2009; Mehrdad et al. 2010;
Guzzetti et al. 2012; Konstantinos et al. 2016).

Researchers implemented the diagnosis of landslides process by means of geographical distribu-
tion of landslides, developing algorithms and codes (Pirasteh et al. 2015), and generating susceptibil-
ity maps, and models. Also, some of the researchers attempted the semi-automated approach
(Siyahghalat et al. 2016), identifying landslide-contributing factors, accuracy performance, geologi-
cal and engineering perspective, utilizing remote sensing technologies, and early warning systems
(Wu & Sidle 1995; Zhou et al. 2003; Watts 2004; Jebur et al. 2014; Lee et al. 2014; Su et al. 2015).
Nevertheless, very few researchers have discussed on challenges and qualities of the output with a
reliable recommendation as well as developing an algorithm for landslides detection from the
LiDAR point clouds data. However, this paper is not interested in emphasizing on the detailed
methodology of the DEM generated from remote sensing and influencing factors for landslides. We
aim at presenting the qualities and challenges of the DEM derived from remote sensing approaches
and an empirical perspective for landslide studies. Furthermore, it inspires and motivates research-
ers to progress future directions of landslides assessment and susceptibility mapping.

2. Remote sensing approaches, strengths, and weaknesses

There are three major remote sensing techniques in landslides investigation. They are (1) aerial pho-
tography that has been considered as an early technique (Su & Stohr 2000), (2) interferometric syn-
thetic aperture radar (InSAR) (Travelletti et al. 2008; Jaboyedoff et al. 2012; Bianchini et al. 2016)
and (3) LiDAR (Su & Bork 2006). InSAR techniques are considered to be as the ground-based or
satellite-based techniques. All of these techniques have advantages and disadvantages with limita-
tions. The purpose of using InSAR techniques is mainly to detect landslides, and it is quantification
of small displacements over large areas. Remote sensing techniques and imageries interpretation
aim to distinguish geological and geomorphic features that enhance identification and assessment of
landslides within a landscape. Recently, LiDAR (or terrestrial laser scanning (TLS)) use to provide
high-resolution point clouds of the topography to generate a DEM and further to understand land-
slides phenomena. In addition, it has several applications such as mapping (Ardizzone et al. 2007;
Jaboyedoff et al. 2012), monitoring deformation, and particularly landslides or rockfall displace-
ments (Teza et al. 2007; Oppikofer et al. 2009; Abellan et al. 2010). Table 1 provides examples of
remote sensing of landslide studies in the summary.

Remote sensing techniques have been widely used in extracting landslide and stability influencing
factors (Table 2) in the form of a grid; for example, detection of an object expression has begun since

Table 1. Landslide remote sensing investigations.

Passive remote sensing techniques Active remote
sensing techniques

Subaerial Subaqueous

Air photos Satellite imagery Radar imagery LiDAR imagery Multibeam imagery

Ali et al. (2003a, 2003b);
Farrokhnia et al. (2011);
Pirasteh et al. (2009);
Zarea et al. (2013);
Guzzetti et al. (2012)

Chen and Medioni
(1992); Ali et al. 2003b;
Ali and Pirasteh (2004);
Highland et al. (2008);
Jebur et al. (2014)

Stow (1996); Carnec et al.
(1996); Tarchi et al. (2003);
Rizvi and Pirasteh (2007);
Roering et al. (2009);

Pirasteh et al. (2011); Rizvi
et al. (2012)

Schulz (2004); Schulz
(2007); Roering et al.
(2009); Jaboyedoff

et al. (2012)

Piper et al. (2003);
Mosher et al.
(2004); Li et al.
(2015a, 2015b)
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the introduction of Landsat MSS in 1980. Remote sensing imageries (Table 1) used in landslide haz-
ard assessment studies are Landsat, IRS, LISS, advanced spaceborne thermal emission and reflection
radiometer (ASTER) (Figure 1), Spot, and aerial photo.

As an experimental study to identify challenges, we have used (1) ASTER data from Damavand
Alborz Mountains Iran, (2) airborne laser scanning (ALS) data from the Alborz Mountains Iran, (3)

Table 2. Data layer of landslide studies and source of the data.

Data layers Remote sensing/source GIS data type

Landslide data Collected from field and GPS, geospatial distribution collected from database Pointcoverage
Slope DEM derivative derived from ALS, SRTM, aerial photographs GRID
Aspect DEM derivative derived from ALS, SRTM, aerial photographs GRID
Curvature DEM derivative derived from ALS, SRTM, aerial photographs GRID
Distance from
drainage

DEM derivative derived from ALS, SRTM, aerial photographs
Developed in GIS environment, buffer

GRID

Geology (litho
types)

Extracted from satellite images based on digital and visual interpretation and digital
image processing, collected from field and GPS, geospatial distribution collected from
database

GRID

Distance from
lineaments

Extracted from satellite images based on digital and visual interpretation and digital
image processing, collected from field and GPS, geospatial distribution collected from
database, developed in GIS environment, buffer

GRID

Soil types Extracted from satellite images based on digital and visual interpretation and digital
image processing, collected from field and GPS, geospatial distribution collected from
database, developed in GIS environment

GRID

Land cover Extracted from satellite images based on digital and visual interpretation and digital
image processing, collected from field and GPS, geospatial distribution collected from
database, developed in GIS environment

GRID

Vegetation index
(NDVI)

Extracted from satellite images based on digital image processing, geospatial
distribution collected from database, developed in ENVI environment

GRID

Rainfall data Non-spatial data collected from stations GRID

Figure 1. Colour hill shaded 3D surface view over Damavand Volcano in the Central Alborz region, Iran (processed from ASTER
DEM 15 m).
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aerial photographs and digital topography maps from the Zagros Mountains in Iran, and (4) terres-
trial LiDAR data from China. The data have been processed to generate a DEM in the GIS environ-
ment with 15 m for ASTER, 2.5 m for ALS, 10 m for aerial photographs, and 0.5 m for terrestrial
LiDAR, respectively, in resolution to determine the weakness and strengths of a DEM on landslide
investigations.

We experienced that SRTM data quality characteristics including its vertical accuracy, the influ-
ence of vegetative cover the presence of data voids, and the effect of speckle noise are limitations in
this study. ASTER data lie in its large coverage at a consistent quality, providing unprecedented
opportunities for regional applications. We improved the quality of the ASTER data by substantial
editing, the development of void filling procedures.

In addition, the refinement of techniques to extract the detailed information from the DEM has
been implemented (Figure 2). The spatial resolution of the ASTER data is another limitation in
small-scale studies. However, 15-m pixel resolution of the DEM could enlighten detection of topo-
graphic, geologic, and geomorphic features that involve landslides. The ASTER 15 m in resolutions
represent serious limitations for fine-scale landslide analysis in the study area.

Vertical accuracy of the ASTER data is also a weakness to support a fine-scale landslide studies.
Also, ASTER data limitation lies in the fact ‘first-return’ elevation data. It is resulting in substantial
overestimates of elevation in the Damavand volcano where vegetation covers it. However, we identi-
fied that for an extraction of detailed information in the Damavand volcano, we require high-resolu-
tion data such as LiDAR.

The Triangular Irregular Network (TIN) derived from ALS data from Alborz Mountains
(Figure 3) with 2.5 m in pixel resolution has allowed us to detect more informative landslide features
than the DEM derived from aerial photography, topographical maps, and SRTM satellite data.

Figure 2. Diagram of generating a DEM from ASTER data.
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We also selected Zagros Mountains to generate a DEM (Figure 4) from two different datasets and
perspective. Topographical maps in vector form with a contour interval of 10 m allow us to produce
a DEM with the spatial resolution of 10 m from a large area in the Zagros Mountains. The photo-
grammetry technique that primarily focuses on the monitoring of a small set of specific points (e.g.
under a geodetic control network) with the time series of coordinates has been considered. However,
the challenge is that to get a flight permission from Iranian authorities and it cannot be a good idea
to use aerial photos and topographical maps for studying landslides and monitoring natural hazards.
Thus, it is not possible to study landslides before and after the occurrence or expect to practice an
early warning system as we think of the future direction of landslide investigations in Iran. In

Figure 3. TIN derived from ALS showing landslide locations in the Alborz Mountains, Iran.
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addition, the cost and limitation of sensors and cameras are the weakness of using this method.
Moreover, the weakness is that the points collected from theodolites, photogrammetry, levels and
Global Navigation Satellite System (GNSS) perform quite low in density. For example, the low-
density DEM determines the potential to differentiate morphologically (McKean & Roering 2003;
Roering et al. 2009) components within a landslide and how to provide insight into the material type
and activity of the slide. Thus, these surveying techniques and aerial photography with low-density
measurements still cannot provide a good accuracy and quality to visualize the objects to extract an
informative description of the changes for the unstable areas and landslides under monitoring.

Therefore, a high-density sampling technique such as terrestrial or airborne LiDAR opens a new
potential to research scholars to reach more informative deformation of the monitored landslides

Figure 4. DEM representation derived from the aerial photography and topographical maps with 10 m in pixel resolution.
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before and after the event and to determine the loss of destructions accompanying with ground control
points (Figures 5 and 6). LiDAR data can process to remove vegetation, buildings, and other above-
ground features, thus creating a bare-earth DEM. This study results in a high accuracy of landslide
determination, identifying morphologic features (Ali et al. 2003a, 2003b; Pirasteh et al. 2009, 2011).

The dense vegetation area may obscure the morphology of landslides both in the field and in
remotely sensed data such as satellite images or aerial photos. LiDAR data can be processed to reveal
the topography beneath vegetation and have proven useful in identifying tectonic fault scarps (Hau-
gerud & Harding 2001; Haugerud et al. 2003; Sherrod et al. 2004), previously unmapped landslides,
and other geomorphic landforms.

The TLS data from red rock shield Lake, China, has been collected, and we tried to compare the
two sets of LiDAR data before and after the event that can indicate the changes (Figure 6).

The strength of using TLS as compared to the other techniques is to generate a high-resolution DEM
(0.5 m) as well as an easy accessibility with a low cost of the LiDAR system in China. However, this
becomes a challenge when we try to collect TLS data in a rugged topography or inaccessible area in
Iran. Also, removal of the noise and errors from LiDAR data for detection of landslides has required an
algorithm and remained an interest of researchers. If we collect the LiDAR data desirably, we can extract

Figure 5. Field observation with ground control points, Red Rock Shield Lake, China.

Figure 6. TLS data for the landslide in Red Rock Shield Lake, China, after and before the event.
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a high quality of geomorphometric parameters, such as slope, curvature, roughness, and topographic
wetness index by using stencils of landslide polygons overlaid on respective thematic maps derived
from the DEM. However, further refinement of the accuracy of LiDAR systems may be required to
map fine-scale vegetations and terrain applications in rangeland environments. Also, vegetation and
slope have statistically significant effects on the accuracy of a LiDAR-derived bare-earth DEM. High-
resolution DEMs for morphologic analysis of the surface can have a considerable impact on quality of
the result. The accuracy of the DEM derived from remote sensing (Table 3) directly related to the reso-
lution of the image and the contour interval in a topographical map.

2.2. LiDAR

LiDAR is a relatively new and revolutionary surveying technology. As an advanced technique,
LiDAR can provide a good set of three-dimensional data with X, Y and Z axes to generate a DEM,
as well as other information such as intensity, colour, geologic and geomorphic using DEM’s deriva-
tives to assess and monitor landslides. These techniques can provide millions of data measurements,
in a few minutes that are commonly denoted as ‘3D Point Clouds.’ Compared to traditional survey-
ing techniques, LiDAR technology shows a great potential for landslides (Jaboyedoff et al. 2012).
These methods have been emerging as a hot and attractive research topic. It is because LiDAR can
capture the data very fast with high data density, 3D object representation, as well as user-friendly
operation. Particularly, the high-density 3D points captured by LiDAR can provide a chance to iden-
tify the detailed and distinctive landslide characteristics in partial areas (Derron & Jaboyedoff 2010).
In addition, a significant amount of such 3D data induces new research challenges, such as huge
data management, extraction of useful information, and 3D landslide reconstruction.

ALS systems have been reviewed and discussed in Wehr and Lohr (1999) and Baltsavias (1999).
A clear reference to an updated discussion is commented in Shan and Toth (2008). During 2005–
2015, literature on TLS has rapidly grown up and applications of LiDAR have been identified from
time to time. Petrie and Toth (2008) expressed the basic principle of TLS, and this can be a useful
reference for understanding the mechanism of LiDAR. Finally, a brief review of LiDAR (and other
remote sensing techniques) utilized in landslide studies is found in Prokop and Panholzer (2009)
and SafeLand Deliverable 4.1 (2010).

3. LiDAR advantages and challenges

Digital elevation data developed from any remote sensing methods, including LiDAR, are not per-
fect. There is no doubt satellite imageries accompanying with a survey have an excellent advantage
for landslides investigations. As LiDAR compared with conventional photogrammetric techniques
(Wait 2001), the advantage is that photogrammetric techniques require two different lines of sight
to see the same points on the ground from two different perspectives, but LiDAR only required a
single laser pulse to penetrate through the trees or vegetations to measure the ground beneath (Liu
et al. 2012). In other words, LiDAR has far fewer areas where the terrain is obscured by trees that
block the lines of sight.

Table 3. Different kinds of DEMs.

DEM types Resolution (m) Resource

Aerial photos 2–10 Airborne
TLS 0.5 Laser scan
ALS 2.5–5 Airborne
ASTER DEM 15 ASTER L1A
IRS P5 3 IRS P5
SRTM 90 EDC
GTOPO30 1000 EDC HYDRO
DLOBE3000 1000 NOAA
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Landslide LiDAR and satellite remote sensing have faced, and continues to face, several chal-
lenges not only in terms of engineering geology and natural hazard sciences underpinning the land-
slide assessment and susceptibility mapping, but it has also suffered from the lack of funding, time,
upgrading policy of governments with the growth of technologies (i.e. especially for the developing
countries), infrastructure and the flight permission needed to coordinate research efforts across
what has been historically and scientifically a rather fragmented community.

In general, LiDAR has proven to be more accepted in the last decade in comparing to a DEM
derived from the satellite images or aerial photographs. This article emphasizes that still there is a
limitation because LiDAR cannot accurately delineate stream channels, drainage networks, or ridge-
lines visible on the satellite images or photographic images. For example, contours derived automat-
ically from LiDAR data may depict stream channels differently than manual photogrammetric
techniques. In addition, the unedited LiDAR-derived contours may be acceptable for many applica-
tions such as applications where contours along a stream must depict continuous downhill flow.

A rapid acquisition of data over widespread areas, an ability to access rugged topography data
from the inaccessible area, high-resolution DEMs generated from LiDAR, time, and accuracy with a
cheaper production of DEMs in a long term are the advantages compared with traditional photo-
grammetric techniques. Moreover, the primary advantage of LiDAR-derived DEMs for landslide
recognition is the landscape visualization flexibility, because it uses multiple combinations of hill-
shading. It also associates with the second-derivative datasets. It is also a challenging issue in very
steep terrain and cliffs, due to lack of clear shots. Limiting threshold of a DEM resolution is a disad-
vantage of LiDAR too.

As for the vegetated area, low-to-height vegetation can present unique challenges (Hopkinson
et al. 2004) for generation of DEMs. When the canopy is high, it is difficult for LiDAR pulses to pen-
etrate, because sparse vegetation cover can lead to confusion between ground and vegetation returns
(Streutker & Glenn 2006; Ria�no et al. 2007). Thus, this makes identification of ground returns for
DEM generation difficult. Also, if a topography is complex, then spatially variable slope, aspect, and
elevation will influence the vertical accuracy of LiDAR data, because of horizontal displacement
(Hodgson & Bresnahan 2004; Su & Bork 2006).

One of the advantages of the LiDAR is that there is open source software available to process
LiDAR datasets. We should use proprietary GIS software as it, although expensive to purchase, has
the advantage of ready integration with other core GIS activities. In terms of LiDAR-derived DEMs,
the data layers are readily integrated into standard GIS applications, and it makes the capture of
new features very easy and time-efficient. Comparisons over the past few years indicated that land-
slide recognition using LiDAR-derived DEMs (Liu et al. 2012) is up to 5–10 times quicker than tra-
ditional photogrammetric techniques in the same landscape. However, the main disadvantage of
LiDAR technology lies with the limiting threshold the DEM resolution places on the size to identify
the objects. Also, geological features, such as bedding and layering, can sometimes be mistaken for
instability as compared to field verification; it is always an essential component of the process.

4. Mapping challenges: past and present

Landslide mapping and modelling have been developed in many parts of the world, but most cases
consist of prototypic approaches. Numerous methods (see Appendix) have focused on generating
landslide investigations. Nevertheless, previous studies have discovered that a number of shortcom-
ings need to be overcome. Thus, this paper has identified problems as follows:

(1) Perhaps, it is not surprising that a complex interrelationship causes landslides, and that
agreement about how to influence variable factors involved in landslide hazard assessment is
not uniform among the researchers. Clearly, no general agreement has been reached on the
scope, techniques, and methodologies for landslide hazard investigations.

GEOMATICS, NATURAL HAZARDS AND RISK 9
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(2) Previous studies (Ali & Pirasteh 2004) have discovered that structural features and geomor-
phologic analysis (George et al. 2012) play an important role in landslide assessment. How-
ever, no study has identified the interface of thrust fault, nappe, klippe, fenster, scarp, strike-
slip fault, fold, hogback, lineament density, drainage density, elevation drop, water gap, net
erosion, channel slope, sinuosity, straight-line length and stream gradient index in a rugged
topography in order to assess landslides utilizing LiDAR.

(3) As for LiDAR, it permits to improve geological mapping as well as the landslide inventory
mapping. It happens when we increase the resolution of the landslide contours, and this leads
us to identify geomorphologic features such as scarps and displaced material. Nevertheless,
these conceptual methods are usually employed to detect landslides (Keaton & DeGraff
1996; Soeters & VanWesten 1996) in different climates and environments such as tropical
and mountainous regions. Some of the morphological features of the landslides are easy to
extract and unlikely some are not possible to be delineated from DEMs or hillshades pro-
duced alone by photogrammetry techniques, satellite images (i.e. RADAR and InSAR), and
LiDAR. Limitations vary from technique to technique, and it depends on the resolution of
the images, topography, climate, and environmental conditions. However, one of the main
issues in laser scanning is the vegetation removal either by automatic methods or manually.
Nevertheless, any remote sensing approach does not replace field investigations (Figure 7).
However, it changes the fieldwork methods and can be considered as a part of the validation
processes of a landslide inventory produced by high-resolution DEMs.

5. Results and discussion

Although this study has not explored and discussed the detailed landslide methodologies, it shows
that perhaps, photogrammetric techniques and aerial photographs promise to be more efficient
than LiDAR for discerning boundaries of recently active landslides within landslide complexes par-
ticularly for an active tectonic region such as Zagros and Alborz Mountains in Iran. One of the chal-
lenges of resolution of LiDAR is that it cannot resolve many landslide boundaries (Wait 2001)
within landslide complexes in the study area. In addition, LiDAR on board unmanned airborne
vehicle (UAV) may be the future direction of delivering a suitable remote sensing approach to gen-
erate a high-resolution DEM, if geomatecians can reach an agreement with decision and policy-
makers to update the regulations of the country, because we imagine that UAV has a promising
potential to provide the invaluable complementary source of data with a high-resolution pixel size
at local to global scales and it is undergoing rapid developments.

Figure 7. Two samples of newly mapped landslide locations in the field study, Alborz and Zagros Mountains, Iran.
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This study shows that the high-resolution DEM is increasingly being used in various applications
of natural hazards such as landslides. We predict that in the next few years, LiDAR sensors and
UAV technologies will probably be a standard tool for many applications including landslide studies
in the next decade. This study estimates that the current trend, full coverage by ALS-DEM and UAV
technology in most of the developed countries will be reached within the next few years. Thus, we
expect that this technique is progressing more often among researchers and soon will be in the
industry sectors because it has more accurate and precise ALS and TLS devices and UAV that allow
us to generate more accurate DEMs. Nevertheless, UAV and LiDAR are a relatively new and revolu-
tionary surveying technologies developed in recent decades, and there is a lack of developing algo-
rithms and software in error removal of the LiDAR data (Liu et al. 2012; Juber et al. 2014; Su et al.
2015).

We suggest that remote sensing techniques and image analyses are a quick and valuable tech-
nique for identifying landslides and map them in the GIS environment by using various techniques
of GIS analysis. Because we can produce a 3D view of the terrain and DEM. Also, the availability of
LiDAR point cloud makes image reconnaissance (Spaete et al. 2011) very versatile, although cost-
prohibitive in some cases.

This study emphasizes that a rapid acquisition of data over widespread areas, an ability to access
rugged topography data from the inaccessible area, high-resolution DEMs generated from LiDAR,
time, and accuracy with a cheaper production of DEMs in a long term are the advantages compared
to traditional photogrammetric techniques.

Moreover, this study aimed to encourage of using the second derivatives of high-resolution
DEMs such as stream-gradient indices to investigate signatures of landslides in the active tectonic
region for the future studies. This review literature indicates that the primary advantage of LiDAR-
derived DEMs for landslide recognition is the landscape visualization flexibility because it uses mul-
tiple combinations of hill-shading. It also associates with the second-derivative datasets. However, it
is a challenging issue in very steep terrain and cliffs, due to lack of clear shots. This study experi-
enced that the disadvantage of LiDAR technology lies with the limiting threshold the DEM resolu-
tion places on the size to identify the objects. We also identified that geological features such as
bedding and layering could sometimes be mistaken for instability as compared to the field verifica-
tion, as it is always an essential component of the process.

6. Quality and performance assessment

One of the fundamental steps in the landslide assessment process and landslide determination for
susceptibility prediction is validation (Davis & Goodrich 1990; Paolo et al. 2010). Sometimes for the
performance assessment and validation, existing landslides verification in the field (Eeckhaut 2007)
is significant to confirm our delineations or characterizations of landslides from remotely sensed
data such as LiDAR point cloud. In particular, when there is no evidence of the extent of the land-
slide on LiDAR data or any photographic record of its existence, it is highly recommended to iden-
tify the indicators of slope failures such as obvious scarp, bent trees, and cracks in brittle materials.

This paper indicates that the performance assessment of active landslides such as in the Zagros
and Alborz Mountains in Iran can be determined by multi-temporal airborne and terrestrial laser
scanning. We can create a 3D motion using the range flow algorithm (Ghuffar et al. 2013) to deter-
mine the movement of landslides. This 3D with high-resolution of the LiDAR data with centimetre
in pixel size and detailed information can perform a better quality of generating DEM derivatives
and further landslide susceptibility maps.

7. Conclusion and recommendations

This study concludes that: (1) landslides assessment is a very important issue in deformation of the
environment and the earth’s surface within the environmental science and engineering, and such
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assessment is useful for reducing/preventing damages. Perhaps, to study the tectonic geomorphol-
ogy of the Zagros Mountains for landslide investigations would be a significant contribution to
determine the quality of the high-resolution DEM; (2) classical surveying techniques can only pro-
vide data measurements with a very low sampling, and may not provide detailed information for
deformation description in the Zagros and Alborz Mountains, particularly for a large monitored
object; (3) satellite images are not desirably a good choice in terms of high quality to generate high-
resolution pixel size of DEM to study the deformation like landslide; however, they can be used for
geological and geomorphological interpretation to identify influencing parameters, such as vegeta-
tions, faults, folds and drainage networks, and extract information for landslides assessment; (4)
LiDAR or LiDAR sensor onboard UAV have alternative advantages in capturing high-density 3D
point cloud data that opens substantial potential for the applications of natural hazards assessment
like landslides. Moreover, the huge data of point cloud still has remained a problem among people
because computers will need to be more powerful with increasing data acquisition. Thus, computer
engineers and related researchers will need to keep into consideration for a fast LiDAR point cloud
data analysis of more than 200 kHz. In addition, people in private industries, government agencies,
and public/private stakeholder consortiums are planning or may have the recent intention to work
with large-scale acquisitions data of LiDAR. However, LiDAR data acquisition and digital processing
have remained a challenge and of interest to the researchers that may have unlimited defined appli-
cations such as landslides monitoring and assessment.

Finally, this paper remains with few questions such as (1) Could we combine accurate DEM gen-
erated from LiDAR and develop an algorithm to detect landslides and deformation patterns from
the point clouds? (2) Could we integrate surface measurements with early warning systems? and (3)
Could we generate more precise second derivatives of a DEM than the existing DEMs to investigate
tectonic geomorphology and landslides change detection (i.e. before and after)? To explore high-res-
olution DEMs is not limited to landslide studies but also we need to think of the future direction for
subsurface and its extrapolation with surface DEMs. Therefore, the motivation of this paper is to
encourage researchers to find how the huge amount of 3D point cloud datasets from LiDAR or/and
LiDAR onboard UAV can be analyzed and further to compute landslides for assessment and suscep-
tibility mapping. Thus, this paper motivates to build a novel and advanced deformation assessment
method via ‘3D point clouds’ that enables us to generate an informative deformation description for
landslides assessment and a large monitored object. This method may allow to identify automati-
cally landslides from point clouds.
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