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Line segment detection in images is already a well-investigated topic, although it has received consider-
ably less attention in 3D point clouds. Benefiting from current LiDAR devices, large-scale point clouds are
becoming increasingly common. Most human-made objects have flat surfaces. Line segments that occur
where pairs of planes intersect give important information regarding the geometric content of point
clouds, which is especially useful for automatic building reconstruction and segmentation. This paper
proposes a novel method that is capable of accurately extracting plane intersection line segments from
large-scale raw scan points. The 3D line-support region, namely, a point set near a straight linear struc-
ture, is extracted simultaneously. The 3D line-support region is fitted by our Line-Segment-Half-Planes
(LSHP) structure, which provides a geometric constraint for a line segment, making the line segment
more reliable and accurate. We demonstrate our method on the point clouds of large-scale, complex,
real-world scenes acquired by LiDAR devices. We also demonstrate the application of 3D line-support
regions and their LSHP structures on urban scene abstraction.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Benefiting from the advances in sensor technology for both air-
borne and ground-based mobile laser scanning, dense points
clouds have become increasingly common, and the need for new
approaches to address these point clouds has become increasingly
important. As the common feature in man-made objects, straight
linear structures play an important role in a variety of applications,
such as: road extraction (Yang et al., 2013); building outline
extraction (Baillard et al., 1999); localization (Borges et al., 2010),
city model building (Lafarge and Mallet, 2012); calibration
(Moghadam et al., 2013); line-based visualization (Chen and
Wang, 2011); and more. This paper emphasizes straight line seg-
ment extraction for point clouds, whereas most of the existing
work concentrates on 2D line segment detection in a single image
(Ballard, 1981; Burns et al., 1986; Von Gioi et al., 2010) and 3D line
segment reconstruction in multi-view images (Baillard et al., 1999;
Woo et al., 2009; Jain et al., 2010). Only a few papers consider point
clouds (Lu et al., 2008; Moghadam et al., 2013).

A large number of dense point clouds have been obtained by
current scanners; the RIEGL VMX-450 scanner, for example, can
yield 1.1 million range measurements per second. Therefore, one
of the biggest challenges is to find an efficient way to address
the voluminous data. Unorganized point clouds lack normal vector
and connectivity information, making the problem even more
challenging.

Our method is designed to cope with line segment extraction
for large-scale unorganized point clouds from the real word. A line
segment here is defined as the intersection of two half-planes. To
extract the line segment, we take into account the point region
that is near the straight linear structure. Such a region is designat-
ed as a ‘‘3D line-support region.’’ The word ‘‘3D’’ is used to distin-
guish the region from the concept of a ‘‘line-support region,’’ which
has proved to be a robust descriptor to extract line segments in
images.

The key idea of our method is to first convert a point cloud into
a collection of shaded images by non-photorealistic rendering with
different viewpoints; then the LSD algorithm (Von Gioi et al., 2010)
is applied to these images to extract the 2D line-support regions.
These 2D line-support regions are then back-projected into the
original point cloud as 3D line-support regions, with each region
containing roughly one line segment. Next, to maintain accuracy,
each 3D line-support region is fitted by our Line-Segment-Half-
Planes (LSHP) structure. Finally, the 3D line-support regions and
their LSHP structures are refined as the output.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2014.12.027&domain=pdf
http://dx.doi.org/10.1016/j.isprsjprs.2014.12.027
mailto:cwang@xmu.edu.cn
http://dx.doi.org/10.1016/j.isprsjprs.2014.12.027
http://www.sciencedirect.com/science/journal/09242716
http://www.elsevier.com/locate/isprsjprs


(a) 3D raw scan point cloud (rendered by
ambient occlusion).

(b) Extracted 3D line segments with at-
tached half-planes.

Fig. 1. Given an unorganized 3D raw scan point cloud (a), our method is able to extract line segments together with attached half-planes (b), where the line segments are
drawn in black color and their attached half-planes are represented by colored 3D rectangles. (a) 3D raw scan point cloud (rendered by ambient occlusion). (b) Extracted 3D
line segments with attached half-planes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Length

Width2

Angle

Line segment

Width1

Fig. 2. Line-Segment-Half-Planes (LSHP) structure is characterized by two tangen-
tial 3D rectangles.
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Fig. 1 presents a result of our method. Given an unorganized 3D
raw scan point cloud as the input (Fig. 1(a)), our method extracts
the 3D line-support region and LSHP structures as the output,
where the line segments are drawn in black and the attached
half-planes are represented by colored 3D rectangles (Fig. 1(b)).
As a result, the LSHP structure provides an abstraction of a point
cloud, and the vegetation in the input is filtered.
2. Related work

2.1. 2D line segment detection for a single image

Image line segment detection has been studied over several
decades. The traditional methods combine the Canny edge detector
(Canny, 1986) and Hough transform (Ballard, 1981). These
(a) (b) (c)

Fig. 3. Example of 3D line-support region and its Line-Segment-Half-Planes (LSHP)
structure. (a) Raw scan point cloud. (b) One of the 3D line-support region. (c) The
reconstructed LSHP structure of the 3D line-support region in (b).
methods are generally slow and produce a significant number of
false detections. Recently, an efficient line segment detector with
false detection control (designated LSD) was presented by Von
Gioi et al. (2010). LSD follows the method proposed by Burns
et al. (1986). First, the image is partitioned into a collection of
straight image regions, named line-support regions; the gradient
angles of pixels in each region are roughly oriented along the same
direction. Then, a line segment, that best approximates each line-
support region, is determined. Finally, a line segment validation,
based on the approach of Desolneux et al. (2000) is adopted to
control the number of false detections.
2.2. 3D line segment reconstruction from multi-view images

Numerous papers on 3D line segment reconstruction for multi-
view images have been published in recent years. Taylor and
Kriegman (1995) presented a reconstruction algorithm that works
by minimizing an objective function that is defined as the total
squared distance between the observed edge segments from the
image and the projections of the reconstructed lines. Baillard
et al. (1999) found the correspondence between lines over stereo
images by epipolar geometry and cross correlation scores. Then
the attached half-planes are computed for piecewise planar recon-
struction of the 3D model. Heuel and Forstner (2001) combined
projective geometry and a statistical hypotheses test to reconstruct
the 3D line segments. Martinec and Pajdla (2003) reconstructed
lines by factoring a matrix containing line correspondences. Jain
et al. (2010) used connectivity constraints to reconstruct the line
segments from different stereo images independently; the partial
reconstructions are then merged into a global result. Chen and
Wang (2011) first detected 2D line segments from photos and gen-
erated a 3D point cloud by the Structure From Motion (SFM) meth-
ods (Snavely et al., 2006). Then, the 3D lines are reconstructed by
applying the weak matching method both on 2D photos and a
3D point cloud. The false 3D line segments are filtered via a
plane-clustering algorithm. Ceylan et al. (2012) generated 3D lines
from image-level edges of urban buildings and then used these
lines to simultaneously detect symmetric line arrangements while
refining the 3D building model.

Most of the above algorithms use line matching to reconstruct
3D lines. Generally speaking, line matching is a difficult task due
to its lacks of geometric constraints. In contrast, via our approach,
the images are generated from a point cloud. Because depth infor-
mation is already known, our approach does not need to apply line
matching between multiple images.
2.3. Line segment detection for 3D point clouds

Few papers concentrate on line segment detection for 3D point
clouds. Lu et al. (2008) combined the RANdom SAmple Consensus
(RANSAC) method and Mahalanobis distance to detect 3D lines.
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Borges et al. (2010) proposed an approach for extracting plane
intersection lines and depth discontinuity lines from a laser point
cloud. To extract plane intersection lines or depth discontinuity
lines, their method first classifies the planar points or potential
edge points by analyzing the eigenvalues of the covariance matrix
that are defined by each point’s k-nearest neighbors. Then a region
growing procedure iteratively merges planar points or potential
edge points into clusters according to the similarity of their nor-
mals or line directions. Moghadam et al. (2013) used the same
method to extract the plane intersection lines.

However, the results of the method in Lu et al. (2008) are unsat-
isfactory, because only a few line segments are extracted. Alter-
nately, plane-based methods, such as those of Borges et al.
(2010) and Moghadam et al. (2013), have the following drawbacks:
(1) It is difficult to determine the boundary of the planes. (2) The
task to fit the small and narrow plane is difficult. With a noisy
point cloud, the task becomes even more difficult. (3) Moreover,
when the data become complex, this type of method may generate
unexpected lines at the non-planar surfaces.

Another possible approach is to first extract the sharp features
along linear structures; then group them into lines. For details
about methods for sharp feature extraction, see Daniels et al.
(2007), Weber et al. (2010), and Altantsetseg et al. (2013). Howev-
er, methods for sharp feature extraction are not robust to noise,
because the regions with sharp features and noisy areas have
similarly high surface gradients, which are difficult to distinguish.
Additionally, it is difficult to design a line-grouping algorithm in 3D
space.
1 For interpretation of color in Figs. 4 and 8, the reader is referred to the web
ersion of this article.
3. Overview

This section first introduces the concepts of 3D line-support
regions and Line-Segment-Half-Planes (LSHP) structures, and then
provides an overview of our approach.

3.1. 3D line-support regions and Line-Segment-Half-Planes (LSHP)
structures

For line segment detection in images, Burns et al. (1986) first
introduced the term ‘‘line-support region,’’ which is defined as a
straight region in 2D image space whose pixels share a similar gra-
dient angle. The line-support region has proved to be a robust
descriptor to extract line segments in images.

In the context of a point cloud, we define a 3D line-support
region as the point set nearest the intersection of two planes,
and propose a Line-Segment-Half-Planes (LSHP) structure to fit
the 3D line-support region. As illustrated in Fig. 2, the LSHP of a
3D line-support region is characterized by a pair of tangential 3D
rectangles. Each rectangle is described by the following para-
meters: width, length, normal vector and position. A line segment
is obtained by computing the intersection of two rectangles. The
LSHP structure modeling procedure is given in Section 5.

An example of a 3D line-support region and its Line-Segment-
Half-Planes structure is shown in Fig. 3.

3.2. Framework

As shown in Fig. 4, there are three steps to our framework, as
follows:

3.2.1. 3D line-support region extraction
Given an unorganized point cloud, P, as input (Fig. 4(a)), P is

projected into a collection of shaded images (Fig. 4(b)). Evenly dis-
tributed viewpoints are generated on a sphere surrounding P. For
each viewpoint, P is projected onto a shaded image (Fig. 4(b)).
Then, the LSD algorithm (Von Gioi et al., 2010) is applied to extract
the 2D line-support regions (the red1 rectangles in Fig. 4(c)). These
extracted 2D line-support regions are then back-projected into the
original point cloud as the 3D line-support regions.

3.2.2. LSHP modeling
For each 3D line-support region, we first project the region onto

a plane along its principal axis. Then, we employ a method based
on dynamic programming to find the ‘‘V’’ shapes in 2D space. Such
a ‘‘V’’ shape is fitted by the LSHP structure to validate the 3D
line-support region and maintain the accuracy of the line segment.
The result of the LSHP structures is shown in Fig. 4(d); the locations
where the colors overlap indicate the overlap of LSHP structures
from different views.

3.2.3. Refinement of 3D line-support regions and LSHP structures
As shown in Fig. 4(d), many LSHP structures share the same

straight linear structure. Therefore, a combination procedure is
performed to merge these 3D line-support regions and LSHP struc-
tures. Then, the boundary of the LSHP structures is determined by a
region growing procedure. The final LSHP structures are shown in
Fig. 4(e).
4. 3D line-support region extraction

2D line-support region extraction in images has already been
well investigated. The traditional methods group the edge pixels
with similar gradient directions into line segments. However,
although there are several methods that can extract sharp feature
points in 3D space, there is not, to our best knowledge, a method to
group these feature points into line segments, especially for scenes
containing vegetation and other non-manifold objects.

To cope with this problem, we take the 2D line-support region
extraction into account by converting the point cloud into a collec-
tion of projected images with different viewpoints. These view-
points are evenly placed on a sphere surrounding the point
cloud. The image-based method reduces the dimensionality and
avoids the 3D neighborhood search which is time-consuming for
large scale point data. The image-based method also provides a
good grouping result for 3D line-support region extraction.

The resolution of the projected images is defined by a para-
meter, Res, and the number of projected images is defined by K.
Section 7 describes the results of the experiments versus variations
of Res and K.

4.1. Projected images from a point cloud

To obtain a better 2D line-support region result from the
projected image, the image must contain clear edge information,
i.e., the line structure in a 3D point cloud must correspond to the
gray scale variation in the projected images.

Global illumination models, e.g., ambient occlusion, are often
used to emphasize the relief of surfaces and edge information.
However, such models often require complicated pre-computa-
tions and need extra information, such as the normal vector, and
thus are unsuitable for large-scale unorganized point clouds. To
solve this problem, we adopt Eye Dome Lighting (EDL)
(Boucheny, 2009), which uses only depth buffer information and
is performed in image coordinate space. Other techniques, such
as Screen-Space Ambient Occlusion (SSAO) (Kajalin, 2009), can also
be adopted for our situation, but EDL provides better edge percep-
tion (see Fig. 5).
v



(a) (b) (c) (d) (e)

Fig. 4. An overview of our method’s pipeline. (a) Original unorganized point cloud. (b) Multi-view images with distinguished edge information. (c) Extracted 2D line-support
regions from images. (d) LSHP structures of the extracted line-support regions. (e) The refined LSHP structures.

Fig. 5. The comparison results between Crytek Screen-Space Ambient Occlusion (a) and Eye Dome Lighting (b). The EDL provides better edge perception.
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EDL is a simple and efficient image-based non-photorealistic
shading technique to improve depth perception in scientific visual-
ization images. The shading value for each pixel, p, in the depth
image is defined as the amount of occlusion it receives from its
neighboring pixels and is expressed as follows:

SðpÞ ¼ expð�A �
X
q2Vp

sðp; qÞÞ; ð1Þ

where A ¼ 100 is the factor to simply amplify the intensity of shad-
ing; Vp is the neighboring pixels of p; and sðp; qÞ is the function to
measure the occlusion of pixel p against pixel q:

sðp; qÞ ¼max
zp � zq

dpq
;0

� �
: ð2Þ

Here, zp 2 ½0;1� and zq 2 ½0;1� are the normalized depth values of
pixels p and q, respectively; and dpq is the Euclidean distance
between pixel p and q.

To take into account the contributions of farther neighboring
pixels but avoid increasing the time cost significantly, a multi-
resolution approach that applies the same shading function at half
and quarter image size resolution is used. Then, a cross filter
(Eisemann and Durand, 2004) is used to limit aliasing induced by
the lower resolutions. The final image, I, is obtained by weighting
these multi-resolution images:

I ¼ 4I0 þ 2I1 þ I2

7
; ð3Þ

where, I0; I1 and I2 are the full, half and quarter resolution shaded
images, respectively.
4.2. 2D line-support region extraction

Because it is the state-of-the-art method for image line segment
detection, we choose the LSD algorithm (Von Gioi et al., 2010) to
extract 2D line-support regions. The LSD algorithm extracts the
accurate line segments and 2D line-support regions simultaneous-
ly; it does not need to change the values of the parameters. More-
over, the method is fast, and, therefore, efficient, for our multi-view
shaded images.
5. LSHP modeling

Each 3D line-support region is fitted by an LSHP structure. The
LSHP structure is used to validate the 3D line-support region and
‘provide a geometric constraint for line segments.

It is difficult to directly fit the LSHP structure for a 3D line-sup-
port region in 3D space. Instead, we can take advantage of the cor-
responding 2D line-support regions to ascertain an optimal
projection direction of the 3D line-support region (Fig. 6(a)). By
projecting the 3D line-support region along the projection direc-
tion (Fig. 6(b)), we extract the ‘‘V’’ shape from the projected points.
The ‘‘V’’ shape is a point set that can be approximated by two line
segments that share an endpoint. Such a ‘‘V’’ shape is likely to be
the projection of an LSHP structure along its intersection line direc-
tion. To find the ‘‘V’’ shape, an approach based on dynamic pro-
gramming is performed. Once the ‘‘V’’ shape is determined, the
projected points with the ‘‘V’’ shape are divided into two subsets
according to the corner point (Fig. 6(c)). Correspondingly, the 3D
line-support region is also partitioned into two subsets. These



Fig. 6. The LSHP structure of a 3D line-support region is constructed via projective analysis. (a) Given a 3D line-support region, the arrow represents its projection direction.
(b) The projected points of the 3D line-support region. (c) The extracted ‘‘V’’ shape, which, is divided into two parts, respectively drawn in red and green. (d) The
corresponding 3D line-support region and LSHP structure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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two subsets are fitted separately by two planes. After validation,
the LSHP model is constructed using these two planes (Fig. 6(d)).

Through projective analysis, such a construction strategy for the
LSHP structure is robust and dramatically reduces the computa-
tional complexity. The following three subsections provide further
details.

5.1. Finding the projection direction

When a 3D line-support region is projected along a direction v,
an aggregation degree of these projected points can be calculated.
By considering each projected point as a 2D circle, the aggregation
degree can be regarded as the union area of these circles (projected
points). The direction v that has the minimum aggregation degree
is desired.

As illustrated in Fig. 7, a 3D line-support region L and its corre-
sponding 2D line-support region l in the image I are given. For the
sake of convenience, we assume that image I lies on the XY plane
and l is parallel to the y-axis in the image coordinate system (if
not, we can rotate the point cloud to guarantee it). Thus, the pro-
jection direction v can be parameterized by v ¼ ð0; cosa; sin aÞ,
where a is the angle between L and l. Then, the normal vector bn
Fig. 7. Finding the primary axis of 3D line-support region.
of L’s tangent plane X is given by bn ¼ ð0; sin a;� cosaÞ. The devia-
tion of the distances between each point of L to X can be defined as
a function with respect to the unary variable a, i.e.,

f ðaÞ ¼ rp2Lðdistðp;XÞÞ; ð4Þ

where distðp;XÞ is the Euclidean distance from p to X, and rð�Þ is the
standard deviation.

A smaller value of f ðaÞ indicates a better aggregation degree of
the projected points. Ideally, the function f ðaÞ can be treated as a
unimodal function versus a; i.e., for some value m; f ðaÞ is mono-
tonically decreasing for alpha 6 m and monotonically increasing
for a P m, where a 2 ð�90;90Þ. In that case, the value of a that
minimizes f ðaÞ can be easily found via ternary search or Golden
section search (Kiefer, 1953). Once a is determined, the projection
direction v can be computed accordingly.

5.2. ‘‘V’’ shape extraction

Because the normal vector of the tangent plane of a given 3D
line-support region is bn ¼ ð0; sin a;� cos aÞ and the projection
direction is v ¼ ð0; cosa; sin aÞ, this implies that the tangent line
of the projected points is parallel to the x-axis. Therefore, we can
use the distance from each projected point to the tangent line
(i.e., the y coordinate value) to analyze the shape of the projected
points. We first divide the projected points into n pieces with the
same width along the x-axis. The center point of each piece is com-
puted. By storing the y value of the center point associated with
the i-th piece in S½i�, we obtain a sequence S½1; . . . ; i�, which can
be used to find the corner point of the projected points.

Let LISi be the longest increasing subsequence of S½1; . . . ; i� with
the endpoint at Si, and let LISRi be the longest increasing subse-
quence of the reverse sequence S½n; . . . ; i� with the endpoint at Si.
Similarly, LDSi and LDSRi are defined as the longest decreasing sub-
sequences of S½1; . . . ; i� and S½n; . . . ; i� with the endpoints at Si,
respectively. The corner point of a ‘‘V’’ shape is computed by find-
ing the index i according to the following equation:

arg max
i¼1;...;n

ðjLISij � jLISRij; jLDSij � jLDSRijÞ; ð5Þ

where j � j is the size of the subsequence. The ‘‘V’’ shape consists of
the points that lie between the pieces of LISiðorLDSiÞ and
LISRiðorLDSRiÞ. The center point of i-th piece can be regarded as
the corner point of the ‘‘V’’ shape, as it divides the ‘‘V’’ shape into
two parts with different monotonicity.

The longest increasing or decreasing subsequences can be
solved for by dynamic programming with time complexity
OðnlognÞ (Fredman, 1975), where n is the number of pieces. Here,
n is set to be 100.
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5.3. LSHP fitting from the ‘‘V’’ shape

As introduced in Section 3, the LSHP structure is characterized
by two tangential rectangles. The LSHP structure can be easily con-
structed based on the ‘‘V’’ shape. This is achieved by fitting the 3D
line-support region into two separated planes according to their
projected points in the ‘‘V’’ shape. Denote b as the bisecting plane
that bisects the two fitted planes. The 3D line-support region is
redivided into two parts by b. Then, the two tangential rectangles
can be represented by two planes, and the width of each rectangle
is defined as the longest distance from the points on the plane to
the intersection line of the two planes.

5.3.1. Least median of squares
The least median of squares (LMS) method is employed to fit the

planes. The LMS is a robust regression method that can tolerate up
to 50% outliers without requiring pre-set thresholds. The LMS
method estimates the parameters of plane b by minimizing the
median of the square of the residuals r, which is defined as the dis-
tance from the points to the sample plane. Thus, the regression
plane b of points P is estimated by the following equation:

arg min
b

median
p2P

ðdistðp; bÞÞ: ð6Þ

Eq. (6) can be solved by the following random sampling algorithm.
First, m random subsamples of k different points are generated. For
each subsample Pi, a plane bi is fitted by these points. The residual
ri is determined by the median of the distances from each point
p 2 P to the plane bi, and the plane bi with minimal ri is retained
as the final plane. The value of m can be determined by

P ¼ 1� ð1� �kÞm according to Rousseeuw and Leroy (2005), where
� is the fraction of outliers and P is the probability that at least one
of the m subsamples is good. In our implementation, we assume
that k ¼ 3 and � ¼ 50%. Therefore, with the requirement of
P ¼ 0:999, we obtain the number of samples as m ¼ 51.

5.3.2. 3D Line-support region validation
A threshold h for the distance from the point set to the regres-

sion plane is used to check if the regression plane can fit its points.
A regression plane b is considered to fit the points P if they satisfy:

median
p2P

ðdistðp; bÞÞ 6 h: ð7Þ

Although h is related to the accuracy of a laser device, it can be esti-
mated by the average distance between the nearest neighbor
points, i.e.,

h ¼
P

p2Pðminq2P^q–pðkp� qkÞ
jPj ; ð8Þ

where P is the original point cloud.

6. Refinement of 3D line-support regions and LSHP structures

Because the 3D line-support regions are obtained from multi-
view images, there are many overlaps. It is necessary to combine
the 3D line-support regions and LSHP structures that share the
same line segment. At the same time, the boundaries of the 3D
line-support regions also need to be refined in 3D space.

6.1. Combination

Let L ¼ fL1; . . . ; Lng be the n extracted 3D line-support regions.
Each 3D line-support region Li is divided into two subsets L1

i and

L2
i , according to its two associated rectangles of the LSHP structure.
L is sorted in descending order according to the confidence score si
of each Li. The confidence score si is defined by si ¼ jL1
i jjL

2
i j for Li. A

high value of si indicates that the half-planes of its LSHP are
reliable.

For each pair Liði ¼ 1; . . . ;nÞ and Ljðj ¼ iþ 1; . . . ;nÞ that are adja-
cent, i.e., Li \ Lj – ;: If both subsets of Li are coplanar with those of
Lj, we merge Lj into Li, i.e., Li  Li [ Lj. To check whether two sub-
sets are coplanar, equation (7) is adopted. On the contrary, if there

are two subsets, La
i of Li and Lb

i of Lj, that share most of their points

(jLa
i \ Lb

j j > 0:5jminðLa
i ; L

b
j Þj in detail) but are not coplanar, we call Li

and Lj conflicting. In this case, the 3D line-support region with a
lower confidence score will be removed from L.

The combination is repeated until there are no changes in the
3D line-support regions of L.

6.2. 3D Line-support region growing

After combination, a region growing procedure is carried out to
determine the boundary of the 3D line-support regions. A 3D line-
support region grows respectively on its two subsets with the
growing direction along the line segment of its LSHP.

Given a 3D line-support region L, assume that plane b bisects
the angle between two half-planes of L’s LSHP. Thus, b divides L
and the original point cloud P into two components. Let L0 � L
and P0 � P lie on the same side of b. The r-neighborhood of
p 2 L0 is defined by:

Nðp; rÞ ¼ fq 2 P0jkp� qk 6 rg: ð9Þ

For each point p 2 L0, we first compute its neighborhoodNðp; w
2Þ,

where w is the half width of L0’s approximation rectangle. To
guarantee that the width of the rectangle remains the same after
growing, only the points whose distance to the line segment are
smaller than w are grown. An example is given in Fig. 8(a), in
which, only the red points of the sphere are grown. We denote the-
se points as N 0. If N 0 and the regression plane of L0 satisfy Eq. (7),
we add N 0 into L0. The growing procedure is repeated until there
are no new points that can be added into L0. The result after grow-
ing is shown in Fig. 8(b).

7. Experimental results

7.1. Environment

The method was evaluated using typical street-scene LiDAR
point clouds acquired by a RIGEL VMX-450 MLS system; the aver-
age density of the point clouds used is approximately 2500 points/
m2. We also tested our method on the classical ‘‘sharp sphere’’
point cloud data.

Information on the test point clouds is summarized in Table 1.
The first column of the table is the name of the data, the second
column is the figure number of the point clouds as presented in
this paper, the third column is the number of points, and the fourth
column is the average distance of nearest neighboring points with-
in the point cloud (equal to h in Eq. (7)).

Our method was implemented in C++ and OpenGL. It was
executed on a personal computer with Intel Core(TM) i5-3470
3.2 GHz CPU and 12.0 GB RAM. For the implementation of the
LSD algorithm, the reader is referred to Von Gioi et al. (2012),
and the algorithm’s source code can be found at http://iie.fing.
edu.uy/jirafa/lsd.

7.2. Parameters

Only two parameters, the number of viewpoints K and resolu-
tion Res, are decided by the users; the others are considered inter-
nal parameters and, can be used without tuning.

http://iie.fing.edu.uy/jirafa/lsd
http://iie.fing.edu.uy/jirafa/lsd
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We first demonstrated the influence of Res. Here, we set
K ¼ 128. As shown in Fig. 9, the value of Res depends on the details
that the user wants to extract. If Res is too large, the features may
be missing because holes would arise in the renderings; however,
if Res is too small, details will be lost. Here, we simply set Res
according to the following equation.

Res ¼ d
4r
� d

4r
; ð10Þ

where d is the diagonal length of the bounding box of the input
points and r is the average distance between the nearest neighbor-
ing points (equal to h in Eq. (8)).

Next, we examined the influence of K. As we know, a larger K
means more views, and more points will be visible. However, the
time cost will increase along with the increase of K. We demon-
strate the percentage of visible points under different numbers of
viewpoints K on four point clouds. Here, we use the method pro-
Fig. 8. Illustration of 3D line-support region growing.

Table 1
Information of the test point clouds.

Data Figs. # points r

Data1 1 781,297 0.014
Data2 9 3,725,565 0.017
Data3 12 1,000,000 0.023
Data4 13 810,190 0.059
Data5 14 3,906,174 0.015
Data6 15 6,043,282 0.013
Data7 16 4,802,365 0.0075

(a) Raw scan.

(c) Res = 1024.

Fig. 9. Extracted 3D line-suppo
posed by Katz et al. (2007) to check if a point is visible via a specific
viewpoint. From Fig. 10, one can observe that when K is large
enough, i.e., K P 96, the percentage of invisible points is smaller
than 0.5%; this small amount of invisible points can be ignored.
Fig. 11 shows the influence of different K values on the number
of detected LSHP structures. As seen from Fig. 11, there is an
upward trend in the number of detected LSHP structures, and a
considerable increase occurred from K ¼ 32 to K ¼ 128. When
K > 128, the rate of increase slows down, and it tends to remain
stable when K > 224. Considering the computation time factor,
K ¼ 128 is a reasonable configuration.

Finally, we chose Res ¼ d
4r �

d
4r, and K ¼ 128. Except for the

examples in Fig. 9, in which we demonstrate the influence of para-
meter changes, these parameters were applied with fixed con-
figurations throughout all presented figures.

7.3. Extraction results

The results in previous sections have already demonstrated that
our method has the ability to handle raw scan point clouds of clut-
tered scenes (Figs. 1 and 9). Here, we present more results on raw
scan point clouds for common scenes in urban areas, such as build-
ings (Figs. 13 and 16) and roads (Fig. 15); we also show the ability
of our method to handle point clouds with sharp curves (Fig. 12).

To quantitatively evaluate the accuracy of the line segment
extraction results, we introduce three indices, Completeness
(Comp), Correctness (Corr) and Quality, from (Rutzinger et al.,
2009). Completeness is the true positive detection rate of line seg-
ments, and Correctness indicates how well the line segments are
detected. They can be derived as

Comp ¼ jTPj
jNj ; ð11Þ

Corr ¼ jTPj
jMj ; ð12Þ

where jTPj is the number of true positive detected line segments, jNj
is the total number of line segments in the ground truth, and jMj is
the total number of detected line segments. The Quality metric pro-
vides a balance of completeness and correctness, i.e.,
(b) Res = 640.

(d) Res = 1408.

rt regions by different Res.



97.00%

97.50%

98.00%

98.50%

99.00%

99.50%

100.00%

32 64 96 128 160 192 224 256

pe
rc

en
ta

ge
 o

f v
is

si
bl

e 
po

in
ts

number of viewpoints K

Data1

Data2
Data3
Data4
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Fig. 11. Influence of different K values on the number of detected LSHP structures.
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Quality ¼ Comp � Corr
Compþ Corr � Comp � Corr

: ð13Þ

Let l distðl1; l2Þ be the distance measurement from line segment
l1 to line segment l2, which is formalized as:

l distðl1; l2Þ ¼
1
n

Xn

i¼1

distðpi; l2Þ; ð14Þ

where p1; . . . ;pn are n points that are evenly picked from l1 (here n is

set to b5jl2 jr c); and distðp; lÞ is the minimum Euclidean distance from
point p to line segment l. For each detected line segment l, it is
(a) original point cloud (

Fig. 12. Extracted LSHP struc
considered to be a true positive if its distance to the nearest line
segment in Lbest is smaller than 5r, i.e.,

minl22Lbest
l distðl1; l2Þ < 5r; ð15Þ

where Lbest is the ground truth line segment set that is acquired
manually.

We also propose a measure e to evaluate the accuracy of the
detected LSHP structure. Given a detected line segment l; e is
defined as the average distance from l’s 3D line support region to
l’s LSHP. Here, we define l’s 3D line support region as:

L ¼ fpjp 2 P ^ distðp; lÞ < 5rg ð16Þ

For each point p 2 L, its distance to l’s LSHP is computed by:

lshp distðp; LSHPÞ ¼ minfdistðp; b1Þ;distðp;b2Þg; ð17Þ

where b1 and b2 are two support half-planes of l’s LSHP. Thus, e can
be formalized as:

e ¼ 1
jLj
X
p2L

lshp distðp; LSHPÞ: ð18Þ

We use e to represent the average of e for all detected LSHP
structures; it can be regarded as an accuracy measure to estimate
the quality of detected LSHP structures. The smaller value of e is
desired.

The accuracy evaluation results are listed in Table 2, where the
first column of the table is the name of the test point cloud and the
second column is the number of obtained LSHP structures. The
measures mentioned before are given in the third through sixth
columns. The ground truth in our experiments is acquired manual-
ly. On average, the proposed algorithm achieves a completeness
greater than 87%, a correctness greater than 95%, and a quality
greater than 83%. On the whole, the proposed algorithm extracts
line segments accurately from mobile LiDAR point clouds.

The running time (in seconds) is given in the last column of
Table 2; only one core of the CPU is used. The typical ratio of points
used to perform the nearest neighbor search in 3D is approximate-
ly 25% for building scenes, e.g., Data1, and 10% for road scenes, e.g.,
Data6. Our method can handle 1 M points in an average of
1 � 2 min, which is practical for industrial applications. The speed
can be improved by computing the 3D line-support regions for
each view in parallel or manually choosing the suitable viewpoints.

7.4. Comparative studies

For comparison, we implemented the method proposed by
Borges et al. (2010). The main idea of their method is to first seg-
ment the point cloud into planes by a bottom-up procedure, and
then extract the line segments that are determined by pairs of
b) extracted LSHP structures

tures of ‘‘Sharp sphere’’.



(a) original point cloud (b) extracted LSHP structures

Fig. 13. Extracted LSHP structures of ‘‘Swiss Hotel’’ building.

(a) original point cloud (b) extracted LSHP structures

Fig. 14. Extracted LSHP structures of a ‘‘ZhongShan Road’’ building.

(a) original point cloud (b) extracted LSHP structures

Fig. 15. Extracted LSHP structures of road scene.

Table 2
Accuracy results of the proposed method.

Data # LSHP Comp (%) Corr (%) Quality (%) e Time (s)

Data1 329 89.3 97.0 86.9 0.0061 94.4
Data2 1384 86.3 90.0 78.7 0.0091 359.0
Data3 266 96.3 97.7 94.2 0.014 59.5
Data4 1700 86.0 92.0 80.0 0.014 222.8
Data5 1164 81.1 97.6 79.5 0.0083 585.8
Data6 286 86.1 96.5 83.5 0.0075 445.1
Data7 558 86.9 95.2 83.1 0.0031 589.4
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adjacent planes. The result of this plane-based method is shown in
Fig. 16(b), where the parameters are fine-tuned. We also compare
our method to reconstruction-based methods. Fig. 16(c) shows the
reconstructed mesh model yielded by Screened Poisson recon-
struction method (Kazhdan and Hoppe, 2013), and the line seg-
ments shown in Fig. 16(d) are extracted manually from Fig. 16(c).
As seen from the line segment extraction results in Fig. 16, our
algorithm extracts line segments completely and correctly and
obtains better results than the other two methods. The numerical
comparison results are given in Table 3, where the value of e of
the Screen Poisson reconstruction method is not presented because
the LSHP structure is absent in this method. The reasons the plane-
based method can not achieve a high performance are: (1) the
boundaries of the planes are difficult to determine, (2) the small
and narrow plane is difficult to extract, and (3) the complex data
(e.g., plants) is difficult to be fitted by planes.

7.5. Robustness studies

We study the robustness of our method by adding Gaussian
noise into the point cloud, and the extraction results are given in
Fig. 17. As the noise increases, the processing quality gradually gets
worse. We also impose our method on a multi-view stereo point



(a) original point cloud (b) plane-based method (c) Screened Poisson re-
construction

(d) extracted line segments
from (c) through manual way

(e) our method (f) ground truth

Fig. 16. Extracted line segments by plane-based method (b), reconstruction-based method (d) and our method (e).

Table 3
Accuracy comparison results of plane-based method, reconstruction-based method
and our method.

Plane-based Screen Poisson reconstruction Ours

Line segments 567 624 558
True positive 487 377 531
Comp 79.7% 61.7% 86.9%
Corr 85.9% 60.4% 95.2%
Quality 70.5% 43.9% 83.1%
e 0.0061 – 0.0031
Time (s) 170.2 67.1 589.4

(a) no noise (b) 3cm Gaussi

Fig. 17. Extracted LSHP struct
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cloud with high levels of outliers and noise. Fig. 18 shows the
extraction results, in which most of the main line segments are
extracted.

8. Application

In this section, we illustrate the effectiveness of 3D line-support
regions and their relative LSHP structures in urban scene
abstraction.

Today, with the widespread use of point clouds acquired by cur-
rent devices, it is efficient to create large-scale dense point clouds
from large outside environments. However, to fully model the
an noise (c) 5cm Gaussian noise

ures in presence of noise.



(a) multi-view stereo point cloud (b) extraction result

Fig. 18. Extracted LSHP structures from multi-view stereo point cloud.

Fig. 19. The overall extracted LSHP structures from a point cloud covering 1.5 km street are shown in (a). The original point cloud is stored in an uncompressed file with a
nearly size of 10 GB. And the result is stored in The details in the red boxes are given in the subfigures (b–d) from left to right. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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entire scene is time-consuming with the current technology. For
other applications, such browsing the data on the Internet via a
browser, the bandwidth is the major bottleneck. Our Line-
Segment-Half-Planes (LSHP) structure can provide an abstraction
of the point cloud, which is a useful tool to solve these problems.

An example of LSHP abstraction for a point cloud covering
1.5 km of a street is given in Fig. 19. The size of the original uncom-
pressed point cloud file is nearly 10 GB, and the number of points is
approximately 250 million. These points are manually divided into
86 regions; each region contains nearly 3 M points. The LSHP struc-
tures of each region are extracted individually. These structures are
then combined into one file. After abstraction, the LSHP result can
be stored in a file with a size of only 1.8 MB, and the number of
LSHP structures is approximately 40,000. The compression ratio
of these binary files is nearly 5000:1. Furthermore, the total
computation time is less than 8 h when run on a single core of
the CPU.

Due to the high compression ratio, it is possible to transfer the
results through narrow bandwidth channels. At the same time, as
shown in Fig. 19(b–d), the LSHP structures maintain the major
features of the linear structures in the point cloud, which provides
a clear overview for users.
9. Conclusion and future work

In this paper, we have proposed an effective line segment
extraction method that is capable of accurately extracting line seg-
ments from large-scale unorganized raw scan point clouds. The 3D
line-support regions are also extracted at the same time. These 3D
line-support regions are fitted by our Line-Segment-Half-Planes
(LSHP) structure, which provides a geometric constraint for line
segments, making the line segments more reliable and accurate.

The proposed method was tested on raw scan point clouds of
complex real-world scenes acquired by LiDAR devices. The
experimental results show that the proposed algorithm extracts
line segments accurately from mobile LiDAR point clouds.

Lastly, we demonstrated the application of 3D line-support
regions and their relative LSHP structures on urban scene
abstraction.

9.1. Limitations

Though the proposed method works well on the complex real
mobile LiDAR point cloud, it has two limitations. Firstly, visibility
of the point cloud during rendering is essential for line extraction,



Y. Lin et al. / ISPRS Journal of Photogrammetry and Remote Sensing 102 (2015) 172–183 183
edges that are not visible from the selected views cannot be detect-
ed. More sophistical viewpoints selection method will improve the
efficiency and robustness. Secondly, the non-photorealistic render-
ing is sensitive to the rendering resolution, which effected by the
density of point cloud and the view parameter used for rendering,
adaptive methods are needed to avoid the sparseness between
points in the rendered images.

9.2. Future work

In the future, we would like to, through analysis, discover the
best image resolution for our multi-view projected images and
extend our method to extract small reliefs of surfaces. We also
want to further address the viewpoint selection based on the visi-
bility. It is also of interest to apply our method to urban
reconstruction.
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