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Road, Wuhan 430079, PR China
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(Received 12 February 2007; in final form 10 July 2008 )

This paper presents a linear feature extraction method. Least squares template

matching (LSTM) is adopted as the computational tool to fit the linear features

with a scalable slope edge (SSE) model, which is based on an explicit function to

define the blurred edge profile. In the SSE model, the magnitude of the grey

gradient and the edge scale can be described by three parameters; additionally, the

edge position can be obtained strictly by the ‘zero crossing’ location of the profile

model. In our method the edge templates are locally and adaptively generated by

estimating the three parameters via fitting the image patches with the model,

accordingly the linear feature can be positioned with high accuracy by using

LSTM. We derived the computational models to rectify straight line and spline

curve features and tested those algorithms using the synthetic and real remotely

sensed images. The experiments using synthetic images show that the method can

position the linear features with the mean geometric error of pixel location of less

than one pixel in certain noise levels. Examples of semiautomatic extraction of

buildings and linear objects from real imagery are also given and demonstrate the

potential of the method.

1. Introduction

Mathematically linear features can be described by straight lines or arbitrary curves

(e.g. streams, shorelines, road centrelines, etc), which are usually vector data in

digital mapping and geographic information systems (GIS). Linear features
extracted from remotely sensed imagery have been an important data source for

updating GIS vector data, as well as for applications including automatic and

accurate shoreline extraction from imagery for monitoring dynamic changes of water

level. Object boundaries projecting onto imagery are mostly linear features with

edges reflecting the discontinuity of spectral or radiometric value of the pixels. Pixel

size of remotely sensed imagery varies from less than 1 m to more than 1 km.

Accurate location of edges can boost accuracy overall, so that precise linear features

can be obtained, especially from low and intermediate resolution images. To date
sub-pixel edge detection has been extensively studied, and moment-based methods

have been frequently used (Tabatabai and Mitchell 1984, Lyvers et al. 1989, Pei and

Cheng 1999, Shan and Boon 2000, Cheng and Wu 2005, Qu et al. 2005). Grey value

moment or spatial moment has been employed to solve unknown edge model
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parameters to indicate accurate edge location. The edge model may be an ideal step

edge (e.g. Lyvers et al. 1989) or a blurred edge model (Shan and Boon 2000), which is

more realistic than the ideal step model. As pointed out by Ye et al. (2005), the result

of this method may have large errors for images with noise due to its implementation

based on numerical differentiation. Thus the solution becomes extremely difficult

due to the fact that this is a complicated model with additional parameters. Another

method for sub-pixel edge extraction is based on interpolation and the analysis of

scale behaviour of explicit geometric models for line profiles. Algorithms can be used

for extracting lines and edges at the sub-pixel level (Steger 2000). Least squared

error-based methods attempt to estimate edge location at the sub-pixel level by

fitting the grey values of the image to an assumed edge model. Nalwa and Binford

(1986) employed the hyperbolic tangent function for fitting the slope edge profile.

Kisworo et al. (1994) presented an iterative procedure for evolving the initial

position to the precise position for extracting step, ramp and roof edges. In their

method, the error function is defined as the difference between the local energies of

the model and the real data, as a function of the model parameters. One advantage

of the least squared error-based method is that it is reliable for processing images

with considerable noise. A comparison study using the moment-based, interpolation-

based and least squared error-based methods can be found in Ye et al. (2005). Their

experiments used synthetic and real images to show that the least squared error-

based method can result in higher accuracy than the other two methods, especially

for noisy images.

The above-mentioned methods could be seen as ‘low-level processing’ by which

the edge (or line) pixels are accurately positioned through the use of a local image

window (e.g. an n6n pixel window). Edge pixels are located individually to their

sub-pixel locations. They have not integrated the geometric model of linear features

into the computational model. In the last decade, several optimization-based

methods have been proposed for extracting linear features by finding optimal

‘routes’ depending on global geometric and radiometric constraints of the feature.

Dynamic programming (Grün and Li 1995), snake (or active contour models)

methods (Trinder and Li 1995, Gunn and Nixon 1997, Nixon and Aguado 2001),

least squares template matching (LSTM) (Grün and Agouris 1994, Hu et al. 2004,

Kim et al. 2004) and a combined LSB-snake method (Grün and Li 1997) are

essentially optimization-based methods that minimize ‘cost’ or ‘energy’ or ‘least

squared error’ in order to obtain a reliable result. The LSTM method fits an image

with the ideal feature model (template) for least squared error. LSTM has great

advantages for integrating ‘internal’ (e.g. geometric) constraints and ‘external’ (e.g.

image features) constraints. This applies rigorous theory as well as robust quality

control and result assessment methodologies (Li 1997). Most of these proposed

methods based on LSTM use simple edge or object (centreline) models, for example

the step edge model. With these simple models, locating edge pixels by finding local

maxima of gradient magnitude can only position the edge points to pixel level

accuracy. Based on the inaccurate edge point locations it generates simple edge

templates, which do not fit the blurring edge with varying scales; consequently it is

not feasible to obtain high geometric accuracy since the edge scale (blurring) and

noise level can vary significantly on real remotely sensed imagery.

Hough transform has been used for linear feature extraction for decades. There is

the classical Hough transform (Duda and Hart 1972) and the generalized Hough

transform (Ballard 1981), which can not only detect an object described with an

3394 X. Hu et al.
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analytic equation (e.g. straight line, circle, etc), but can also detect an arbitrary

object described with its model. By its nature Hough transform is not suitable for

detecting linear features to sub-pixel accuracy. For instance, to obtain a

parameterized sub-pixel straight line, the voting parameter space will be huge. On

the other hand, Hough transform does not take into account the edge blurring and

its scale varying factors. For some object extraction applications (e.g. shoreline

mapping), particular techniques were employed. For instance, soft classification and

super-resolution mapping techniques were used to accurately map the shoreline

(Giles et al. 2005, Muslim et al. 2006). If an object can be delineated by its edge

boundary, the rigorous edge model is still a feasible alternative measurement in order

to locate the object to sub-pixel accuracy.

In this paper, we present a linear feature extraction method based on integrating

the LSTM adjustment method with a scalable slope edge model for processing scale-

varying (blurred) edges and images with considerable noise. Also combining with the

geometric model of linear features as a whole, we derived computational models for

rectifying straight line and spline curve features to their accurate position. The

adjustment model is derived from continuous two-dimensional space. The essential

rational of the method is to pull an initial inaccurate linear feature to its best fit by

minimizing least square errors between the local scale-varying edge templates and

corresponding image windows. The details of the algorithms are given in the

following sections. We tested these algorithms using synthetic images and satellite

images. The test results are evaluated and discussed.

2. Algorithm description

2.1 Straight line rectification algorithm with LSTM

The rectification of straight lines can be treated as a least squared error based

method. As shown in figure 1, the solid line lies in the initial position and needs to be

rectified to its exact position indicated by the dashed line. The length of the line is L.

DY0 and DY1 are the shift along the normal direction at the end point of the line.

Note that DY0 and DY1 are not by nature in pixel units: they are continuous values

computed by the model to adjust the inaccurate line to its precise location. To a pixel

P close to the initial line and located in x, which is the distance to the start point of

Figure 1. Rectification of a straight line.

Linear feature extraction using least-squares template matching 3395
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the line, let its grey value be g and its geometric error in the normal direction be Dy.

Assuming the edge template is already known and the grey value on the

corresponding pixel is gT, we have gT5g (y +Dy) and the error function:

vg~
Lg

Ly
Dy{ gT{gð Þ~gyDy{lg, ð1Þ

where gy is the grey gradient in the normal direction. From:

Dy~ x=Lð ÞDY0z L{xð Þ=Lð ÞDY1 ð2Þ

and equation (1), we have

x=Lð ÞgyDY0z L{xð Þ=Lð ÞgyDY1~lg: ð3Þ

This is the computational model for rectifying a line with adjustment processing. We

can iteratively shift the line end point with (DY0, DY1) until the terminating

condition is satisfied.

2.2 Spline curve rectification algorithm with LSTM

A cardinal spline is used for describing smooth curve features. The cardinal spline is

a cubic Hermite spline whose tangents are defined by points and a tension

parameter. The cardinal spline takes the positions of the current point and, along

with the previous and next points, averages the positions using the tension value.

This smoothes the line and makes a path that is gently curved through the points

rather than zigzagging through them. As shown in figure 2, a piece of cardinal spline

defined by the four continuous control points Pi21, Pi, Pi + 1 and Pi + 2 by

P uð Þ~Pi{1 {su3z2su2{su
� �

zPi 2{sð Þu3z s{3ð Þu2z1
� �

zPiz1 s{2ð Þu3
�

z 3{2sð Þu2zsu
�
zPiz2 su3{su2

� �
~Pi{1C0 uð ÞzPiC1 uð ÞzPiz1C2 uð ÞzPiz2C3 uð Þ

,
ð4Þ

where u is the parameter, with 0(u(1, s5(12t)/2, and t is the tension value. To the

pixel p where the error in the normal direction is DyN, we have

gT~g yNzDyNð Þ ð5Þ

Figure 2. Rectification of a cardinal spline.
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vg~
Lg

LyN
DyN{ gT{gð Þ~gyN

DyN{lg, ð6Þ

where angle h indicates the direction of the normal vector, DyN5Dy/cosh, when

|cosh|.|sinh|, or DyN52Dx/sinh, , when |cosh|(|sinh|, gyN
is the grey value gradient

in the normal direction. From equation (4), we know that the error of p in the x and

y direction, Dx and Dy, can be described as:

Dy~C0 uð ÞDYi{1zC1 uð ÞDYizC2 uð ÞDYiz1zC3 uð ÞDYiz2 ð7Þ

Dx~C0 uð ÞDXi{1zC1 uð ÞDXizC2 uð ÞDXiz1zC3 uð ÞDXiz2: ð8Þ

Based on the above equations, we get an adjustment model for rectifying the

cardinal spline:

Xiz2

n~i{1

CX nð Þ:DXnz
Xiz2

n~i{1

CY nð ÞDYn~lg, ð9Þ

where CX(n) and CY(n) are the coefficients of the unknown adjusting variables DXn

and DYn which indicate the geometric errors of the control points. The coefficients

are determined by grey value of the pixels on the curve g, grey value of the edge

template gT, the grey value gradient gyN
and the spline coefficients. For each pixel on

the curve, if gT is known, a least square adjustment equation (9) can be constructed;

we call it one observation. Because the pixel number on a spline is far more than the

number of its control points, the redundant observations are then employed for

iteratively adjusting the initial curve (interpolated by the control points) to the

precise location, which is described by equation (4) in two dimensional continuous

space rather than in pixel grid space.

Thus far we have derived the computational models for rectifying the straight line

and cardinal spline curve features. This could be useful for semi-automatic feature

extraction, by which the initial position of the feature is provided in advance, or

vector-image registration and vector data updating, for example the updating of

shorelines from satellite images. In the next section, we focus on the using of a

scalable slope edge (SSE) model, which is employed to obtain the grey value gT of the

edge template.

2.3 A scalable slope edge model

Figure 3 depicts the explicit model of the scalable slope edge profile, which is one-

dimensional in the edge direction. The model is given as:

g sð Þ~hz
k

1zexp {asð Þ , ð10Þ

where h and k are the intensity of the background and the contrast, respectively, and

a controls the ‘scale’ of the edge. A larger a results in a steeper edge, while smaller a
leads to a less steep edge. As shown in figure 3, the strict geometric position of the

edge locates at the ‘zero crossing’ position, which is defined by the second derivative

of the profile model g0(s) or the maximum of the first derivative g9(s). As discussed

by Elder and Zucker (1998), the standard approach to edge detection is based on a

Linear feature extraction using least-squares template matching 3397
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model of edges as large-step changes in intensity. This approach fails to reliably

detect and localize edges in natural images, where blur scale and contrast can vary

over a broad range. There are a wide range of edge scales on remotely sensed

images. This explicit model can be seen as an approximation to the Gaussian edge

model employed in other applications (e.g. Elder and Zucker 1998, Shan and Boon

2000).

2.4 Adaptive generation of edge template

In order to integrate the edge model into the derived models of linear feature

rectification, we have to automatically generate the edge template for each

observation pixel. In other words, each edge template is generated locally and

adaptively by estimating the three parameters indicating the intensity, contrast and

scale of the edge on the pixel.

N Step 1. Generate the default edge templates gT(s) based on fixed h and k and

varying a. For example, setting h550, k550 and a52.0, 1.0 and 0.5, we get

three edge-profile templates corresponding to three different edge scales.

N Step 2. In the normal direction of the current point of the linear feature, slide

the default template and do cross correlation with the corresponding local

image window whose size is the same as the template. Find the maximal

correlation coefficient rm which means the best match, and record the

corresponding a, let a05a. If rm,rT (e.g. rT50.80), we discard the observation

because of the low possibility for the existence of an edge. Note that we need to

reverse the template gT(s) to gT(2s) and do cross correlation again to find rm

which is correspondent to the edge in the opposite edge direction. From the

image window gm correspondent to rm, we can estimate the initial intensity h0

by averaging the low grey value pixels and the initial contrast k0 by subtracting

h0 from the average high grey value.

N Step 3. As shown in figure 4, we use the pixels in the local image window gm for

estimating the accurate edge model in the local position. According to the edge

model given in equation (10), the error between the pixel gm and the

corresponding value in the local template gT can be expressed as:

Figure 3. Scalable slope edge model depicting slope edge profile g(s), the first derivative g9(s)
of g(s) and the second derivative g0(s) of g(s).

3398 X. Hu et al.
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Dg~gT{gm~Dhz
Dk

1zexp {a0sð Þz
k0a0 exp {a0sð Þ
1zexp {a0sð Þð Þ2

Da ð11Þ

This is the adjustment model for rectifying the initial parameters (h0, k0, a0) to the

least squared error-based method. The rectified model forms the template by the

updated h, k and a. The adaptively generated template thus fits to the local intensity,

contrast and the scale of the edge. Figure 5 shows an example of the adaptive

generation of an edge template.

3. Implementation and experiments

3.1 Implementation

For the purpose of verifying the proposed method, the algorithms are coded using

Microsoft Visual C + + . As part of the process, several parameters have to be

Figure 5. An example of edge template generation. The axis of the horizontal plane is the
image row and column, and the vertical axis is the grey value of the image pixel. (a) Gaussian
blurred slope edge; (b) 10% NR Gaussian noise added to (a); (c) adaptively generated edge
template from (b).

Figure 4. Adaptive generation of edge template. The default template is first used to match
the local image window, then based on the best match the three parameters of the scaleable
slope edge model are computed in order to obtain the local template, which is further used for
estimating the errors of the two end points of the line.

Linear feature extraction using least-squares template matching 3399
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chosen. The iterative adjustment procedure described in §§2.1 and 2.2 is terminated

when the maximal position error of the end points of the straight line or the control

points of the cardinal spline are less than 0.02 pixels. To adaptively generate the edge

templates, we have to do sliding correlation as described in §2.4. The search range of

the sliding correlation limits the ‘pull-in’ range of the line rectification. In our

implementation we set the search range R517 pixels in the two opposite directions.

We generate the default templates by setting h550, k530 and a53.0, 1.0, 0.6 and 0.4;

so the four different scale templates serve as the initial templates. Our edge model is

essentially a profile model along the edge direction but the image is a 2D array. Here

we choose a W by H size to generate templates. W53 is the width of the template

and H is defined by the edge scale. In the implementation, we use a fixed scale of

seven pixels to generate a template, so H5267 + 1515, and the edge position is

centred in the template. The 3615 size template is better than the one-dimensional

template because it leads to more reliable results in cross correlation and estimation

of the accurate edge model due to the abundant observations. For cardinal spline

extraction, we use the tension value t50.5. In these parameters, the search range

constrains how far the line can be rectified. h, k and a initialize the gradient

magnitude and scale of the edge template. Setting multiple a is to accelerate the

process. If the scale of the real edge has a large difference with the initial template, it

can take a great number of iterations to adjust it to the accurate one. By picking up

one best fit of a, as in step 2 in §2.4, the time-consuming iterative adjustment process

is accelerated. The selection of the size of the template is to make the template

contain most of the edge information in its scale. Here we assume that the slope size

of the edge is within seven pixels, for many real images it is appropriate based upon

our observation. The actual initial values of h, k and a are not critical since they will

be adjusted by the consequent LSTM.

3.2 Experiments on synthetic images

A synthetic image with dimensions of 2566256 pixels was created for straight line

extraction. A diagonal edge is created by setting pixels on the opposite sides as low

and high grey values with a range of 0–255, while setting the grey values on the

diagonal line as 128. In this testing case, the accurate straight line is y5x when the

origin is put on the bottom left corner of the image, and the image row and column

are the x and y axes respectively (figure 6). We change the contrast of the edge and

blur the edge using Gaussian filtering based on various deviations ranging from 0.8

Figure 6. Test image for sub-pixel straight line extraction.

3400 X. Hu et al.
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to 4.0 (along the edge and from lower-left to upper-right). Additive Gaussian noise is

also included in four sets of images, with a mean of zero and a range of standard

deviations related to noise ratios defined by Ye et al. (2005). The four different noise

level images were created by different noise ratios: 5%, 10%, 15% and 20%; and 50

initial lines were randomly generated around the diagonal edge and in the search

range. For each rectification, we compute the mean error d̄ (per pixel) between the

rectified line and the real line y5x. For each pixel on the line, the error can be

computed by the distance from the point to the real line. Figure 6 displays the image

with noise ratio520% and the rectified result. The method of accuracy estimation is

demonstrated in figure 7. d̄ is the mean value of the distance from a pixel on the

rectified line to the actual edge y5x and l0 is the initially placed inaccurate line.

Letting the length of the rectified line segment lr be L, we have

d̄~

P
di

L
: ð12Þ

di is the distance from the point on the rectified line to the real edge. The points

employed to compute the distance are sampled on the rectified line in the interval of

the pixel size, which is 1.0 in the two-dimensional image space. Figure 8 shows the

mean error d̄ on testing the four images. Depending on different noise levels, using

the algorithm can rectify the straight line to the accurate position with a mean error

of pixel position of less than 0.5 pixels.

We also tested curve extraction using equation (9). Similarly the two test images

with 10% and 20% noise ratios were generated based on the original image, which

was created by putting a solid circle with a radius of 100 pixels in the image centre

and blurring the edge using Gaussian filtering, having different deviations ranging

from 1.0 to 3.0. The initial curves were randomly generated, as shown in figure 9.

The error d can be obtained by subtracting the radius from the distance from the

point to the centre of the circle. For the 10% noise ratio image, the mean error

d̄50.46 pixel, and the maximal d is 1.26. For the 20% noise ratio image, the mean

error d̄50.54 pixel, and the maximal d is 1.44 pixel. Taking an example, from

figure 10 we can see that most errors are less than 1.0, although the maximum may

exceed 1.0. Results based on testing of noisy images indicate our method is effective.

The relatively lower accuracy compared to the straight line rectification may result

from the inaccurate representation of the circle using the cubic spline to fit the round

shape.

Figure 7. Estimation of per pixel accuracy for straight line rectification using the synthetic
images. The x and y axes are the image row and column, respectively.

Linear feature extraction using least-squares template matching 3401
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3.3 Experiments on aerial and satellite images

Figure 11 illustrates two examples of applying the straight line rectification

algorithm to semi-automatically extracting building roofs from aerial images. The

approximate building corner positions were provided (marked as crosses or polygon)

by the human operator in advance. Then the developed computer algorithms rectify

the lines which lead to the final precise delineation of the building roof outlines.

Figure 11(a) shows the magnified local image window overlaid by the rectified lines.

Visually we can find it located lines at the centre of the edges in varying blur scales.

Figure 11(b) illustrates that the iterative LSTM process eventually adjusts the

roughly placed initial lines to their precise locations.

Figure 8. Mean errors of edge pixels on the straight line by 50 rectifications. The horizontal
axis is the number of times that random initial lines were generated, while the vertical axis is
the position error in pixels. (a) noise ratio55%, mean of d̄50.07; (b) noise ratio510%, mean of
d̄50.07; (c) noise ratio515%, mean of d̄50.12; (d) noise ratio520%, mean of d̄50.15.

3402 X. Hu et al.
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Figure 12 shows the results of shoreline extraction from satellite images of

different ground resolutions, with figure 12(a) the 23 m resolution IRS 1C image, and

figure 12(b) the 4 m resolution Ikonos image. The initial shorelines are provided by

manually placing the control points of Cardinal splines which are spatially close to

the actual shorelines within the ‘pull-in’ range in template matching step. In the tests,

we set the search range of the template matching as 17 pixels, which is about 391 m

and 68 m in (a) and (b), respectively. The rectified curvilinear features demonstrate

that the proposed algorithms can successfully extract the shorelines more precisely.

Theoretically, only if the transform function of the imaging system is known is

rigorous localization of the physical edges from imagery achievable. Focal blur due

to finite depth-of-field and penumbral blur at the edge of a shadow are major causes

of blurred edges on the images taken by the optical camera. Since it has been argued

Figure 9. Test sub-pixel spline curve extraction on image with 10% of noise ratio.

Figure 10. Errors on testing circle extraction based on the image with 10% of noise ratio.
The horizontal axis is the point number, which is evenly resampled along the circle, while the
vertical axis indicates the position error of the point.
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that the Gaussian blurring model better accounts for the various aberrations in real

optical imaging systems, as Elder and Zucker (1998) used for edge detection in pixel

level accuracy, we use the approximate Gaussian blurring model for setting up the edge

template for LSTM in order to adaptively obtain exact edge template in varying scales.

It is true that when using our method the same high accuracy may not be possible if it

processes aerial or satellite images with very high noise levels and huge uncertainty in

the edge profile model, etc. For a great number of usual images on which edges with

sigmoid blurred profile indicate the object boundary, our method can be used to locate

the features to sub-pixel accuracy in considerable noise levels and locally varying edge

scales, as demonstrated in the experiments using synthetic images and real images.

On the other hand, so far we have only done visual inspections of the linear feature

rectification by overlaying the rectified line vector and the magnified remotely sensed

image. Quantitative evaluation of the rectification result requires accurate ground

truth data (for instance, the shoreline curve at the photographing moment), which

we do not yet have.

4. Conclusion and discussion

This paper presented a linear feature extraction method based on integration of the

least squares template matching and a scalable slope edge model. The employment of

Figure 11. The results of building extraction from aerial image using straight line
rectification: semi-automatic building extractions for (a) example 1; (b) example 2.
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the scalable edge model and adaptive edge template generation is advantageous for

extracting lines when the edge varies in scale, intensity and contrast and when images

contain noise. The scalable edge model is constructed by centring the edge position

at the rigorous ‘zero-crossing’ position which is defined by the second derivative of

the grey value profile. The geometric model of linear features can be constructed by

initial or ‘seed’ lines placed by the human operator or from existing vector data.

Then the algorithms can delineate curvilinear features precisely. The experimental

results on the aerial and satellite images indicate that the proposed method

can delineate both the building roof outlines and the shorelines robustly and

efficiently.

Although experiments show the usefulness and potential of our algorithm in

considerable image noise levels, given the varying image conditions and the

restrictions imposed in the method, theoretically the algorithm does not solve the

problem of locating linear features at sub-pixel accuracy. There are still limitations

and issues that need to be addressed, especially for future improvement.

Figure 12. Examples of shoreline extraction from (a) 23 m IRS 1C and (b) 4 m Ikonos
images.
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N The proposed adjustment models require initial position of the linear feature,

which is described by straight line or spline curve. Only if the actual linear feature is

spatially close to the initial line can the rectification result be reliable. For real

world applications, using the proposed method, semiautomatic extraction with

user-provided initial lines or feature updating with existing vector data are feasible.

Fully automatic sub-pixel accuracy extraction based on our method depends on

automatic detection of the initial features, which have yet to be studied.

N So far we only do quantitative evaluation of the geometric accuracy of the

extraction based on synthetic images while assessing the result from real

imagery by visual inspection, which involves magnifying the image and

overlaying extracted lines. We need to do more strict evaluation of absolute

geometric accuracy of the method using real remotely sensed images and high

accuracy ground truth data.

N Extensive research on practical utility of our method should be carried out. We

only consider slope edges as object boundary, which cannot cover all the real

feature model types. For example, shore lines on images do not necessarily

always demonstrate slope edges, noise levels can vary largely all over the image

and the contextual objects can be very complicated. Object cues obtained by

image classification (from multispectral images, etc) and other methods should

be combined. Other further improvements include imposing geometric

constraints (e.g. smoothness and three-dimensional conditions for object

extraction from stereo images) on the model and deriving new image template

to extract more linear features (e.g. road centrelines), etc.

N In our method of rectifying cardinal splines the tension value t was set a

constant value. The influence of varying t has not been modelled. To adaptively

determine its value to match the linear feature with imagery more precisely will

introduce more computational cost. An efficient method of optimized selection

of t has yet to be studied.
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