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LiDAR Point Clouds
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Abstract—This paper presents a novel method for automated
extraction of road markings directly from three dimensional (3-D)
point clouds acquired by a mobile light detection and ranging
(LiDAR) system. First, road surface points are segmented from
a raw point cloud using a curb-based approach. Then, road mark-
ings are directly extracted from road surface points through
multisegment thresholding and spatial density filtering. Finally,
seven specific types of road markings are further accurately
delineated through a combination of Euclidean distance cluster-
ing, voxel-based normalized cut segmentation, large-size marking
classification based on trajectory and curb-lines, and small-size
marking classification based on deep learning, and principal com-
ponent analysis (PCA). Quantitative evaluations indicate that the
proposed method achieves an average completeness, correctness,
and F-measure of 0.93, 0.92, and 0.93, respectively. Comparative
studies also demonstrate that the proposed method achieves better
performance and accuracy than those of the two existing methods.

Index Terms—Deep learning, mobile light detection and rang-
ing (LiDAR), point cloud, road marking, three dimensional (3-D)
extraction.

I. INTRODUCTION

I NFORMATION about the current road surface conditions
and features, traffic flows, and surrounding environments is

one of the most important inputs to the intelligent transporta-
tion systems (ITS). Road markings, which are highly reflec-
tive objects painted on road surfaces, function to manage and
control traffic activities. Detecting and monitoring road mark-
ings assist in regulating driving behaviors and reducing traf-
fic accidents. Traditional methods [1], [2] for extracting road
markings are based on digital images and videos. Due to
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illumination conditions, occlusions, distortions, incomplete-
ness, viewpoints, and lack of geospatial information, it is
challenging to effectively recognize and extract different types
of road markings from images and videos acquired by vehicle-
borne optical imaging systems.

Vehicle-borne mobile light detection and ranging (LiDAR)
systems have exhibited outstanding advantages over the tra-
ditional optical imaging techniques. By using laser scanners,
mobile LiDAR systems are able to acquire highly dense and
accurate three-dimensional (3-D) point cloud data at a nor-
mal urban driving speed day and night. Due to direct views of
road surfaces and intensities backscattered by different targets,
mobile LiDAR systems have become a promising and cost-
effective means for rapid inventory mapping of large-area urban
road surfaces. However, automated extraction of road mark-
ings from large amounts of 3-D mobile LiDAR point clouds
with huge concavo-convex features and varying point densi-
ties is a very challenging task. Most of the existing studies
simplified such a task by converting 3-D point clouds into
two-dimensional (2-D) geo-referenced feature imagery [3], [4]
so that image processing techniques could apply. In [3], 3-D
point clouds were first rasterized into 2-D geo-referenced fea-
ture images through inverse distance weighted (IDW) interpo-
lation. Then, road marking points were automatically extracted
using a two-step filter which considered the reflectance and
elevation properties of different targets. Finally, shape-based
method was applied to extract rectangular-shaped markings.
Similarly, a point-density-based multiple thresholding method
was proposed in [4] to extract any types of road markings using
2-D geo-referenced feature imagery. In this method, a 2-D geo-
referenced feature image was first partitioned into a set of bins
according to the point density distribution function. Then, each
of the bins was thresholded separately to extract road mark-
ings. Finally, morphological operations were applied to remove
noise in the extracted road markings. However, such a conver-
sion may lead to incompleteness and incorrectness in feature
extraction.

In [5], a fusion approach was presented for detecting and
tracking lane markings by fusing the point cloud data from
laser scanners and the navigation data from the inertial mea-
surement unit (IMU) and the differential global positioning
system (DGPS). A morphological method was proposed in
[6] for extracting lane markings, arrow markings, and zebra
crossings. In this method, peak detectors were used to detect
lane markings; template matching methods were considered to
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Fig. 1. Segmented road surface along with the ascertained curb points (red dots) and fitted curb-lines (green lines).

Fig. 2. Multisegment partition model.

detect arrow markings; morphological indicators were applied
to detect zebra crossings. Considering the reflectivity difference
between road surface and road markings, an adaptive threshold-
ing method [7] was developed to extract lane markings through
adaptively minimizing the within-class variance of the reflectiv-
ity values. In addition, a profile-based intensity analysis method
[8] was adopted to directly extract 3-D lane markings from
point clouds. In this method, the raw point clouds were first
divided into slices along the trajectory. Then, road surfaces
were detected according to the geometric properties of curbs,
barriers, and border lines. Finally, lane markings were extracted
through locating the intensity peaks on each scan line.

In this paper, we propose an automated method for road
marking extraction directly from 3-D mobile LiDAR point
clouds. The contributions of this paper are as follows: 1) a
trajectory-based multisegment thresholding method; 2) a spatial
density filtering method; 3) a trajectory-curb-line-based road
marking classification method; and 4) a deep learning and prin-
cipal component analysis (PCA)-based road marking classifica-
tion method.

This paper is organized as follows. Section II describes the
road marking extraction method. Section III presents the road
marking classification method. Section IV reports and discusses
the experimental results. Concluding remarks are given in
Section V.

II. ROAD MARKING EXTRACTION METHOD

A. Road Surface Segmentation

The 3-D geospatial information of road surfaces, roadside
buildings, trees, and other street-scene objects can be collected
simultaneously by a mobile LiDAR system. However, our focus
is only on road surfaces. Therefore, in order to reduce the
quantity of the point cloud data to be processed and the time
complexity of our proposed method, road surfaces should be
segmented from the raw point cloud rapidly and accurately.
In our previous study [4], we developed a curb-based road
surface segmentation approach. This approach first partitions
the point cloud into a set of data blocks along the trajectory,

which is recorded by the on-board navigation system. Instead
of processing an entire data block, a profile is generated perpen-
dicularly to the trajectory within each data block. Then, through
profile analysis, curb points are located within each profile by
selecting the points on opposite sides of the trajectory with spe-
cific elevation gradients constrained by the predefined thresh-
olds. Finally, the curb points ascertained from all profiles are
fitted into curb-lines. Since curbs indicate the boundaries of
the road, road surface points can be easily segmented from the
raw point cloud based on the curb-lines. This approach oper-
ates very effectively and achieves high accuracy in road surface
segmentation. Therefore, this curb-based road surface segmen-
tation approach [4] is used in this study for preparing the road
surface point cloud for road marking extraction and classifica-
tion. The segmented road surface along with the ascertained
curb points and fitted curb-lines are shown in Fig. 1.

B. Multisegment Thresholding

Road markings are highly reflective objects painted on road
surfaces; therefore, they show higher intensities than their sur-
rounding road surface in the point cloud (see Fig. 1). However,
the reflected laser pulse intensities also depend on the incident
angles of the emitted laser beams and the ranges between the
measured target and the scanner center. Generally, the reflected
laser pulse intensity decreases with the increase of incident
angles and ranges. As a result, the road markings farther away
from the scanner center exhibit relatively lower intensities than
those of the road markings nearer to the scanner center. There-
fore, the intensities of road markings distribute unevenly and
fluctuate strongly in the road surface point cloud.

In order to reduce the impact of intensity unevenness on the
extraction of road markings, we adopt a multisegment thresh-
olding strategy. Instead of processing the entire road surface
point cloud, we first partition it into a set of point cloud blocks
along the road direction with a length of Lb. Then, each of
the point cloud blocks is divided into a multisegment struc-
ture based on the trajectory. As shown in Fig. 2, centered at
the trajectory, a point cloud block is partitioned into a set of
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Fig. 3. Extracted road markings (a) after multisegment thresholding and (b) after spatial density filtering.

segments with a width ws in opposite directions. Finally, all the
segments are thresholded separately to extract road markings.
Such a partition strategy can effectively smooth the intensity
variations caused by the incident angle changes of laser beams.

In this paper, each of the partitioned segments is thresh-
olded separately using the Otsu’s thresholding algorithm [9].
Otsu’s thresholding algorithm aims to find an optimal thresh-
old that can maximize the ratio of between-class variance to
within-class variance. In order to apply the Otsu’s thresholding
algorithm, the intensities of the points within each segment are
first normalized into the gray level range of [0, 255]. Then, the
between-class variance is defined as [9]

σ2
B = ωRωM(μM − μR)

2 (1)

where ωR and ωM are the probabilities of the occurrences of
road surface and road markings, respectively; μR and μM are
the corresponding mean levels. Finally, the optimal intensity
threshold is selected as follows:

G∗ = arg max
0≤G≤255

σ2
B(G). (2)

After the threshold is calculated, the points with intensi-
ties higher than G∗ are regarded as road markings, whereas
the others are treated as the road surface. By using the Otsu’s
thresholding algorithm, road markings in all segments are auto-
matically and separately extracted. The extracted road markings
are shown in Fig. 3(a).

C. Spatial Density Filtering

Caused by the characteristics of the backscattered reflectance
and the material properties of the bituminous roads, some parts
of the road surface exhibit similar intensities to those of road
markings. Therefore, as shown in Fig. 3(a), the extracted road
markings contain considerable noise after multisegment thresh-
olding. However, compared to road marking points, these noise
distribute dispersedly and irregularly. To effectively remove
these noise from the extracted road markings, we develop
a spatial density filter. This filter can efficiently distinguish

road marking points from noise through calculating the spatial
density of each point. The spatial density of a point p(x, y, z)
is defined as follows:

SD(p) = 1+
∑

pi∈N(p)

exp

(
− (xi − x)

2
+(yi − y)

2
+(zi−z)

2

(dN/3)2

)

(3)

where N(p) denotes the local neighborhood of point p, dN is
the size of the neighborhood, and pi(xi, yi, zi) is a point within
the neighborhood. By such a definition, the spatial density of a
point depends on two factors: 1) the number of points within its
neighborhood and 2) the distribution properties of these points.
The more the points located near to a point, the higher the
spatial density of this point. Therefore, the spatial density of
the noise is lower than those of the road marking points. After
the spatial densities of the points are computed, the points with
spatial densities lower than a threshold ρSD are regarded as
noise and further filtered out. Fig. 3(b) shows the extracted
road markings after spatial density filtering.

III. ROAD MARKING CLASSIFICATION METHOD

After road markings are extracted from the road surface
point cloud, a classification method is applied to delineate
the extracted road markings into specific categories. The road
marking classification method includes: 1) Euclidean distance
clustering for grouping unorganized road marking points into
individual road markings; 2) voxel-based normalized cut seg-
mentation for segmenting road marking clusters containing
more than one type of road markings; 3) large-size mark-
ing classification based on trajectory and curb-lines; 4) deep
learning-based small-size marking classification; and 5) PCA-
based rectangular-shaped marking classification.

A. Euclidean Distance Clustering

Since the extracted road marking points are isolated and
unorganized, they should be grouped into clusters, representing
individual road markings, before carrying out classification. In
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Fig. 4. (a) Clustered individual road markings and (b) segmentation result using voxel-based normalized cut segmentation.

this paper, we adopt a Euclidean distance clustering approach,
which clusters points based on the Euclidean distances to their
neighbors. Theoretically, an unclustered point is embedded into
a specific cluster if and only if its shortest Euclidean distance
to the points in this cluster lies below a threshold dc. Other-
wise, a new cluster is created for this point. Fig. 4(a) shows
the clustered individual road markings using the Euclidean dis-
tance clustering approach. Different colors represent different
road marking clusters.

B. Voxel-Based Normalized Cut Segmentation

As shown by the white dashed circle in Fig. 4(a), this road
marking cluster actually contains two types of road markings:
stop line and boundary line. Since they are orthographic and
overlapped with each other, Euclidean distance clustering can-
not separate them. To effectively segment such road marking
clusters containing multiple types of road markings, we develop
a voxel-based normalized cut segmentation method. First, a
bounding box is calculated for each road marking cluster. Then,
large-size road marking clusters are determined by selecting the
clusters whose diagonal lengths of their bounding boxes exceed
a predefined threshold Db.

Considering road fluctuations and the efficiency of the seg-
mentation method, a large-size road marking cluster that con-
tains multiple types of road markings is partitioned into a voxel
structure with a spacing of vs. Then, these voxels are con-
structed into a fully connected weighted graph G = {V ,E},
where V takes the voxels as the nodes and E is formed between
each pair of the nodes. In order to assign a meaningful weight to
an edge for measuring the similarity between a pair of voxels,
the point nearest to the voxel center is selected in each voxel
for computing voxel features. The selected points are stored
in Pvoxel. Then, for a point q ∈ Pvoxel, a covariance matrix is
computed for it using its k-nearest neighbors (p1, p2, . . . pk)

Cq =
1

k

k∑
i=1

(pi − q) · (pi − q)
T
. (4)

Through eigenvalue decomposition on the covariance matrix,
the distribution feature of q is set to be the eigenvector associ-
ated with the largest eigenvalue. Denote the distribution fea-
ture of q as vq . The weight on the edge connecting a pair of
nodes (i, j) ∈ V 2 is defined as follows: [shown at bottom of
the page (5)]

where qi, qj ∈ Pvoxel; vqi and vqj are their corresponding dis-
tribution features; σD and σA are the standard deviations; and
ds is a distance constraint determining the maximal valid dis-
tance between two voxels.

Normalized cut segmentation [10] aims to partition the graph
G into two disjoint voxel groups A and B by maximizing the
similarity within each voxel group and minimizing the similar-
ity between voxel groups. The cost function is defined as [10]

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(6)

where cut(A,B) =
∑

u∈A,v∈B

wuv denotes the sum of weights

between voxel groups A and B; assoc(A, V ) =
∑

u∈A,v∈V

wuv

represents the sum of weights on the edges ending in voxel
group A; assoc(B, V ) =

∑
u∈B,v∈V

wuv represents the sum of

weights on the edges ending in voxel group B. The minimiza-
tion of Ncut(A,B) is achieved by solving the corresponding
generalized eigenvalue problem [10]

(D−W)y = λDy (7)

where W(i, j) = wij and D is a diagonal matrix with
D(i, i) =

∑
m

wim. Finally, the road marking cluster is seg-

mented into different parts using the eigenvector associated
with the second smallest eigenvalue. Fig. 4(b) shows the seg-
mentation result.

C. Large-Size Marking Classification

Once the large-size road marking clusters containing multi-
ple types of road markings are segmented, the large-size mark-
ings are first classified into three types: centerline, boundary
line, and stop line. To this end, we develop a trajectory-curb-
line-based method, which uses trajectory and curb-lines to clas-
sify large-size markings. Trajectory is recorded by the onboard
navigation system and curb-lines are fitted from the extracted
curb points in Section II-A. Therefore, these data are avail-
able to be used. Since, 1) trajectory indicates the direction of
the road and 2) stop lines are usually painted orthographic to
the direction of the road, stop lines can be easily distinguished
from centerlines and boundary lines based on the trajectory.
In addition, 1) curb-lines indicate the boundaries of the road;
2) centerlines and boundary lines are painted along the road;

wij =

⎧⎨
⎩exp

(
−‖qi−qj‖2

2

σ2
D

)
· exp

(
− arccos2(vqi

· vqj )
σ2
A

)
, if ‖qi − qj‖2 ≤ ds

0, otherwise
(5)
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Fig. 5. Classification result of large-size markings.

Fig. 6. (a) Jointly trained DBM model and (b) fine-tuned multilayer classifier.

and 3) centerlines are usually located between two boundary
lines and farther away from the curb-lines than the boundary
lines; therefore, centerlines and boundary lines can be easily
distinguished based on the curb-lines.

For each large-size marking, we uniformly sample NL points
and compute their distribution features. If the percentage of the
sampling points, whose distribution features are orthographic to
the direction of the trajectory, lies above 95%, this marking is
classified as stop line. If the percentage of the sampling points,
whose distribution features are along the direction of the trajec-
tory and shortest distances to the left and right curb-lines are
below dL, lies above 95%, this marking is classified as bound-
ary line. Otherwise, if the percentage of the sampling points,
whose distribution features are along the direction of the trajec-
tory and shortest distances to the left and right curb-lines exceed
dL, lies above 95%, this marking is classified as centerline.
Fig. 5 shows the classification result for large-size markings.

D. Small-Size Marking Classification

Recently, deep learning models [11]–[13] have been attrac-
tive for their high performance in learning hierarchical features
from high-dimensional unlabelled data. By learning multilevel
feature representations, deep learning models have been proved
to be an effective tool for rapid object-oriented classification
problems. Deep Boltzmann Machines (DBMs) [13], [14] have
been an important breakthrough in the requirement for pow-
erful deep learning models. A DBM is a layer-wise extension
of the Restricted Boltzmann Machines (RBMs) [15], [16] with
multiple hidden layers.

To efficiently classify small-size markings, we first jointly
learn a two-layer DBM [see Fig. 6(a)] using a set of manu-
ally selected and labeled training samples. Let v be a vector
of binary visible units that represent a road marking image;
let y be a binary label vector that contains just one 1; and let

h1 and h2 be the lower and higher layer binary hidden units,
respectively. Since only four types of small-size markings
are considered: rectangular-shaped marking, pedestrian warn-
ing marking, arrow marking, and other markings, y can only
take the values of [1, 0, 0, 0]T , [0, 1, 0, 0]T , [0, 0, 1, 0]T , and
[0, 0, 0, 1]T . The energy of the state {v,y,h1,h2} is

E(v,y,h1,h2; θ)=−vTW1h1−(h1)TW2h2− yTWLh2

(8)

where θ = {W1,W2,WL} are the model parameters. W1,
W2, and WL represent visible-to-hidden, hidden-to-hidden,
and label-to-hidden symmetric interaction terms, respectively.
The probability that the model assigns to a vector v with a
label y is

P (v,y; θ) =
1

Z(θ)

∑
h1

∑
h2

exp(−E(v,y,h1,h2; θ)) (9)

where Z(θ) =
∑
v

∑
y

∑
h1

∑
h2

exp(−E(v,y,h1,h2; θ)) is the

partition function [13]. The conditional distributions over the
visible, label, and two sets of hidden units are

p(h1
j = 1|v,h2) = g

(∑
i

W 1
ijvi +

∑
m

W 2
jmh2

m

)
(10)

p(h2
m = 1|h1,y) = g

(∑
j

W 2
jmh1

j +
∑
k

WL
kmyk

)
(11)

p(vi = 1|h1) = g

(∑
j

W 1
ijh

1
j

)
(12)

p(yk|h2) =
exp

(∑
m

WL
kmh2

m

)

∑
s

exp

(∑
m

WL
smh2

m

) (13)

where g(x) = 1/(1 + exp(−x)) is the logistic function [14].
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Fig. 7. Small-size marking classification result.

Fig. 8. Two arrangement modes: (a) side-by-side and (b) end-to-end.

Exact maximum likelihood learning in this joint DBM model
is intractable. To effectively learn this model, a greedy layer-
wise pre-training [17] is carried out to initialize the model
parameters θ. Then, a joint learning algorithm that uses varia-
tional and stochastic approximation approaches [14] is adopted
to jointly learn the model parameters.

After the joint DBM model is learned, the stochastic activ-
ities of the binary features in each hidden layer are replaced
by deterministic, real-valued probabilities to construct a multi-
layer classifier [see Fig. 6(b)]. For each input v, the mean-field
inference [13] is used to obtain an approximate posterior dis-
tribution Q(h2|v). The marginal q(h2

m = 1|v) of this approxi-
mate posterior, together with the input data, are used to create
an augmented input for this multilayer classifier. Then, standard
back-propagation of error derivatives [13] is carried out to fine-
tune the multilayer classifier. The output y of the multilayer
classifier is computed as follows:

(h2)T = g(g(vTW1 +Q(h2|v)T (W2)T )W2) (14)

yk =
exp(

∑
m

h2
mW 3

mk)

4∑
s=1

exp(
∑
m

h2
mW 3

ms)

, k = 1, 2, 3, 4. (15)

Then, the class label L∗ is determined by

L∗ = argmax
k

yk. (16)

In order to classify the small-size markings using the multi-
layer classifier, we first rasterize each of the small-size mark-
ings into a 2-D binary image with a size of n× n. Here, n× n
equals to the dimension of v. Then, the binary image is used
as the input to the multilayer classifier. The output y of the

multilayer classifier determines the type of this road marking.
That is, the values of [1, 0, 0, 0]T , [0, 1, 0, 0]T , [0, 0, 1, 0]T , and
[0, 0, 0, 1]T , respectively, indicate rectangular-shaped mark-
ing, pedestrian warning marking, arrow marking, and other
markings. Fig. 7 shows the classification result of small-size
markings.

E. Rectangular-Shaped Marking Classification

As shown in Fig. 7, the rectangular-shaped markings contain
several types of road markings such as zebra crossing, dashed
centerline, and dashed boundary line. To further classify the
rectangular-shaped markings, we develop a PCA-based method
for judging the arrangement mode of the rectangular-shaped
markings. Basically, as shown in Fig. 8, there are two kinds of
arrangement modes: side-by-side and end-to-end. Zebra cross-
ing follows the side-by-side mode, whereas dashed centerline
and boundary line follow the end-to-end mode.

For a rectangular-shaped marking P , we first calculate the
coordinates of its centroid on the XY plane as follows:

p =
1

NP

NP∑
i=1

pXY
i , pi ∈ P (17)

where NP is the number of points in marking P and pXY
i

denotes the coordinates of point pi on the XY plane. Then, a
covariance matrix is computed for p as follows:

Cp =
1

NP

NP∑
i=1

(
pXY
i − p

) · (pXY
i − p

)T
, pi ∈ P. (18)

Through eigenvalue decomposition on Cp, the eigenvec-
tor associated with the largest eigenvalue is selected as the
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Fig. 9. Road marking classification result.

Fig. 10. Profiles of (a) SRS dataset; (b) ICEC dataset; (c) YWB dataset; and (d) YDT dataset.

distribution feature of marking P . Denote it as vp. vp actu-
ally describes the orientation of the rectangular-shaped mark-
ing P . To judge the arrangement mode of marking P , we first
apply the side-by-side model by searching a rectangular region
of width wside along both sides of marking P [see Fig. 8(a)].
If a rectangular-shaped marking Q, whose centroid on the XY
plane is q and distribution feature is vq , is obtained within the
searching region and the following criterion meets, marking P
is labeled as zebra crossing

(vp // vq) ∧ (vp ⊥ vpq) ∧ (vq ⊥ vpq) ⇒ side-by-side mode

(19)

where vpq denotes the direction vector starting at point p and
ending at point q. The criterion in (19) defines the following
three constraints to judge the side-by-side arrangement mode:
1) vp is parallel to vq; 2) vp is perpendicular to vpq; and
3) vq is perpendicular to vpq . Otherwise, the end-to-end model
is applied by searching a rectangular region of width wend

along both ends of marking P [see Fig. 8(b)]. If a rectangular-
shaped marking Q, whose centroid on the XY plane is q and

TABLE I
DESCRIPTIONS OF THE FOUR MOBILE LIDAR DATASETS

distribution feature is vq , is obtained within the searching region
and the following criterion meets:

(vp // vq) ∧ (vp // vpq) ∧ (vq // vpq) ⇒ end-to-end mode
(20)

marking P is further judged by the trajectory-curb-line-based
method mentioned in Section III-C to distinguish centerlines
from boundary lines. The criterion in (20) defines the following
three constraints to judge the end-to-end arrangement mode:
1) vp is parallel to vq; 2) vp is parallel to vpq; and 3) vq is
parallel to vpq . When handling curved roads, the parallel and
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Fig. 11. Illustration of testing different configurations of ρSD on the results of noise removal. Row 1: raw point clouds. Row 2: extracted road marking points
after multisegment thresholding. Rows 3–9: noise removal results through spatial density filtering with ρSD = 5, 6, 7, 8, 9, 10, and 11, respectively.

perpendicular criteria in (19) and (20) are relaxed to have an
angle deviation of 5◦. The final classification result is shown in
Fig. 9.

IV. RESULTS AND DISCUSSION

A. RIEGL VMX-450 and Mobile LiDAR Datasets

The mobile LiDAR point cloud data used in this study were
acquired using a RIEGL VMX-450 mobile LiDAR system
in Xiamen, China. The VMX-450 system is integrated with
two full-view VQ-450 laser scanners, four high-resolution dig-
ital cameras, an IMU, two global navigation satellite system
(GNSS) antennas, and a wheel-mounted distance measurement
indicator (DMI). The two VQ-450 laser scanners are config-
ured with an “X” pattern for providing more coverage of the
measured targets and reach a maximum range of 800 m. The
mapping vehicle was driving at an average speed of 50 km/h

while collecting data (point cloud, images, and trajectory). The
accuracy of the scanned point cloud data is within 8 mm with a
maximum effective measurement rate of 1.1 million measure-
ments per second, and a line scan speed of up to 400 scans per
second.

Fig. 10 and Table I present the four point cloud datasets,
selected and used in this study, which cover the segments
of 1) Siming Road South (SRS); 2) International Conference
and Exhibition Center (ICEC); 3) Yanwu Bridge (YWB); and
4) Yunding Tunnel (YDT).

B. Parameter Sensitivity Analysis

The spatial density threshold ρSD for removing noise is
very dependent on the characteristics of the point cloud data
being used. Basically, different mobile LiDAR systems gener-
ate different maximum effective measurement rates and differ-
ent line scan speeds. Therefore, the resultant point cloud data
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Fig. 12. Extracted road markings using different thresholding methods.

Fig. 13. (a) Architecture of the joint DBM; (b) and (c) subsets of training samples.

Fig. 14. (a) First-layer DBM features; (b) second-layer DBM features; (c) class-specific features; and (d) samples generated from the two-layer DBM by running
the Gibbs sampler for 10 000 steps.

TABLE II
PARAMETER CONFIGURATIONS IN ROAD MARKING EXTRACTION

AND CLASSIFICATION

are of different point densities. Moreover, the driving speed
of the mapping vehicle also results in point density variations.
In this section, to ascertain an optimal configuration for ρSD,
we tested a set of parameter configurations on noise removal.
The testing results are shown in Fig. 11. As seen from the
noise removal results, when ρSD is smaller than 8, noise are
not well suppressed. However, when ρSD is greater than 8,
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Fig. 15. (a)–(f) Road marking extraction and classification results on six road sections of the SRS dataset. Different colors represent different marking types.

some marking points are falsely regarded as noise and removed,
especially at the corners and on the borders of the road mark-
ings, where the point densities are lower than those of the

internal road marking points. Thus, to simultaneously suppress
noise and preserve the completeness of road markings, we set
ρSD = 8 in our experiments.
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Fig. 16. (a)–(d) Road marking extraction and classification results on four road sections of the ICEC dataset. Different colors represent different marking types.

C. Multisegment Thresholding

To test the performance of our proposed multisegment
thresholding method, we compared it with other well-known
thresholding methods: Otsu method [9] and Kapur method
[18]. As shown in the first row in Fig. 12, five road surface
point clouds with different types of road markings were
selected for comparing the performances of these methods. For
both Otsu and Kapur methods, a globally optimal threshold
that well separates the foreground from the background was

determined for binarization. For our multisegment thresholding
method, the point cloud was first partitioned into several
segments according to the trajectory. Then, these segments
were thresholded locally and separately. To further test the
performance of a global threshold for separating road markings
from the background road surface, a global threshold was
manually selected for each point cloud to extract road markings
with more details and less noise. The road marking extraction
results are shown in the second row to the last row. As seen
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Fig. 17. (a)–(f) Road marking extraction and classification results on six road sections of the YWB dataset. Different colors represent different marking types.

from the extraction results, multisegment thresholding method
extracts road markings more accurately and completely and
generates less noise; whereas, by using the other three methods,

the road markings are extracted incompletely or even missing,
and a great portion of noise exhibits on one side of the point
clouds. Therefore, the proposed multisegment thresholding
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Fig. 18. (a)–(f) Road marking extraction and classification results on six road sections of the YDT dataset. Different colors represent different marking types.
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TABLE III
COMPUTING TIME IN SECONDS FOR ROAD SEGMENTATION, ROAD MARKING EXTRACTION, AND CLASSIFICATION

Fig. 19. Point cloud samples for quantitatively evaluating the performance of road marking extraction.

method outperforms the other three methods in completely and
correctly extracting road markings.

D. Deep Learning

In order to effectively classify small-size markings, we
jointly learnt a two-layer DBM [see Fig. 13(a)]. The visible
input is a 30× 30 pixels image, the first and second hidden
layers contain 500 and 1000 units, respectively. Since we only
consider four types of road markings including rectangular-
shaped marking, pedestrian warning marking, arrow marking,
and other markings, the label layer contains 4 units with “1-of-
K” encoding [14]. Fig. 13(b) and (c) shows two subsets of train-
ing samples. After the joint DBM was learnt, we fine-tuned it to
construct a three-layer classifier for small-size marking classifi-
cation [see Fig. 6(b)]. Fig. 14(a) and (b) presents the learnt first-
layer and second-layer features of the joint DBM, and Fig. 14(c)
shows the class-specific features of the three-layer classifier.

To test the learning capability of the two-layer joint DBM on
the labeled training samples, we fixed the label units with a spe-
cific class and randomly initialized the binary units in each layer
of the DBM, and then run the Gibbs sampler according to (10),
(11), and (12) for 10 000 steps. The probabilities of the binary
visible units were used to construct a 30× 30 pixels image. The
randomly generated samples are shown in Fig. 14(d). Compar-
ing the randomly generated samples with the training samples,
we conclude that the two-layer joint DBM has a very good
capability of learning salient and meaningful features from the
labeled training samples.

E. Road Marking Extraction and Classification

The four datasets (SRS, ICEC, YWB, and YDT) men-
tioned in Section IV-A were used to examine the performance
of the proposed road marking extraction and classification

TABLE IV
QUANTITATIVE EVALUATION RESULTS

method. The parameters and their configurations are listed in
Table II. Most of these parameters are determined based on
prior knowledge or selected through a set of tests. Such con-
figurations can provide good extraction and classification per-
formance of 3-D road markings. These four datasets were first
preprocessed to segment road surface point clouds from the
raw mobile LiDAR point clouds using our previously devel-
oped curb-based approach [4]. Then, road marking points were
extracted directly from the road surface point clouds through
multisegment thresholding and spatial density filtering. Finally,
the extracted road markings were further classified into seven
marking types including stop line, centerline, boundary line,
arrow marking, pedestrian warning marking, zebra crossing,
and other markings. The road marking extraction and classi-
fication results of these four datasets are shown in Figs. 15–18,
respectively.

As seen from the extraction results of these four datasets,
road markings are basically completely and accurately
extracted. However, since the road markings have been painted
on the road surfaces for a long time, some parts have been
worn by the moving vehicles and pedestrians, thereby resulting
in incompleteness of road markings. Therefore, some of the
road markings are incomplete in the extraction results in these
four datasets. This is shown by the red rectangles #3 in Fig. 16,
#1 and #3 in Fig. 17, and #3 in Fig. 18. In addition, caused
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Fig. 20. Extracted road markings from Marking 1 dataset. (a) Road surface point cloud, extracted road markings using (b) Guan’s method; (c) Chen’s method;
(d) our proposed method; and (e) manually labeled reference data.

by the occlusions of moving vehicles while acquiring mobile
LiDAR point cloud data, laser beams cannot reach the shadows
of the obstacles, thereby resulting in data incompleteness. This
is another cause of the incompleteness of road markings in
the extraction results, as shown by the red rectangles #1 in
Fig. 16, #2 in Fig. 17, and #1 and #2 in Fig. 18. As a whole, the
proposed road marking extraction method performs very well
in extracting road markings directly from 3-D mobile LiDAR
point clouds.

As seen from the road marking classification results of these
four datasets, road markings are basically correctly classified
into their corresponding types. However, at some road sections
with zebra crossings, the strips of the zebra crossing near to
the road curbs are often painted overlapped with the boundary
lines, as shown by the red rectangle #1 in Fig. 15. Our voxel-
based normalized cut segmentation method can effectively seg-
ment the stop line from the boundary line; however, it failed
to segment such zebra crossing strips from the boundary lines.
Therefore, some of the zebra crossing strips overlapped with the
boundary lines were falsely classified as boundary lines. This is
shown by the red rectangles #1 and #2 in Fig. 15, and #2 in

Fig. 16. On the whole, the proposed road marking classification
method can effectively classify both large-size and small-size
road markings.

F. Time Complexity Analysis and Quantitative Evaluation

The proposed road marking extraction and classification
method was implemented using C++ running on an Intel (R)
Core (TM) i5-3470 computer. The computing time in each pro-
cessing step was recorded for analyzing the time complexity of
our proposed method. Table III lists the computing time of road
surface segmentation, road marking extraction, and road mark-
ing classification for the four datasets. As seen from Table III,
road marking classification takes more computing time than
road marking extraction. The time complexity of our proposed
method is quite low. This is benefited from the road surface seg-
mentation step, which dramatically reduces the quantity of the
point cloud data to be processed. Take the YWB dataset with
about 69 million points and a length of 1510 m in the road
direction as an example. Our proposed method took 36.24 s
to segment the road surface point cloud from the raw mobile
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Fig. 21. Extracted road markings from Marking 2 dataset. (a) Road surface point cloud, extracted road markings using (b) Guan’s method; (c) Chen’s method;
(d) our proposed method; and (e) manually labeling method.

LiDAR point cloud, 48.88 s to extract road markings from the
segmented road surface point cloud, and 53.06 s to classify the
extracted road markings into specific types. The total comput-
ing time for the YWB dataset is only 138.18 s. Therefore, our
road marking extraction and classification method is capable
of rapidly processing large volumes of mobile LiDAR point
clouds.

A set of road surface point clouds was selected to quantita-
tively evaluate the performance of our road marking extraction
method. After road markings were extracted, we rasterized
both the road surface point clouds and the extraction results
into 2-D geo-referenced feature images using the rasterization
method in [4]. The rasterized road surface point clouds and
the extraction results are shown in the first and second rows
in Fig. 19, respectively. The manually labeled reference data
based on the geo-referenced feature images in the first row
are shown in the last row. To quantitatively evaluate the
road marking extraction results, we used the following three
measures: completeness, correctness, and F-measure [4]. These
three measures are defined as follows:

Completeness = TP
TP + FN (21)

Correctness = TP
TP + FP (22)

F −measure = 2 × Completeness × Correctness
Completeness + Correctness (23)

where TP , FN , and FP are the numbers of true positives,
false negatives, and false positives, respectively. As shown by

the quantitative evaluations in Table IV, our proposed road
marking extraction method achieves an average completeness,
correctness, and F-measure of 0.93, 0.92, and 0.93, respec-
tively, on the selected samples. Therefore, our road marking
extraction method obtains high performance and extracts road
markings with little commission and omission errors.

G. Comparative Study

A comparative study was conducted to compare our pro-
posed road marking extraction method with two recently pub-
lished methods: Guan’s method [4] and Chen’s method [8].
Guan’s method uses 2-D geo-referenced feature imagery gener-
ated from 3-D mobile LiDAR point clouds to extract road mark-
ings, whereas Chen’s and our proposed methods extract road
markings directly from 3-D point clouds. The road surface point
clouds selected for the comparative study and the road marking
extraction results using different methods are shown in Figs. 20
and 21, respectively. Chen’s method focuses only on the lane
markings along the direction of the trajectory, whereas Guan’s
and our proposed methods can extract any types of road mark-
ings. However, our proposed method can extract road markings
more completely and accurately than Guan’s method. To fur-
ther quantitatively evaluate the road marking extraction results
obtained using different methods, the three measures includ-
ing completeness, correctness, and F-measure were computed
based on the manually labeled reference data [see Figs. 20(e)
and 21(e)]. The quantitative evaluation results are listed in
Table V. Comparatively, our proposed method outperforms the
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TABLE V
QUANTITATIVE EVALUATION RESULTS OF DIFFERENT METHODS

other two methods in completely and accurately extracting road
markings from mobile LiDAR point clouds.

V. CONCLUSION

Extracting road markings directly from 3-D mobile LiDAR
point clouds is a very challenging task. Most of the existing
methods simplified such a task by converting 3-D point clouds
into 2-D geo-referenced feature images. However, such a con-
version may lead to incompleteness and incorrectness in feature
extraction. In this paper, we have proposed a rapid and effective
method for extracting and classifying road markings directly
from 3-D mobile LiDAR point clouds. The proposed method
has been applied to four mobile LiDAR point cloud datasets
acquired by a RIEGL VMX-450 system. Time complexity anal-
ysis showed that the proposed method can handle large volumes
of mobile LiDAR point clouds in a short time. Through quan-
titative evaluation, the proposed method achieved an average
completeness, correctness, and F-measure of 0.93, 0.92, and
0.93, respectively. Moreover, comparative studies demonstrated
that the proposed method outperforms the other two methods
and extracts road markings more accurately and completely
with less commission and omission errors. In addition, instead
of processing the 2-D geo-referenced feature imagery, the pro-
posed method extracts road markings directly from 3-D mobile
LiDAR point clouds. Therefore, the geospatial information of
the road markings is preserved and can be used in other appli-
cations. However, the limitation of the proposed method exists
in the classification of dashed centerlines and dashed bound-
ary lines when handling curved roads. As an alternative solu-
tion, the side-by-side and end-to-end arrangement modes can
be relaxed to have an angle deviation to improve the classifica-
tion performance.

ACKNOWLEDGMENT

The authors would like to acknowledge the anonymous
reviewers for their valuable comments.

REFERENCES

[1] R. Gopalan, T. Hong, M. Shneier, and R. Chellappa, “A learning approach
towards detection and tracking of lane markings,” IEEE Trans. Intell.
Transp. Syst., vol. 13, no. 3, pp. 1088–1098, Sep. 2012.

[2] O. Tournaire and N. Paparoditis, “A geometric stochastic approach based
on marked point processes for road mark detection from high resolu-
tion aerial images,” ISPRS J. Photogramm. Remote Sens., vol. 64, no. 6,
pp. 621–631, Nov. 2009.

[3] B. Yang, L. Fang, Q. Li, and J. Li, “Automated extraction of road mark-
ings from mobile LiDAR point clouds,” Photogramm. Eng. Remote Sens.,
vol. 78, no. 4, pp. 331–338, Apr. 2012.

[4] H. Guan et al., “Using mobile laser scanning data for automated extrac-
tion of road markings,” ISPRS J. Photogramm. Remote Sens., vol. 87,
pp. 93–107, Jan. 2014.

[5] M. Thuy and F. P. León, “Lane detection and tracking based on LiDAR
data,” Metrol. Meas. Syst., vol. 17, no. 3, pp. 311–321, Dec. 2010.

[6] A. Mancini, E. Frontoni, and P. Zingaretti, “Automatic road object
extraction from mobile mapping systems,” in Proc. IEEE/ASME Int.
Conf. Mechatron. Embedded Syst. Appl., Suzhou, China, Jul. 2012,
pp. 281–286.

[7] P. Lindner, E. Richter, G. Wanielik, K. Takagi, and A. Isogai, “Multi-
channel LiDAR processing for lane detection and estimation,” in Proc.
Int. IEEE Conf. Intell. Transp. Syst., St. Louis, MO, USA, Oct. 2009,
pp. 1–6.

[8] X. Chen et al., “Next generation map making: Geo-referenced ground-
level LiDAR point clouds for automatic retro-reflective road feature
extraction,” in Proc. ACM SIGSPATIAL Int. Conf. Adv. Geogr. Inf. Syst.,
Seattle, WA, USA, Nov. 2009, pp. 488–491.

[9] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Syst. Man Cybern., vol. 9, no. 1, pp. 62–66, Jan. 1979.

[10] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, Aug. 2000.

[11] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, Jul.
2006.

[12] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep
belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, Jul. 2006.

[13] R. Salakhutdinov and G. Hinton, “An efficient learning procedure for
deep Boltzmann machines,” Neural Comput., vol. 24, no. 8, pp. 1967–
2006, Aug. 2012.

[14] R. Salakhutdinov, J. B. Tenenbaum, and A. Torralba, “Learning with
hierarchical-deep models,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1958–1971, Aug. 2013.

[15] T. Tieleman, “Training restricted Boltzmann machines using approxima-
tions to the likelihood gradient,” in Proc. 25th Int. Conf. Mach. Learn.,
Helsinki, Finland, Jul. 2008, pp. 1064–1071.

[16] H. Larochelle and Y. Bengio, “Classification using discriminative
restricted Boltzmann machines,” in Proc. 25th Int. Conf. Mach. Learn.,
Helsinki, Finland, Jul. 2008, pp. 536–543.

[17] R. Salakhutdinov and G. Hinton, “Deep Boltzmann machines,” in Proc.
12th Int. Conf. Artif. Intell. Statist., Clearwater, FL, USA, Apr. 2009,
vol. 12, pp. 448–455.

[18] J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, “A new method for gray-
level picture thresholding using the entropy of the histogram,” Comput.
Vision Graph. Image Process., vol. 29, no. 3, pp. 273–285, Mar. 1985.

Yongtao Yu received the B.S. degree in computer
science and technology from Xiamen University,
Xiamen, China, in 2010. He is currently pursuing
the Ph.D. degree in computer science and technol-
ogy at the Department of Computer Science, Xiamen
University.

His research interests include computer vision,
machine learning, mobile laser scanning, and infor-
mation extraction from 3-D point clouds.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Jonathan Li (M’00–SM’11) received the Ph.D.
degree in geomatics engineering from the University
of Cape Town, Cape Town, South Africa, in 2000.

He is currently with the Key Laboratory of
Underwater Acoustic Communication and Marine
Information Technology (MOE) and the School of
Information Science and Engineering, Xiamen Uni-
versity, Xiamen, China. He is also heading the
Laboratory for Geo-spatial Technology and Remote
Sensing, Faculty of Environment, University of
Waterloo, Waterloo, ON, Canada, where he is a Pro-

fessor and an Elected Member of the University Senate, Nashville, TN, USA.
He has coauthored more than 200 publications, over 60 of which were pub-
lished in refereed journals. His research interests include information extrac-
tion from earth observation images and 3-D surface reconstruction from mobile
laser scanning point clouds.

Dr. Li is the Chair of the Inter-Commission Working Group I/Va on Mobile
Scanning and Imaging Systems of the International Society for Photogramme-
try and Remote Sensing (2012–2016), the Vice Chair of the Commission on
Hydrography of the International Federation of Surveyors (2011–2014), and
the Vice Chair of the Commission on Mapping from Remote Sensor Imagery
of the International Cartographic Association (2011–2015).

Haiyan Guan received the Ph.D. degree in geomat-
ics from the University of Waterloo, Waterloo, ON,
Canada, in 2014.

She is currently a Senior Research Fellow with the
Department of Geography and Environmental Man-
agement, University of Waterloo. She has coauthored
more than 30 research papers published in refereed
journals, books, and proceedings. Her research inter-
ests include airborne, terrestrial, and mobile laser
scanning data processing algorithms and 3-D spatial
modeling and reconstruction of critical infrastructure

and landscape.

Fukai Jia received the B.S. degree in computer sci-
ence and technology from Ocean University of China,
Qingdao, China, in 2012. He is currently pursuing the
M.S. degree in computer science and technology at
the Department of Computer Science, Xiamen Uni-
versity, Xiamen, China.

His research interests include mobile laser scan-
ning point cloud processing, and 3-D object detec-
tion and recognition from mobile laser scanning point
clouds.

Cheng Wang (M’12) received the Ph.D. degree
in information communication engineering from the
National University of Defense Technology, Chang-
sha, China, in 2002.

He is a Professor and Vice Dean of the School of
Information Science and Engineering, Xiamen Uni-
versity, Xiamen, China. He has coauthored more than
80 papers. His research interests include remote sens-
ing image processing, mobile laser scanning data
analysis, and multisensor fusion.

Dr. Wang is the Co-Chair of the ISPRS WG I/3,
council member of the Chinese Society of Image and Graphics (CSIG), and
member of SPIE.


