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Preface

Global change studies are growingly considered a vital source of information to

understand the Earth environment, especially in the framework of human-induced

climate change and land use transformation. Earth observing systems and

geomatics technologies provide a unique tool to monitor and model those changes,

respectively. While the range of applications and innovative techniques is con-

stantly increasing, this book provides a summary of key study cases where the Earth

observation data offers critical information to understand both the causes and

consequences of global change and the geomatics technologies provide powerful

tools to model and analyze the effects of those global environmental changes,

toward minimizing their negative impacts.

This book focuses on the monitoring and modeling aspects in global changes and

provides the state of the art in geomatics technologies for detecting and modeling

global landscape dynamics.

This volume includes 15 chapters, which are organized in five topics:

• Monitoring and Modeling of Land Use Changes (Chaps. 1 and 2)

• Monitoring and Analyzing of Urban Dynamics (Chaps. 3, 4, and 5)

• Monitoring and Mapping Environmental Changes (Chaps. 6, 7, and 8)

• Environmental Modeling and Risk Assessment (Chaps. 9, 10, 11, and 12)

• Earth Observation Data Processing (Chaps. 13, 14, and 15)

Chapters are written by leading scholars and researchers from a variety of fields,

including remote sensing, geoinformatics, geography, and environmental science,

with case studies predominately drawn from North America, Europe, and Asia.

This volume will be of greatest interest to graduates and undergraduates study-

ing geography, geosciences, and environmental sciences and to researchers and

professionals working in the fields of remote sensing, geographic information

sciences, climate change studies, environmental modeling, and risk assessment.
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Lena Halounová Faculty of Civil Engineering, Czech Technical University in

Prague, Prague, Czech Republic

Shigeko Haruyama Graduate School of Bioresources, Mie University, Tsu City,

Mie Prefecture, Japan

Quazi K. Hassan Department of Geomatics Engineering, Schulich School of

Engineering, University of Calgary, Calgary, AB, Canada

Bin He CAS Key Laboratory of Watershed Geographic Sciences, Chinese

Academy of Sciences, Nanjing Institute of Geography and Limnology, Nanjing,

China

Yuhong He Department of Geography, University of Toronto Mississauga,

Mississauga, ON, Canada

Vladimı́r Holubec Faculty of Civil Engineering, Czech Technical University in

Prague, Prague, Czech Republic

ix

s2pirast@uwaterloo.ca



Maochuan Hu Department of Civil and Earth Resources Engineering, Graduate

School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan

Viktor Kaufmann Institute of Remote Sensing and Photogrammetry, Graz

University of Technology, Graz, Austria

Andreas Kellerer-Pirklbauer Department of Geography and Regional Science,

University of Graz, Graz, Austria

Mamoru Koarai Survey Department, College of Land, Infrastructure, Transport

and Tourism (MLIT), Kodaira, Tokyo, Japan

Yasuhiro Kuwahara Abashiri Fisheries Research Institute, Abashiri, Hokkaido,

Japan

Jonathan Li Department of Geography and Environmental Management,

University of Waterloo, Waterloo, ON, Canada

Gerhard Karl Lieb Department of Geography and Regional Science, University

of Graz, Graz, Austria

Ting Liu Department of Geography and Environmental Studies, Northeastern

Illinois University, Chicago, IL, USA

Pingping Luo Institute for the Advanced Study of Sustainability (UNU-IAS),

United Nations University, Shibuya, Tokyo, Japan

Disaster Prevention Research Institute (DPRI), Kyoto University, Uji, Kyoto, Japan

Zhangbao Ma Department of Geography and Planning, University of

Saskatchewan, Saskatoon, SK, Canada
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Chapter 1

Land Change Modeling: Status
and Challenges

Ting Liu and Xiaojun Yang

Abstract Over the past years, land change science has emerged as a fundamental

component of global environmental change and sustainability research, and model-

ing of land change has been recognized as a premier research area in land change

science. Various land change modeling approaches have been developed to explore

the functioning of land changes at aggregated and individual levels, across various

spatiotemporal scales, as well as in human, natural, or the coupled systems. This

chapter will review a collection of land change modeling approaches including

statistical regression models, artificial neural networks, Markov chain models,

cellular automata, economic models, and agent-based models. For each approach,

the theoretical and methodological basics and major characteristics will be exam-

ined. Moreover, several important issues challenging the successful implementa-

tion of land change modeling will be discussed, which include coupling human and

environmental systems, scale dependency and multilevel interactions, and temporal

dynamics and complexity. Finally, a review on the progress of integrating land

change models with other environmental modeling techniques for global environ-

mental change research will be provided.

Keywords Land change modeling • Land change science • Global change • Land

use and land cover change • Coupled human-environmental systems

1.1 Introduction

The process of global change is altering the earth system and its capacity to sustain

life (U.S. Global Change Research Program 2014). Rapid human population

growth, along with their increasing demand for food, water, energy, and other

T. Liu (*)

Department of Geography and Environmental Studies, Northeastern Illinois University,

Chicago, IL 60625, USA
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benefits, has become the main drivers of global change, especially since the second

half of twentieth century (Turner et al. 2007). Well-documented global changes

include concentrations of carbon dioxide in the atmosphere; alterations in the

biochemistry of the global nitrogen cycle; and on-going land use and land cover

change (Vitousek 1994). Land use and land cover change is a pervasive factor of

global importance not only because it represents a major component of global

change but also it strongly interacts with other components of global environmental

change. To date, as much as 50 % of the earth’s ice-free land has been transformed

or degraded (Haberl et al. 2007). Only between 2000 and 2010, approximately

13 million hectares of land area (about the area of Greece) were converted each year

to other land cover types (FAO 2010). Moreover, land changes have far-reaching

influences on the structure and function of the earth’s ecosystems, with equally

significant implications for the human society (Steffen et al. 2004). On the one

hand, land changes affect the ecosystems in several ways, such as reducing native

habitat and species, accelerating soil decomposition, disrupting freshwater

resources and quality, as well as leading to additional greenhouse gas release

(Turner et al. 1993; Camill 2010). For example, deforestation is thought to contrib-

ute to nearly 20 % of the global carbon dioxide release (1.5–2 billion tons of carbon)

(Camill 2010). On the other hand, rapid urbanization and the concentration of

human populations into large metropolises have altered the city’s cultures, politics,
and economics, which are just beginning to be fully recognized as a significant

global problem.

Over the past years, land change science has emerged as a fundamental compo-

nent of global environmental change and sustainability research (Turner

et al. 2007). This interdisciplinary field seeks to understand land use and land

cover dynamics through integrating the human, environmental, and geographical

information-remote sensing sciences. Challenges lie in the complexity of land

change processes, in which human and environmental systems interact over space

and time to reshape the earth’s surface. Research in land change science has been

dedicated to enhance our understanding of land changes through: (i) monitoring

land changes at different spatiotemporal scales, (ii) exploring the driving forces

(both human and environmental) and feedbacks underlying land changes, (iii)

spatially explicit modeling of land changes, and (iv) assessing system outcomes

(Turner et al. 2007). Land change modeling is a promising research area which can

support an integrated earth system science enterprise. Models allow us to link

human behaviors with landscape patterns for simulating the processes of land

changes in the past and present, for forecasting future landscape dynamics under

different scenarios, and for informing decision-making towards sustainable land

and resource management.

This chapter examines a collection of land change models (LCM) for global

environmental change research. To a large degree, modeling is a way of thinking

more than a technology. Over the past several decades, various modeling

approaches have been developed, which provide insights into the functioning of

land changes at aggregated and individual levels, across various spatiotemporal

scales, as well as in human, natural, and the coupled systems. Meanwhile, there are

numerous theoretical and technological challenges for the modeling of land

4 T. Liu and X. Yang
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changes given the complexity of the coupled human-environmental systems

(Rindfuss et al. 2004). Advances in geospatial theories, technologies and data

provide great opportunities for addressing various challenges and for developing

the next generation of LCMs. In the following sections, we first discuss the

theoretical foundations and major characteristics of various modeling approaches.

We then identify some outstanding issues for the LCM communities. Finally, we

describe several examples to illustrate how land change modeling can be coupled

with other ecological modeling techniques for integrated global environmental

change research.

1.2 Land Change Modeling Approaches

This section discusses several frequently used land change modeling approaches,

including statistical regression models, artificial neural networks, Markov chain

models, cellular automata, economic models, and agent-based models. The above

modeling approaches were identified based on the authors’ knowledge and a

personal archive of relevant publications, and a search on Web of Science using

the Keywords: (Topic¼ “land change” or “land use change” or “land cover

change” or “land use and land cover change” or “urbanization” or “urban growth”

or “urbanization” or “deforestation” or “farmland”) AND (Topic¼model or sim-

ulation). In the following subsections, we will briefly present the theoretical and

methodological basics and the relative strengths and weaknesses of each modeling

approach with selected examples.

1.2.1 Statistical Regression Models

The basic structure of statistical regression models is based upon empirical analyses

that link between land use and land cover changes (i.e., dependent variable) and a

set of environmental and socio-economic explanatory variables. The derived rela-

tionships are usually used to generate maps of land transitional probability to

predict potential land changes in the future. Some frequently used statistical

methods for land change modeling include logistic regression (Hu and Lo 2007),

generalized linear models (Aspinall 2004), generalized additive models (Brown

et al. 2002), and Bayesian statistics (Agarwal et al. 2005). A popular example is the

CLUE-S (Conversion of Land Use and its Effects at Small regional extent) model

developed by Verburg et al. (2002). The CLUE-S model consists of a non-spatial

demand module and a spatially explicit allocation module. The non-spatial module

estimates the aggregate demand of land changes, and the spatial module allocates

the land demands at various locations on a raster space based on stepwise logistic

regression. Logistic regression is a form of multivariate models when the dependent

variable has a categorical output, e.g., change or no-change of land use. Logistic

1 Land Change Modeling: Status and Challenges 5
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regression can be binomial or multinomial. It takes the logit transformation of the

categorical dependent variable to ensure that the dependent variable of the regres-

sion is continuous.

Given the less demand of computational resources and easy operability, statis-

tical regression models have become one of the most popular approaches for land

change research communities. Statistical methods provide valuable information on

key factors of land changes but are relatively deterministic compared to more

advanced forms of model. It can also contribute to theory building and testing

(Lesschen et al. 2005). However, it has very limited capability to represent the

complex interactions and the temporal dynamics within the coupled human-

environmental systems.

1.2.2 Artificial Neural Networks

Artificial neural networks (ANN) are developed based on machine learning algo-

rithms (e.g., Li and Yeh 2002; Liu and Seto 2008). The functioning of ANN is

relating to regression models in that they both seek to associate land change and its

potential drivers. ANN is characterized by its ‘learning’ ability which can be used to
detect non-linear relationships through the incorporation of a hidden layer. The

algorithms of ANN calculate weights for input layers, hidden layers, and output

layers by introducing the input in a feed-forward manner. For example, Liu and

Seto (2008) presented an ART-MMAP neural network model for urban growth

prediction from historical data. A set of proximity, neighborhood, and physical

factors were included. This paper also applied a multi-resolution analysis to test the

model’s performance. In general, spatial aggregation results in higher accuracies.

By comparing with a null model, two random models and a naive model, neural

network outperforms other models at finer resolution.

The strength of neural networks lies in their flexibility and non-linearity

(Lesschen et al. 2005) in predicting future changes. However, it provides little

interpretability because the relationships between variables remain invisible, crit-

icized as a “black box”. ANN is commonly used for predicting future land cover/

use changes based on the ‘knowledge’ learned from the patterns and behaviors

observed from historical data. The assumption here is that past and present trend

will continue into the future (i.e., stationarity), which tends to oversimplify the

temporal complexity of land change processes.

1.2.3 Markov Chain Modeling

The Markov chain modeling approach employs a discrete stochastic process to

determine the transition probability of land conversion. There is a set of discrete

states in the modeling structure. In the context of land change modeling, each state
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usually represents different types of land cover/use. The model moves from one

state (e.g., land cover/use type) to the other with some transition probability

depending on the current state but not the previous ones (often called a process

without memory). Transition probabilities are computed based on the observed land

change data which represent the probability that the land cover/use type within a

cell (i.e. spatial unit) will convert (or, move) to another land type within the same

period of time in the future. For example, Muller and Middleton (1994) applied

Markovian analysis to time series data to quantify land use changes over a human-

dominated landscape. Markovian analysis can represent all the multi-directional

land use changes between land use categories. Sequential time series data were used

to simulate land use change over a longer time period.

Markov models usually do not account for specific drivers of land changes,

which assume that collective forces functioning to produce the observed patterns in

the past will continue to do so in the future. In other words, Markov models are used

to project future land changes based on the assumption of stationarity. Markov

model can be dynamic by changing the transition probabilities in some sort of

regular patterns over time (Howard et al. 1995). Given the capability of automat-

ically computing land transition probability with time series data, Markov chain

models are often integrated with more complex forms of models such as cellular

automata and agent-based model that will be discussed shortly.

1.2.4 Cellular Automata

A conventional modeling framework describes systems in equilibrium or as moving

between equilibriums. However, the evolution of land changes usually does not

reach a stable equilibrium but exhibits features of complexity (e.g., edge of chaos,

emergence, and non-linearity). The concept of complexity emphasizes on the

interdependence among constituent parts. Therefore, complex adaptive system

(CAS) is a system composed of interconnected parts that as a whole exhibits one

or more properties that are not obvious from the individual parts. Cellular automata

(CA) models are built upon static cell-based environment where each cell has a

state and can transfer to others based on the current state and the interactions with

its neighborhoods using a set of transition rules (Batty and Xie 1994; Clarke

et al. 1997; Miller and Page 2007). The four major components of CA therefore

are state, landscape/space, neighborhoods and transition rules. For each of the four

components, their structures vary from simple to more complex forms (e.g., Stevens

and Dragicevic 2007). The transition rules are usually set to represent spatial and

temporal constraints (Sante et al. 2010). One of the well tested CA models is the

SLEUTH (Slope, Land use, Exclusion, Urban extent, Transportation, Hillshade)

model developed by Clarke et al. (1997) for simulating urbanization. This model

defines complex rules representing control parameters that allow the model to self-

modify under the circumstances it generates. More applications of this model are
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found in Clarke and Gaydos (1998), Yang and Lo (2003), Jantz et al. (2004),

Mahiny and Clarke (2012), and Akin et al. (2014).

As a dynamic modeling tool, CA model has gained great popularity among all

modeling approaches. Although offering a framework for studying complex sys-

tems, CA modeling does not explicitly incorporate drivers of change except for the

neighborhood interactions and transition rules. In addition, CA does not explicitly

account for human decision makings in their modeling structures as the cells cannot

move and their transition in states mainly represent the physical processes of land

conversion.

1.2.5 Economic Models

Economic models generate land use patterns as aggregate outcomes from the

underlying microeconomic behavior that determines demand and supply relation-

ships. These models explicitly involve human choices and economic behaviors and

thus address the human dimension of land changes, mainly focused on land uses.

The basic idea of economic models of land changes is based on market equilibrium

(e.g., market clear with zero excess demand and zero excess supply). Economic

models can operate at aggregate scale (e.g., sector-based models) and disaggregate

scale (e.g., spatially disaggregate models). Sector-based models represent the

global economy and the interactions between different sectors (i.e., general equi-

librium models) or only some specific sectors as a closed system (i.e., partial

equilibrium models). Therefore, sector-based models describe the amount of land

allocated to different uses by demand-supply structures (Sohngen et al. 1999).

Spatially disaggregate models simulate the optimal land use decision based on

profits or utility maximization or cost minimization (Bockstael 1996; Wu

et al. 2004). These models explicitly represent individual decision-making at the

micro level that will lead to land change outcomes at the aggregate level.

Economic models explicitly represent human land use decisions based on

market and price mechanism compared with most statistical, machine learning

and cellular models. The spatially disaggregate models are promising in accounting

for the market feedbacks and dynamics within the land change systems. These

models are often used in the agent-based framework to simulate the decision-

making processes of human agents. Economic models are useful for

non-marginal land change simulation and prediction. However, given the complex-

ity of human choices and data scarcity, it is quite challenging for economic models

to build the underlying assumptions.
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1.2.6 Agent-Based Models

Agent-based models (ABM), or the multi-agent system models (MAS), are devel-

oped based upon the assumption that “agent” is the major driver of a system (e.g.,

Parker et al. 2003; Batty 2005; Torrens and Benenson 2005; Xie et al. 2007). ABMs

are similar to CAmodels which are both spatial transition models built on a bottom-

up perspective for the simulation of emergent properties of complex adaptive

systems (Couclelis 2001). The three primary components of an ABM are the agents,

landscape and their interactions. Within the modeling structure, the agents can

interact with each other as well as the environment across multiple scales. Agents

could employ high degree of rationality and information-processing ability in

decision making which will influence the behavior of the systems (Miller and

Page 2007). A number of ABMs apply the utility function to represent agents’
decision-making on location choices (e.g., Brown and Robinson 2006; Xie

et al. 2007; Ligmann-Zielinska 2009). Usually, an agent will select a location that

can maximize the utility or profit. Although traditional ABM is built on the bottom-

up perspective, researchers in geographic and ecological modeling have proposed

that ABM should not be restricted to the bottom-up simulation (Xie et al. 2007). In

the paper by Xie et al. (2007), the author considers both macro level and micro level

spatiotemporal urban dynamics. The macro level model is based on a stepwise

regression model to project the aggregated rate of change at township level. The

micro level model is to allocate the changes at the cellular level. The interaction

among the two levels is also modeled through incorporating township competition

in the utility function.

The structure of ABM is promising for land change research in that it explicitly

represents human-nature interactions and feedbacks which are essential compo-

nents for simulating land changes as coupled human-environmental systems. How-

ever, given its complexity in model design and implementation, much effort needs

to be done to examine its operability for simulating real world processes and to fully

realize the potential of ABM. Moreover, the advancement of ABM is challenged by

the lack of detailed data to represent and validate complex human decision-making

processes and interactions among agents at the micro level.

1.3 Major Issues in Land Change Modeling

The usefulness and complexity of land change modeling lie in the necessity to treat

land changes as coupled human-environmental systems with complex interactions

and feedbacks at multiple spatiotemporal scales (Turner et al. 2007). This section

discusses several important theoretical and methodological issues in land change

modeling: (i) coupling of human decision-making and environmental conditions,

(ii) scale dependency and multilevel interactions, and (iii) temporal dynamics and

complexity. These proposed issues are important for developing a comprehensive
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understanding of land changes in an integrated framework for global environmental

change.

1.3.1 Coupling Human and Environmental Systems

Land changes are both causes and consequences of earth system changes, including

the biophysical and the socioeconomic processes. Models taking specific drivers

into considerations have tried to include factors from both subsystems. One major

challenge arises from the integration of data and processes representing biophysical

conditions and human decision making. Difficulty lies in the different levels of

aggregation and spatial unit of observation (Rindfuss et al. 2004). In social-

demographic analysis, data are usually collected at some levels of aggregation,

whereas direct measurements and remote sensing techniques have been more

commonly used in extracting biophysical variables (Jensen 1983). As a result,

research of the coupled human-environmental systems has to deal with the problem

of (i) integrating different types of data (e.g., raster and vector), (ii) integrating

spatial data at different scales, (iii) integrating spatial data from different dimen-

sions (e.g., point, line, polygon), and (iv) integrating data acquired at different

locations (Gotway and Young 2002). These four types of spatial data integration

problems are often intertwined, which leads to even more challenges.

The issue of coupling human and environmental systems is also related to the

scale issues in that statistical modeling and machine learning are designed at the

scale of the coupled system as a whole while cell-based models can represent

multilevel dynamics in both dimensions. Moreover, it is quite challenging to fully

represent the processes in the human subsystems due to the lack of specific data on

human decision-making and a high level of uncertainty. Towards a comprehensive

understanding of the coupled system, the potential interactions and feedbacks

within the land change system need to be incorporated in the models. In this

sense, the structures of agent-based models and integrated models seem promising

for integrating human behaviors and biophysical feedbacks. Its capability in

representing temporal dynamics further facilitates the realization of simulating

system feedbacks in land change processes.

1.3.2 Scale Dependency and Multilevel Interactions

Research on the coupled human-environmental systems is further complicated by

the issue of scale dependency and the multilevel interactions within the system. One

of the early steps in spatially explicit modeling is to identify an appropriate scale

(e.g., extent and resolution) for analyzing the spatial phenomena, such as land

changes. This is known as the Modifiable Areal Unit Problem (MAUP) in

geospatial science, that is, the correlation between variables may change with scales
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(Openshaw and Taylor 1979). The common approach to deal with the MAUP issue

is to apply a multi-scale analysis to examine how the relationships among variables

change with varying levels of aggregation and different ways of zoning (e.g.,

Veldkamp and Fresco 1997; Walsh et al. 2001; Evans and Kelley 2004; Hu and

Lo 2007). Multilevel statistical modeling has also been used for analyzing land

change driving factors at nested hierarchical levels (Hoshino 2001).

Land change modeling is further complicated by the potential interactions and

feedbacks among different levels of processes (Verburg 2006). In simulating the

multilevel interactions, the modeling frameworks of cellular automata and agent-

based model allow for the representation and incorporation of processes at multiple

levels. The current land use models focus on two types of cross-scale dynamics:

top-down and bottom-up simulation. The top-down control is represented by the

government policies and global interactions affecting land demand and growth

suitability. From the bottom-up perspective, human makes decisions on land

allocation which produces the aggregate land use patterns. Further exploration on

their capabilities is needed given the challenges in theoretical development and data

availability, as well as the high computing demand of agent-based modeling.

1.3.3 Temporal Dynamics and Complexity

Simulating temporal dynamics is another critical issue for land change modeling,

which brings about the need to handle time lags and feedback responses in the

temporal dimension of land change processes (Agarwal et al. 2002). Under the

assumption of stationarity, statistical modeling and machine learning have very

limited capability to represent temporal dynamics and complexity of the land

change processes. They often assume the factors leading to the observed patterns

and processes in the past will continue to do so in the future. This assumption is

problematic as it is very likely the factors will alter their future behaviors given

changes in the landscape or some exogenous conditions. To the contrary, the

framework of cellular automata and agent-based models allows for the temporal

dynamics to be considered as the behaviors at individual level may alter in response

to landscape changes or incorporated external variables at each simulation

time step.

The ecological and socioeconomic responses within the coupled human-

environmental systems may not be immediately observable or predictable because

the existence of time lags between the human-nature interactions and the appear-

ance of ecological and socioeconomic consequences. To address this issue, a

temporally lagged variable can usually be included in some models such as the

statistical regression models. More complex models have the flexibility to represent

time lags in land use decisions. For example, Irwin and Bockstael (2002) treat the

interactions among neighboring agents making a residential conversion decisions as

a temporally lagged process to better represent the real world decision-making

processes.
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1.4 Land Change Modeling for Global Environmental
Changes

The use and integration of models will lead to a comprehensive understanding of

the complexity of the coupled human-environmental systems (i.e., synthesis and

assessment issues). In the context of global environmental change and sustainability

science, increasing concerns are given to research on sustainability that can inform

practice and decision making in planning and management domains. The develop-

ment of the next generation of LCMs needs to take these concerns into consider-

ation towards an integrated research framework for land change and earth system

studies. In this section, we review four research articles that illustrate the progress

of coupling land change modeling with other environmental analysis and modeling

techniques for studying the interactions between land change and other components

of global environmental changes, such as climate change, hydrological processes,

soil degradation, and biodiversity loss.

Kerr et al. (2003) described an integrated process-based modeling approach that

couples ecological modeling of Carbon dynamics with economic modeling of land

use for the prediction of land use and Carbon storage. This integrated model

contains three components to simulate the interactions and feedbacks between

ecosystems and human land-use activities. The ecological model and economic

model were coupled through the land manager’s choice of land use at each time

step. The complex interactions were then realized through the exchange of individ-

ual model outputs as endogenous variables that will affect the next step of simula-

tion. For example, the ecological model provides inputs to the land use choice

model through estimates of biomass productivity. The key outputs from the inte-

grated model include both land use and Carbon stocks.

Lin et al. (2007) developed an approach for modeling the impacts of future land

use and climate changes on hydrological process through integrating the CLUE-S

model (Verburg et al. 2002) and the generalized watershed loading functions model

(Haith and Shoemaker 1987). The structure of the CLUE-S model was described

earlier in Sect. 1.2.1. The hydrological model is a combined distributed/lumped

parameter watershed model that simulates runoff, sediment, and nutrient loadings

in a watershed using variable sized source areas of different land use/cover types.

The simulated land use/cover types have different coefficient values that are used to

determine the evapotranspiration in the hydrological model. Moreover, climate

change scenarios generated from general circulation models (GCM) simulations

have also been included to examine the impacts of climate change on the hydro-

logical cycle.

Van Rompaey et al. (2002) loosely coupled land use change model with soil

erosion model to predict future soil degradation and its on-site and off-site conse-

quences. They firstly applied stochastic simulations to simulate future land changes

based on the calculated afforestation and deforestation probabilities from historical

land use maps. Then a spatially distributed soil erosion/sediment delivery model,

SEDEM, was used to quantify the effects of afforestation or deforestation on soil
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erosion and sediment delivery. Land use classes are not directly involved in

calculating the soil erosion component of SEDEM. But the probability of land

conversion and soil erosion rate are both affected by the same factor of slope

gradient. The simulated future land use patterns were used as input for the sediment

transport component in SEDEM, with a transporting capacity coefficient estimated

for each land use class.

Reidsma et al. (2006) assessed the relationship between land use intensity and

related biodiversity in agricultural landscapes. For land use simulation, an inte-

grated model was applied to quantify the area changes in agricultural land use and

the CLUE model was used for land use allocation. Biodiversity in this study was

measured using the ecosystem quality, which is expressed as the mean abundance

of species originally present in the natural ecosystems relative to their abundance in

undisturbed situations. Following the land use scenarios, the ecosystem quality of

agricultural landscapes can be calculated as conditioned by land use. Then the

impact of agricultural land use changes on overall biodiversity was assessed by

comparing the relative size of nature area and the average ecosystem quality of

natural ecosystems.

1.5 Conclusions

Land changes are processes in which human and natural systems interact over space

and time to reshape the earth’s surface. They are both causes and consequences of

global change that interacts with other components of the earth system. Land

change science has recently emerged as a fundamental component of global

environmental change and sustainability science. However, the complexity of

land systems leads to many challenges for the research communities. Among the

research components in land change science, land change modeling appears to be

promising in improving our understanding of land use and land cover change as a

coupled human-environmental system.

A wide variety of modeling approaches has been developed to simulate the

processes of land changes. This chapter has reviewed some commonly used

approaches, including statistical regression models, artificial neural networks

(ANN), Markov chain modeling, cellular automata, economic models, and agent-

based models (ABM). These different approaches are built upon various theoretical

and methodological foundations. The order of these approaches generally repre-

sents the theoretical transition of land change modeling from aggregate to individ-

ual modeling frameworks. The best model to use depends on specific applications

given their unique strengths and weaknesses.

The complexity for land change modeling is owing to their need to represent the

spatiotemporal dynamics of the coupled human-environment systems. For coupling

the factors from human and environmental systems, development of data integra-

tion techniques can help address the differences in spatial data. However, more

comprehensive understanding and representation of the integrated processes within
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the coupled system is one of the major challenges for land change modeling. To

deal with the influences of spatial dependency, multi-scale analysis is necessary to

address the Modifiable Areal Unit Problem (MAUP). Another important issue is

to model the interactions and feedbacks among multiple scales in the land change

processes. New models need to take into consideration of the multilevel processes

and to integrate alternative perspectives into the existing modeling framework. In

modeling land change processes, a temporally dynamic modeling framework is

critical to capture the necessary behavior changes during the modeling time

periods. Moreover, the factor of time lags needs to be considered to avoid biased

simulation.

The advances in land change modeling offer great opportunities to study global

environmental change in an integrated framework. The examples reviewed in this

chapter should shed light on the progress of coupling land change modeling with

other ecological modeling and analysis techniques for analyzing the interactions

between land changes and other components of global environmental change. Many

of the integrated frameworks are based on the use of simulated land use patterns or

other land use/cover derived variables as input to the ecological models. More

complex examples make use of the process-based models that integrate land change

models and ecological models through individual decision-making using outputs

from each model.
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Chapter 2

Modeling the Effects of Land Use Change
and Climate Change on Stream Flow Using
GIS and a Hydrological Model

Maochuan Hu, Bin He, Pingping Luo, Kaoru Takara, and Weili Duan

Abstract This paper reports our research effort aiming to investigate the applica-

bility of integrating a hydrological model and the Hydrological Predictions for the

Environment (HYPE) model with a geographic information system (GIS) to exam-

ine the effect of land use change and climate change on stream-flows with the Kamo

River basin (KRB) located in the central Honshu island, Japan as a case study. The

goal of this study was to provide important information for understanding water

discharge variations as a basis to guide water resource managers in environmental

change decisions in this river basin. This goal was accomplished by two steps

(i) comparing HYPE-generated hydrographs for various meteorological data from

history to present at current land use (S1 and S2); and (ii) comparing HYPE-

generated hydrographs for historical and current land use scenarios at current

climate (S3 and S4). The calibration and validation results suggest that HYPE

performs well in the case study site for daily simulations. The results of S1–S2

indicate that with the impact of climate change, the trend of annual and seasonal

stream flows at the Kamo River Basin outlet would decrease. However, there is no

evidence to indicate that the flood risk would be decreasing. The results of S3–S4
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show that the conversion of forest, glass and agriculture (FGA) into urban area

would induce high peak flows, a reduction in annual evaporation and an increase in

annual surface runoff.

Keywords Land use change • Climate change • Hydrologic modeling • HYPE •

GIS • Kamo River basin

2.1 Introduction

In the last decades, the relentless usage of fossil fuel, growth of population,

migration to urban areas and consequent global climate change, land use transition

not only induce hydrological cycle variation and increase the risk of water-related

disasters also bring challenges to the current water management and planning

efforts. Water authorities in many places have paid special attention to water

management in order to mitigate the disaster risk. Understanding hydrological

processes, especially in the context of climate change and land use change is

necessary for water resources sustainable management.

A number of studies have been conducted on the impact of climate and land

cover variations on water resources balance at catchments (Cuo et al. 2013;

Cornelissen et al. 2013; Öztürk et al. 2013; Arheimer et al. 2012; Chu et al. 2012;

Zhang et al. 2012; Delpla et al. 2009). Cuo et al. (2013) found that the upper Yellow

River Basin hydrological regimes had undergone changes over the past decades as

reflected by a decrease in wet and warm season stream flow, and annual stream flow

due to climate change and human activity. Öztürk et al. (2013) showed the water

budget was most sensitive to variations in precipitation and conversion between

forest and agricultural lands but was less sensitive to the type of forest stands in the

Bartin spring watershed, Turkey. However, hydrological responses to climate and

land-use changes are different from place to place. It is necessary to conduct a study

of hydrological variation under climate and land-use changes on the regions with

few previous studies to provide valuable information for water management.

The basin of interest in this study, Kamo River basin (KRB), is the political and

socioeconomic center of Japan in history and also a famous tourist attraction with

about 1.5 million residents nowadays. The riverbank of Kamo River is popular with

tourists and residents for many activities such as sightseeing during Sakura blooms

(cherry blossoms), fishing and walking. These activities are sensitive to stream flow

changes. To date, there has been limited research on discharge variation in this

basin. Luo et al. (2014a) took a palaeoflood simulation in KRB and found that lower

discharge and earlier peak discharge time were exhibited under historical land use.

However, to what degree water discharge has been altered under climate and land

use changes certainly merits further investigation.

Rainfall-runoff dynamics are a complex process affected by various factors:

rainfall, temperature, vegetation etc. Many methods have been used to quantify

hydrological variations to all kinds of driving factors in river basins (Swank and

Crossley 1988; Singh and Gosain 2011; Beskow et al. 2012; Dixon and Earls 2012;
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Dechmi et al. 2012; Koch et al. 2013). Swank and Crossley (1988) studied hydro-

logical responses of deforestation and forestation from an early age using compar-

ative tests method. Dixon and Earls (2012) examined the effects of land use change

on a stream flow with a hydrological model. Hao et al. (2008) reports the variations

of surface runoff under climate change and human activities in the Tarim River

Basin by trend analysis of meteorological, socioeconomic and hydrological data.

Among them, hydrological simulation is the most widely used method and model-

ling can be looked upon as an objective and repeatable method with which to

interpolate and extrapolate knowledge in time and space between observations

(Str€omqvist et al. 2012). Also, the modelled data can be widely used by water

authorities where measured data are not available for expert judgments.

This study, by applying a rigorously calibrated and validated process-based,

integrated semi-distributed hydrology model over the KRB aims to identify the

variations of stream flow at the outlet of the basin and to estimate the effects of

climate change and land use transition on stream flow changes. The ultimate goal of

this study is to provide important information for understanding water discharge

variation, and guide water resource managers in environmental change decisions in

the KRB.

2.2 Methodology

2.2.1 Study Area

The KRB is in the central part of the island of Honshu, Japan. The length of the river

is about 31 km, flowing into Katsura River. The area of the basin is 210 km2,

ranging in elevation from 25 to 882 m, with average slope angles of about 25.7�.
There is no weather station in the basin and the nearest station is Kyoto station

(shown in Fig. 2.1). The annual precipitation from 1978 to 2008 at the Kyoto station

is 1,491 mm and 84.3 % of precipitation is concentrated from March to October.

The daily temperature ranges from �3.2 to 32.8 �C and annual mean temperature

from 1978 to 2008 is about 16 �C.
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2.2.2 Model Description

The Hydrological Prediction for the Environment model (HYPE) was employed to

investigate and understand the influences of climate and land use changes on KRB

hydrology. HYPE is a process-based, temporally continuous, semi-distributed

hydrology model, which integrates landscape elements and hydrological compo-

nents along the flow paths (Lindstrom et al. 2010; Str€omqvist et al. 2012). It has

been applied in some regions of the world in a range of climate conditions and

resolutions and existing studies have shown that it performed well in simulating

stream flow (Str€omqvist et al. 2009, 2012; Lindstrom et al. 2010; Arheimer

et al. 2012; Jiang et al. 2013; Jomaa et al. 2013; Donnelly et al. 2014).

HYPE shares some similarities to the HBV (Bergstr€om 1976), VIC (Liang

et al. 1994) and SWAT (Arnold et al. 1998). The model partitions a basin into

multiple sub-basins, which are further subdivided into a set of hydrological

response units (HRUs) (Flügel 1995). HRU is determined by land use and soil

type or other landscape characteristics such as elevation and slope. In this study

HRUs are the combinations of land use and soils. Flows generated from each HRU

in a sub-watershed are summed and routed through channels. HYPE model is based

on the water balance in the soil profile and the simulating processes mainly include

snowmelt, infiltration, surface flow, evapotranspiration, percolation, tile drainage,

macro-pore flow and groundwater flow. The detailed calculation methods of each

model component can be found in literature (Lindstrom et al. 2010).

Fig. 2.1 Location of the study site: The Kamo River Basin (KRB) and a digital elevation model

(DEM)
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2.2.3 Data Preparing and Model Setup

The meteorological data at Kyoto station is obtained from Japan Meteorological

Agency and the daily data from 1979 to 2008 is used as input data to the model. The

100 m DEM of KRB and 100 m mesh land use data sheet of 2006 are from the

Nation and Regional Planning Bureau of MLIT. The 1927 land use stems from the

research of Luo et al. (2014b) (Shown in Table 2.2). The soil map of the KRB (from

MLIT) is presented in Fig. 2.2a and there are six types and the percentage

Fig. 2.2 (a) Soil type map (b) Land use map of 2006 (c) Hydrological response units (HRUs) map

of 2006
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distribution is: (1) Organic Soil (1.7 %), (2) Coarse Soil (2.4 %), (3) Fine Soil (5.4

%), (4) Brown Forest Soil (72.1 %), (5) Thin Soil (3.2 %), and (6) Undefined Soil

(15.2 %). At the outlet of the basin, there is a monitoring station called Fukakusa

station, which has discharge data of several years from 1991 to 1995 and from 2002

to 2005. The observed discharge data are used to calibrate and validate the model.

The DEM, land use and soil type data were processed in ArcGIS. Based on the

DEM data and hydrological analysis tools of ArcGIS, the basin was divided into

11 sub-basins (Fig. 2.1). Hydrological response units were created by the combi-

nation land use and soil type maps using the tool of raster calculation. Figure 2.2c

shows the distribution of HRUs in 2006. There are 18 HRUs in KRB. Each HRU is

named with double-digit. The first digit means land use type and the second digit

means the soil type.

After pre-processing in ArcGIS, the database files were prepared including

meteorological, geographical, hydrological data, etc. And some parameters without

observed data were set manually in general agreement with hydrological knowl-

edge and literature values in the process of calibration and a HYPE project was

built.

2.2.4 Model Calibration

The initial conditions used for the hydrologic models strongly influence the values

of the parameters and predicted outcome (Flügel 1995; Dixon and Earls. 2012). In

order to reduce the uncertainties over initial conditions, the beginning date of the

simulation in the model is 1978.1.1 under calibration, validation and all scenarios.

The model is calibrated and validated by comparing the simulated stream flow and

observed stream flow on a daily basis for two different 3-year periods. The

calibration period is from 2003.1.1 to 2005.12.31 and the validation period is

from 1993.1.1 to 1995.12.31. Calibration of the model was carried out automati-

cally with an aim of obtaining a good calibration results fit, but with the constraint

that parameters should be in general agreement with hydrological knowledge and

literature values. In these processes, Monte Carlo simulation method is used. The

performance of the calibrated parameters was evaluated by Nash-Sutcliff efficiency

(NSE). The NSE is commonly used in hydrological modeling. It measures the

efficiency of a model by relating the errors to the variance in the observations. A

perfect fit corresponds to NSE¼ 1, whereas a naive model that uses the mean value

results in NSE¼ 0. The NSE efficiency is usually evaluated over a certain time

period (n time steps) for one basin at a time. The equation for NSE is as follows:

NSE ¼ 1�
Xn

i¼1
O� Sð Þ2Xn

i¼1
O� O
� �2 ð2:1Þ
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where O and S are the observed and simulated data, respectively, and n is the total

number of data records.

Monte Carlo simulation is a broad class of computational algorithms that rely on

repeated random sampling to obtain numerical results; typically one runs simula-

tions many times over in order to obtain the distribution of an unknown probabi-

listic entity. In the structure of HYPE, there is a module of Monte Carlo simulation.

The work of modelers is to assign the intervals and tolerance values of calibrated

parameters. Then the parameters are automatic calibrated in the model with the task

of Monte Carlo simulation.

2.2.5 Climate Trends Analysis

The Mann Kendall test (MKT) was applied in this study to analyze the monotonic

trend of annual and monthly precipitation and mean temperature from Kyoto

station. MKT is a non-parametric statistical procedure used to test for trends in

time series data (Yu et al. 1993). The null hypothesis in the Mann-Kendall test is

that the data are independent and randomly ordered, i.e. there is no trend or serial

correlation structure in the time-series (Hamed and Rao 1998). For independent and

randomly ordered data in a time-series xi {xi, i¼ 1, 2, . . ., n}, the null hypothesis H0

is tested on the observations xi against the alternative hypothesis H1, where there is

an increasing or decreasing monotonic trend (Yu et al. 1993). According to the

condition of n� 10, the S variance is described according to Eq. 2.2 below:

Var Sð Þ ¼
n n� 1ð Þ 2nþ 5ð Þ �

X e

i¼1
ti � 1ð Þ 2ti þ 5ð Þ

18
ð2:2Þ

where e is the number of tied groups and ti is the number of data values in the ith
group.

The statistical S test is given as follows:

S ¼
Xn�1

e¼1

Xn

i¼eþ1
sgn xi � xeð Þ ð2:3Þ

where

sgn φð Þ ¼
1 φ > 0

0 φ ¼ 0

�1 φ < 0

8<
: ð2:4Þ
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The normal approximation Z test by using the statistical value S and the variance
value Var(S) is written in the following form:

Z ¼

S� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp if S > 0

0 if S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp if S < 0

8>>>><
>>>>:

ð2:5Þ

For the normal approximation Z test and the cumulative standard normal distri-

bution ϕ, if Zj j � Zα=2 and ϕ Zα=2ϕ
� � ¼ α=2, then the H0 hypothesis is adopted.

Where α is the probability level of rejecting the null hypothesis H0 when it is true?

The value of Z shows the statistical trend. If Z< 0, it indicates a decreasing trend

and if Z> 0 it indicates an increasing trend (Luo et al., 2011).

2.2.6 Impact Assessment of Meteorological Variation

To evaluate the effects of climate change, the meteorological data from 1979.1.1 to

2008.12.31 was selected. Coupling the meteorological data and land use map of

2006, two scenarios were established (as follows). The influences of climate

variations were quantified by the trend analysis of the simulation results from

1979 to 2008 and comparing the simulation results of two scenarios.

S1: 1979–1988 climate and 2006 land use

S2: 1999–2008 climate and 2006 land use

2.2.7 Impact Assessment of Land Use Variation

To evaluate the effects of land use change, the meteorological data from 2003.1.1

to 2005.12.31 was selected. Coupling the meteorological data and land use maps of

2006 and 1926, two scenarios were established (as follows). The influences of land

use changes were quantified by comparing the simulation results of the two

scenarios.

S3: 1927 land use and 2003–2005 climate

S4: 2006 land use and 2003–2005 climate
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2.3 Results

2.3.1 Variations of Precipitation and Temperature

The trend analysis was carried out for the annual, flood (from March to October)

and dry (from November to next February) seasonal rainfall and mean temperature.

The annual and seasonal results were shown in Table 2.1. The annual and flood

seasonal rainfall trended to decrease and dry seasonal rainfall trended to increase

during 1979–2008. However, the trend is statistically insignificant. Whereas annual

and seasonal mean temperature increased significantly.

2.3.2 Land Use Changes

Table 2.2 exhibited the land use types of KRB in 2006 and 1927. From 1927 to

2006, the trend is forestland, grassland and farmland converted into urban areas.

The city sprawled twice larger (from 10.7 % of total area to 21.3 %). Rising rate is

almost up to 100 %. The decreased areas of forest, grassland and farmland are

4.3 km2, 5.56 km2 and 9.09 km2, respectively. However, since the proportions of

grass and agriculture field in KRB are small, there are 80.6 % of grass and 69.1 % of

agriculture field disappeared.

2.3.3 Calibration and Validation of the HYPE Model

The HYPE model was calibrated for a 3-year period from 2003 to 2005 using the

land use of 2006 and the resulting parameters were kept constant for the validation

step for a different period from 1993 to 1995. Figure 2.3 provides observed and

HYPE simulated daily stream flow at the KRB outlet for calibrated and validated

periods. Simulations during the calibration period captured the observed evolution

well for daily time scales and in general, the observed peak flow was higher than the

modelled peak flow. Deficiencies in HYPE simulations included mismatched peak

flows for some days of extreme rainfall and underestimation of base flow, which

Table 2.1 Trend analysis for

precipitation and temperature
Item Period

Mann-Kendall

Z P

Precipitation Annual �0.91 N

Dry seasonal 0.61 N

Flood seasonal �1.2 N

Temperature Annual 3.35 Y

Dry seasonal 1.75 Y

Flood seasonal 3.25 Y

Z is statistics of MKT; Ymeans significant at the level of P¼ 0.05
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Fig. 2.3 Observed and simulated daily streamflows at the outlet of the KRB and rainfall data over

the calibration and validation periods

Table 2.2 Classification and the area for each land use type for 2006 and 1927

ID Name

Land use area

(km2) Changed area from 1927

to 2006 (%)

Rising rate from 1927 to

2006 (%)1927 2006

1 Forest 138.21 133.91 �2.4 �3.1

2 Urban 19.3 38.35 10.6 98.7

3 Water 1.67 1.91l 0.1 14.4

4 Grass 6.9 1.34 �3.1 �80.6

5 Agriculture

field

13.16 4.07 �5 �69.1

6 Waste Land 1.12 0.78 �0.2 �30.4
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was most due to errors in rough soil data. There is no initial soil observed data (field

capacity, wilting point, etc.). During the calibration period, correlation coefficients

and NSE were 0.87 % and 0.72, respectively.

During the validation period, simulated daily stream flow at the outlet of the

KRB also captured the observed evolution well. Peak flow simulations improved in

comparison to the calibration period. However, base flow still was underestimated.

Correlation coefficients and NSE were 0.83 % and 0.69, respectively.

2.3.4 Climate Change Impact

Figure 2.4 displays simulated annual and seasonal evaporation and outlet stream

flow at the KRB. The figure illustrates that linear trends occurred in evaporation and

Fig. 2.4 Simulated annual and seasonal evaporation and outlet stream flows in the KRB
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stream flow. Annual and flood seasonal stream flows trended to decrease from 1979

to 2008, whereas dry seasonal stream flow had rising trends. Annual and seasonal

evaporation seemed to increase. In addition, stream flow and evaporation have

same trends as precipitation and temperature (Table 2.1 and Fig. 2.4), respectively.

Table 2.3 shows average annual precipitation, mean temperature, stream flow,

surface runoff and evaporation in two scenarios of S1 and S2. It reveals that annual

and flood seasonal rainfall and surface runoff of S2 decreased 131.1 mm and

46.2 mm respectively in comparison to S1. Evaporation rose 9.1 mm and

0.7 mm, respectively. In arid season, however, rainfall, surface runoff and evapo-

ration all increased.

In addition, the comparison of average annual maximum daily (AAMD) stream

flows and maximum daily (MD) stream flows of S1 and S2 demonstrates that

AAMD stream flow of S1 was higher, while MD stream flow of S2 was larger

(Table 2.4).

2.3.5 Land Use Change Impact

Computed daily stream flows of scenarios 3 and 4 are shown in Fig. 2.5. There are

large differences on peak flows. The peak flows of S4 are much higher than the ones

of S3. It can be concluded that the conversion of forest, glass and agriculture (FGA)

into urbanization would lead to high peak flow.

Furthermore, annual and monthly differences of surface runoff and evaporation

between S3 and S4 were estimated (shown in Figs. 2.6 and 2.7). With respect to

evaporation, the conversion of FGA into urbanization would result in a reduction of

about 35 mm, 36 mm and 31 mm for the years of 2003, 2004 and 2005. Greatest

Table 2.3 Differences of mete-hydrology between S1 and S2 in the KRB

Precipitation Temperature Surface runoff Evaporation

S1 Annual 1,519.2 15.3 361 754.3

Flood season 1,320.8 19.6 327.7 672.2

Dry season 198.4 6.5 33.4 82.1

S2 Annual 1,388.1 16.2 314.8 763.4

Flood season 1,142 20.6 261.2 672.9

Dry season 246.1 7.4 53.7 90.7

S2–S1 Annual �131.1 0.9 �46.2 9.1

Flood season �178.8 1 �66.5 0.7

Dry season 47.7 0.9 20.3 8.6

Table 2.4 Simulated daily

stream flow at the outlet of

KRB for two scenarios

Stream flow S1 S2

AAMD (m3s�1) 69.7 54.8

MD (m3s�1) 102.2 104.5
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differences were presented in summer. On the contrary, the surface runoff increased

about 39 mm, 35 mm and 23 mm for the years of 2003, 2004 and 2005 under the

conversion of FGA into urbanization.

2.4 Discussion

2.4.1 Model Uncertainty

Model uncertainties are resulted from uncertainties in input data, model dynamics

and physics and parameter values. To reduce uncertainties of the HYPE model and

examine the suitability of HYPE for impact studies in the KRB, the model was

calibrated and validated at the gauge of the basin outlet. The calibration and

validation results showed that HYPE simulations matched observations well in

various periods. Although this ensures that HYPE is applicable in this basin, it is

recognized that HYPE displayed relatively large biases in terms of base flows that

were most likely due to lack of soil hydrology data (field capacity, wilting point,

etc.). These biases, however, should not compromise our analysis results since the

analysis was based on the comparison of different simulated scenarios and was not

focused on base flow.
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Fig. 2.5 Simulated daily stream flows at KRB outlet according to S3 and S4
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2.4.2 Results Discussion

As we know, runoff has positive correlation with rainfall and negative relation with

evaporation. The simulated results of annual and flood seasonal stream flows

demonstrate the relationships. In arid season, rainfall, evaporation and surface

runoff had the same rising trends revealing that the contributions of rainfall to

runoff were larger than these of evaporation to runoff. Similar results had been

reported in some regions suffered homogeneous climate changes (Hao et al. 2008;

Zhang et al. 2012). But, there is no evidence to prove the flood risk decreasing in the

KRB since there is no decreasing trend in the MD stream flow in the two different

periods, though AAMD stream flow decreased from S1 to S2 and annual stream

flows seemed to reduce.

The results of stream flow variations under land use changes indicate that the

conversion of FGA into urban area resulted in high peak flow, a reduction in annual

Fig. 2.6 Annual and monthly evaporation of S3 and S4 in the KRB
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evaporation and an increase in annual surface runoff. This phenomenon might be

explained by different hydrological processes in different land-use types. With

contrast to FGA area, infiltration in urban area is much smaller as most of urban

areas are covered by impervious surface, which leads to quick runoff and reduce

infiltration. Luo et al. (2014a) took a Palaeoflood research in KRB and found

similar results that higher and earlier peak discharge was driven by urbanization.

In addition, the conversion of FGA into urban area presented a greater effect on

evaporation in summer. This phenomenon can be explained by the research of

Tucci (2003) that precipitation distribution over the year allowed identification (if it

exists) of water availability for evapotranspiration. As the temperature and precip-

itation in these months are the highest in a year in the KRB, there is water

availability in the soil during periods with the greatest potential evapotranspiration.

Beskow et al. (2012) reported the similar behavior that stream flows presented the

greatest differences among different scenarios of land use in the wettest and hottest

months like December, January, February, March, and April in Brazil. There are no

apparent characteristics with respect to monthly surface runoff differences of S3

Fig. 2.7 Annual and monthly surface runoff of S3 and S4 in the KRB
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and S4, which are inconsistent with monthly evaporation changes. These might be

due to the rainfall density and extreme rainfall and it requires more research.

2.5 Summary and Conclusion

In this study, the influences of climate and land use changes on stream flow in the

KRB were estimated by an application of the HYPE model. The simulated stream

flow and its components were shown to vary among different scenarios of climate

and land use. Comparing the results of climate scenarios revealed that annual and

flood seasonal stream flows had a decrease trend from 1979 to 2008, whereas dry

seasonal stream flow trended to rise. However, there is no evidence to prove the

flood risk decreased. The differences of simulated outputs between land use sce-

narios exhibited the conversion of FGA into urban area induced high peak flow, a

reduction in annual evaporation and an increase in annual surface runoff. In general,

the results of this study provide important information for understanding hydrology

variation, and guide water resource managers to plan decisions associated with

water environmental change.
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Chapter 3

Combining Different Data Sources for City
Growth Analysis and Architectural Heritage
Mapping

Karel Pavelka and Eva Matoušková

Abstract This chapter discusses our research effort on city growth documentation

and architectural heritage mapping through the combined use of maps and sketches,

declassified satellite data, aerial photographs and modern satellite imagery. For

analyzing city growth, an extended time frame is preferred. We selected the City of

Erbil in northern Iraq as a case study site due to its extensive expansion and the lack

of information documenting this process. The area of Iraqi Kurdistan has been

inhabited for at least 6,000 years and the sandy dry landscape has retained many

monuments there. The centre of Kurdistan is the rapidly growing City of Erbil.

Shortly after World War II the city had about 40,000 inhabitants, but now the

number is close to two million. This area has become the commercial, cultural,

agricultural and administrative centre of the region. The world-renowned historical

monument known as the Citadel Al-Qala is located at Erbi’s historic center. This

project has focused upon the mapping of the Al-Qala citadel using satellite images

and aerial photographs. After creating a vector-based planimetric map, we have

further produced a virtual three-dimensional model covering the valuable parts of

the Citadel with textures, along with a citadel information system. Our work has

demonstrated the utility of combining various sources of data for temporal analysis

of city growth and for heritage mapping.
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3.1 Introduction

3.1.1 Data and Techniques

Civilian satellite data have become available for more than four decades. There is a

possibility to use declassified satellite images from the US Corona system (and

other orbital systems) for city growth documentation, particularly for the period

when civilian satellite data were not available. Before civilian satellites were

launched, we relied upon only on maps and sketches. It can be helpful not only

for documenting the past of a city, but also for sustainable urban development,

especially in developing countries, where the growth of cities is at a very rapid pace

and there aren’t precise urban plans, maps or documentation. The use of historical

and on-going satellite images can partially solve this problem.

3.1.2 Land Use Change and Urbanization

Monitoring urban development generally includes the use of evolving documenta-

tion techniques for built up areas (Pavelka and Svatušková 2008). Monitoring the

artificial environment components associated with human economic activities

began in the 1970s of the twentieth century (Tayyebi et al. 2014). It has become

necessary due to an attempt to monitor particular irreversible changes of Earth’s
surface, which are mostly unsustainable. The development of contactless data

collection methods such as remote sensing and photogrammetry has made possible

for rapid, inexpensive and reproducible analyses of the area of interest. At first, the

monitoring of vegetation based on multispectral satellite data had been enforced.

Nowadays, there is more than 40 years of civilian satellite multispectral images

ready to be used. This data can be employed to analyze the change in the past.

A number of multinational projects has been conducted because environmental

problems are not bounded by state borders. For example, the Black Triangle

includes the devastated area across the boundaries of the Czech Republic, Germany

and Poland (www.gisat.cz). Other projects were focused on the vegetation moni-

toring in connection to scientific research or for agricultural purposes (e.g., MARS,

Monitoring Agriculture with Remote Sensing). Many of these projects were

supported by the CEO (The Centre for Earth Observation, Ispra, Italy).

In addition to the built environment monitoring, some general projects dealing

with the global development or the condition of Earth’s surface have been

conducted (e.g., Tayyebi and Pijanowski 2014). In the last 20 years, projects aiming

to monitor urban development with the use of geoinformation system have also

emerged (Tayyebi et al. 2013a, b). This enables better decision-making for planning

future development (Antonson et al. 2010). In particular, the airborne laser scan-

ning method is a relatively new area, offering the possibility to monitor complex

urban areas.
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3.1.3 Land Cover

The most famous European project for global land cover monitoring is the CORINE

Land Cover (CLC) program (Kopecká et al. 2014). It was created as a project under

the EU Phare Topic Link on Land Cover in the early 1990s and is well known as a

unique map composition based on satellite image interpretation. It is a homoge-

neous database firstly covering the European Union countries and later (in the late

1990s) the entire Europe.

The image outputs were prepared in the form of topographic map sheets at the

scale of 1:100,000. These map sheets were created by using georectified Landsat

Thematic Mapper (TM) data acquired between 1990 and 1993. Individual types of

Earth’s surface by the interpretative key of the CORINE program were performed

by hand drawing on transparent foils and fitted with a three-digit identification

code. Five basic classes were created, including artificial surfaces, agricultural

areas, forest and semi natural areas, wetlands, and water bodies, which were further

sub-divided up to the third level. All interpreted areas had been defined as a closed

polygon with a minimum area of 25 ha and in case of linear elements with minimum

width of 100 m. Transparency with interpretations were scanned and vectorised

secondarily into GIS vector layers, where polygon codes were converted into the

attribute form. For the attributes colours were assigned and entire layer had been

printed as a thematic map with legend, where the colour code characterized land

cover type that had been classified on the earth’s surface. Given the success of the

primary mapping, it was decided to extend the interpretation into the time scale.

The aim of this study was to define temporal changes in the Corine Land Cover

database and to explain the reason of the alteration.

3.1.4 Large City Dynamics Monitoring

Data from the CORINE Land Cover can be used to assess the expansion of large

European cities. For smaller cities the information from this data source at the scale

of 1:100,000 is insufficient. Also the geometric accuracy of the employed satellites

(namely Landsat and SPOT) may not be sufficient for detailed mapping of smaller

cities. Satellite data were not available before 1972, with an exception of some

declassified spying satellite images whose information potential has not been fully

appreciated. Another option is, of course, to include contemporary maps or aerial

photographs. Historical aerial photographs as well as declassified spying satellite

images vary in quality, and usually it is difficult to find technical and photogram-

metric parameters for these images. Unlike the maps, however, these photographs

can be very useful to examine the recent past with details.
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3.1.5 Monitoring Urban Dynamics

In 1998 the project called “Monitoring Urban Dynamics” was launched by the

Centre of Earth Research, Ispra, Italy (CEO, The Centre for Earth Observation).

The aim was to compare four periods of city growth with satellite images or aerial

photographs. The project was based on photogrammetric method to produce

orthophotos with subsequent manual processing of image content under interpre-

tative key of CORINE Land Cover program, with an enlargement in the first class,

i.e. urban areas. The goal was to find information potential of archive black and

white aerial photographs, as well as opportunities and challenges of the thematic

content processing.

As already mentioned, the manual interpretation technology had to be used

because automatic procedures cannot be employed due to a high number of

classification classes and their specifications. For example, it would be extremely

difficult to separate simply parks, cemeteries, orchards and small vegetation or

various kinds of industrial areas through an automatic approach. But this can be

done with the combined use of the experience of an interpreter and auxiliary

information such as maps and logical relations for the analysis. In general, auto-

matic classification of historic black and white images is not quite capable

(Halounová 2004a, b, c).

3.1.6 Photogrammetry and 3D Modeling

Photogrammetry encompasses image measurement and interpretation methods to

derive the object shape and location from one or more photographs (Remondino

and El-Hakim 2006). It is a non-contact measurement technique. A primary pur-

pose of photogrammety is to construct a three dimensional model of an object in

digital or paper formats (Apollonio et al. 2013). The photograph or image repre-

sents a store of information, which can be re-accessed at any time.

The photogrammetric process can be a source of 3D data of an object

(e.g. building), and 3D visualization methods can generate a photo realistic repre-

sentation of the data (Grussenmeyer et al. 2008). These models have many practical

applications, in addition to the purely aesthetic effect. In close-range photogram-

metry, the main focus of 3D visualization is the representation of photogramme-

trically reconstructed real objects (Hanzalová and Pavelka 2013). In general, 3D

graphics or CAD programs are used here to provide additional elements and

graphical editing of the 3D data (Gruen 2008).
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3.2 The Study Area

3.2.1 Iraq

The area of today’s Iraq is the location where the first important civilizations

formed (Ur 2000). Due to its long history, Iraq is very rich in valuable historical

monuments. Large numbers of monuments are unfortunately in very bad condition.

An urgent need for the preservation of the most important architectural monuments

arose in connection with the post-war reconstruction of the Iraqi culture. Architec-

tural monuments were often damaged by the war and today even simple preserva-

tion is impossible. Most of the architectural monuments suffered from a lack of

interest from state authorities under Saddam Hussein’s Republic and their condi-

tion, even before the latest conflict ended, can be described as critical in most cases.

Now, after the fall of Saddam Hussein’s regime, the situation, unfortunately, isn’t
any better; many areas are affected with civil or religious unrest. Research, resto-

ration of monuments and their protection is often very dangerous and, together with

the lack of finance and experts, impossible. In the last decade, many Czech

expeditions aimed for archaeological prospection and monuments restoration

were carried out in the northern part of Iraq, in the Kurdish autonomous region.

Iraqi Kurdistan has its own regional government in Erbil, which is the largest city in

the north, after Mosul.

3.2.2 Erbil

Erbil is an ancient, originally Sumerian and Assyrian city located in the foothills of

the eastern Iraqi mountains. Historically, the centre of Erbil (ancient Urbilum,

Arbela, Arbil or Irbil) belongs to the towns with the longest settlement continuity

in the world. The city began to gain importance during the Neo-Assyrian period

(tenth to seventh centuries BC). The city was a religious centre of the cult of Istar of

Arbela (Porter 2004) and a royal residence of King Assurbanipal (669–627 BC).

Nearby was also a legendary battle in which Alexander the Great defeated the

Persians and opened the way to Babylon; the headquarters of Persian King Dareios

was directly in Erbil (the Battle of Arbela or Gaugamela, 331 BC).

Erbil (also written as Arbil or Irbil and known as Hewler) is the capital city of the

Erbil (Kurdish Hewler) province and is located in the northeastern part of Iraq,

77 km east of Mosul. Thanks to its location, it is the big Kurdish commercial,

cultural, agricultural and administrative centre of the region, with a main railway

station and the intersection of roads leading to Turkey, Syria and Iran. Erbil is the

fourth largest city in Iraq after Baghdad, Basra and Mosul. In the historic centre of

Erbil, there are two world-renowned historical monuments: the minaret Choli and

the Al-Qala Citadel (Morris 1979) The Al-Qala Citadel in Erbil is one of the oldest

continuously inhabited urban settlements in the world. According to ICOMOS data,
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8,000 years of inhabitation are proven in this unique urban concentration, making it

the longest inhabited place on the Earth. This has been made possible by rich water

sources, still available today, which have never dried out in recorded history.

Before World War II water was 2–5 m below the surface, but today it is pumped

from a depth of 40 m and its quantity is not enough. Erbil is dependent on other

sources. Before World War II, Erbil had approximately 40,000 residents, whereas

now there are about 1.5 million, mostly Kurdish Muslims and a minority of

Christians.

The historic city centre, the Citadel of Erbil (Al-Qala Citadel), is formed by a

vast complex of buildings and narrow streets enclosed by town walls (Sahid 2004).

The fortified Citadel itself is situated on an artificial elevation of 28–32 m high

above the surrounding countryside, which is now the city of Erbil. Well-known

records and archaeological finds proved layers of Assyrian, Akkadian, Babylonian,

Persian and Greek Pre-Arabic settlements. Fortifications were primarily built in the

twelfth century.

The Citadel is spread out over more than 10 ha of land. Among more than

800 buildings, traditional one to two-story residential houses with internal atriums,

brick walling and clay roofs on joists prevail. Only some of them have a basement.

About half of them are privately owned, while the rest are owned by regional and

central governments. Slightly more than 20 of the residential houses are, according

to the ICOMOS (International Council on Monuments and Sites) data, in an

acceptable and well-kept condition. The rest are in urgent need of restoration.

Many important buildings have rich interior decorations with painted niches and

ornaments, carved doors and arcades supported by timber or marble columns. The

biggest houses have their own historic fountains in the central atria. The Citadel has

two mosques and one public bath. Important parts of the fortification are three

gates – two of them, the new and old gate, allow entrance of vehicles, and one is for

pedestrians. The construction of two access roads (and also one pedestrian path) has

caused progressive changes in the tell topography. New access roads were created,

so the state of hillsides has been changed. Slope tells hillsides are strongly affected

by erosion, which is mainly caused by poor Citadel drainage (Justa and Houska

2006).

Before Iraq became a totalitarian state, the citadel was the traditional centre of

the city and the province. It was a place where prominent families, representing the

intellectual elite of Irbil, lived. The citadel was divided into a few quarters formed

by palaces and burgess brownstone houses. They were concentrated around the

public bath and two mosques.

During the totalitarian era, almost all palaces were bulldozed and the main gate

of the fortress was torn down (in the 1980s a new, modern, main portal was built in

a retro style). The medieval bath and the mosques were concreted. The original

inhabitants were expelled and the citadel was settled by refugees from mountain

villages that were destroyed by the regime. Seven thousand provincial refugees

changed the rich fortress to a slum (Justa 2005). The last known renovation took

place in the year 1982, when the State Board for Antiquities and Heritage renovated

seven houses.
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Since 2007, the number of inhabitants in the historic city centre was still very

high (5,000–5,500). Vehicular access was permitted to the Citadel. The construc-

tion of an access road and two pedestrian paths caused progressive erosion of the

western slope of the elevation. Water for households is pumped to steel tanks on the

roofs and water is distributed by gravity. Electrical wiring is situated on the posts

and the houses elevations. There is no sanitation in the Citadel, and the remaining

inhabitants use dry toilets, which have all the expected health and hygiene hazards.

The regional government of Kurdistan is looking for opportunities to revitalize and

preserve this unique complex for the future when a significant rise in tourism is

expected. For this reason, almost all residents were evicted in 2009. At the moment,

the number of inhabitants of the historic city centre is negligible. Unfortunately, the

state of the citadel began degrading, rapidly causing the deterioration of buildings.

The Al-Qala Citadel in Erbil is one of the world’s most endangered historic sites

(based on UNESCO’s data). In 2014 Al-Qala Citadel was added to the UNESCO’s
World Heritages List.1

The practical work is part of an international project of the post-war reconstruc-

tion and regeneration of Iraq. It is made in connection with the Cultural Heritage

Regeneration Assistance Program of the Iraqi Republic, approved by the Govern-

ment of the Czech Republic. The content of the project is the comprehensive

assistance in the preservation and revitalization of the historic city centre and

assistance in the preservation and renovation of the architectural monuments of

Erbil city.

The Czech Republic was part of the project represented by the Gema Art Group,

Czech Technical University in Prague (Musı́lek et al. 2001), University of West

Bohemia in Pilsen and University of Pardubice. The Iraqi partners were the

Ministry of Culture of the Republic of Iraq, official representatives of the region

and the city, religious leaders of the region, and Salahaddin University in Erbil

(Nováček et al. 2008). Between the years 2006 and 2010, many Czech expeditions

to Erbil had been conducted to document the basic monuments, investigate the

archaeological conditions, and find appropriate technology for objects restoration

(Řeznı́ček et al. 2013). In the frame of the previous project of post-war reconstruc-

tion, the Czech firm GemaArt realized together with other specialists the photo-

grammetric and geodetic measurement of Al-Qala Citadel. Inside the citadel was

reconstructed one building used as a Czech cultural centre (located near the French

centre).

In Erbil, the next valuable historic object after Al-Qala citadel is the Choli

minaret (Nováček 2011). It is from fourteenth century and it is a last part of the

oldest Kurdish mosque. It is ranked among the most significant Kurdish monuments

and its condition is alarming because of the tilting of the upper part of the minaret.

The lower seven-angle part of the minaret is ca 12 m high. The circular part of the

minaret is about 24 m high and shelters a double spiral staircase. As stated by the

1 Erbil citadel has been inscribed on the World Heritage List on June 21, 2014. http://whc.unesco.

org/en/news/1155.
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owner, the thickness of wall is around 36 cm. The minaret lost its upper part a long

time ago. Since then, it has been opened for weathering and particularly for

rainwater leakage. A large extent of precious historic fragments of renderings and

embossments were identified on the lower part of the object. A particularly large-

scale discovery of stucco decoration was found in niches of the tower. All frag-

ments of stucco decorations were seriously affected by weathering and mechanical

damage. The Choli minaret was in detail documented using photogrammetry and

other geodetic methods (Pavelka et al. 2007; Králová 2008) and after this was

successfully restored by the Czech firm GemaArt (Justa 2005).

Other expeditions were focused on the northern part of Kurdistan, Dalal Bridge

in Zakho (Pavelka 2009) and on archaeological research in Amadı́ja or on lost cities

on the Turkish border (Nováček and Sůvová 2011).

3.3 Methods

3.3.1 Data Sources

Many sites have been irretrievably destroyed due to the Erbil growth and a proper

study of the historical information may revive it again. There are old sketches,

maps, aerial and satellite images for this purpose (Ioannides et al. 2012).

3.3.1.1 Old Maps and Sketches

Only very few of older maps and sketches were available. Processing of these old

materials are difficult, although they have mostly historical values (Fig. 3.1a). Some

information is of course important for our aim.

3.3.1.2 Aerial and Terrestrial Photographs

In Iraq, there are no modern photogrammetric aerial photographs at disposal. A few

interesting old photos have been preserved, like photo in Fig.3.1b – it shows the

original south gate, which was destroyed during Saddam Husain’s regime and a

bridge over a deep wadi that no longer exists today (Verhoeven et al. 2012). On

Fig. 3.2a the best-preserved aerial photo with a lot of details is shown; aerial camera

parameters are unknown (Wilson 2000). This photo is one from the only preserved

stereo-pairs, taken during the Royal Air Force mission in January 1951. This stereo-

pair is archived in the John Bradford papers in the Pitt Rivers Museum, University

of Oxford, no.1998.296.67 and 68. A collection of oblique aerial images gives some

added details. As example oblique’s aerial images from 1973 (Fig.3.2b) and from

1933 (Fig. 3.3) have been found (Wilkinson 2008).

44 K. Pavelka and E. Matoušková
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3.3.1.3 Military Satellite Images

Although civilian satellite data became available since early 1970s, better data in

terms of image resolution from some improved sensors, such as Landsat Thematic

Mapper (TM) and SPOT High Resolution Visible (HRV), have become available

for a much shorter period of time. These data may not be sufficient for some studies

that need to look backwards for a long period, such as urban growth since the World

War II. Given these limitations, the declassified satellite images from 1960s to

1970s can provide a very good information source to look into the past. For areas

where there are no other historical image data, it is important to include geo-data

sources. Note that military satellite data with 1–3 m spatial resolution acquired in

1960s are at our disposal. Since later 1990s, satellite images with 1 m resolution

Fig. 3.1 (a) (left) – a map of Erbil (1944); (b) (right) – South gate of the Al-Qala citadel in Erbil

on a photo taken in 1918 by an unknown author

Fig. 3.2 (a) (left) – an aerial photo of Bradford (1951); (b) (right) – an oblique aerial photo of the
Al-Qala Citadel; major changes can be seen on this photo (destruction of the central part of Citadel

and main entry; 1973)
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have become available. However, the quality of scanned declassified analogue

image data is not very high for some early-date images, such as the Multispectral

Scanner (MSS) images from the first Landsat (see Fig. 3.4).

Satellite images from 1968, 1973, 1975 and 1980 were used (see Figs. 3.4

and 3.5). These declassified satellite images are freely available from http://

edcsns17.cr.usgs.gov/EarthExplorer/). The Corona satellite system (KeyHole-4B)

represents many types of satellites and cameras. The image from 1968 was taken on

16.8. using AFT 70 mm stereo high-resolution camera on black and white film and its

quality is very good. Images from other years (1980-07-07, 1975-06-19, 1973-12-23)

were taken using KeyHole-9 on 9� 18 in. black and white film with theoretical

resolution of about 6–9 m and they quality is worse.

For our work, it was necessary to search through hundreds of images on the

USGS server and find suitable data. From selected images it was necessary to create

cuts within a relevant area of the Erbil city. The next step was to logically enhance

the images (filtration, interpolating, etc.); the quality of scanned analogue film data

was in many cases not very high. After this, cuts were transformed to control points

and processed to the vector data.

Fig. 3.3 An oblique aerial photo of the Citadel in 1933 (Erbil archive)
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3.3.1.4 Scientific Satellites

A new type of satellite data for non-military use became available after 1972

(Landsat 1, spatial resolution 80 m) but a spatial resolution of approximately 1 m

was achieved at the end of the 21st century. However, Landsat images do not

provide sufficient spatial resolution for detailed mapping and monitoring. The new

generation of commercial satellites such as IKONOS, QuickBird, WorldView or

GeoEye provides images with excellent quality and sufficient resolution for

detailed mapping of small cities. In this study, satellite images were used for the

Citadel base plain map creation. The processed image was geometrically rectified

with 16 ground control points and converted into a vector map using single

photogrammetrical method. Landsat 7 (2000-06-19), IKONOS (2005-05-12) and

QuickBird (2005-08-23) data were used (Pavelka and Svatušková 2008).

Fig. 3.4 (a) (left) – Corona satellite system (KH-4B); 16.8.1968; (b) (right) – details of the citadel
– geometrical resolution approximately 3 m; very good quality (Source: USGS)

Fig. 3.5 Erbil on declassified satellite images (Source: USGS). (a) (left) – 1973-12-23; (b)
(middle) – 1975-06-16; (c) (right) – 1980-07-07
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3.3.2 Methods Used for Documenting City Growth

At the beginning of the analysis digital editing of aerial and satellite images

(Geomatica, PhotoShop software) and image data transformation using the Topol
software was conducted. Automatic classification may not be suitable for black and

white aerial or satellite images, and this is especially true when a poor quality image

is employed. Based on the extension of textural signatures the classification has

been improved, but this technology seems not to be able to provide a fine classifi-

cation. A primary visual interpretation using the Topol software was done. It runs in
two steps – vectorisation and interpretation. Homogenous areas were manually

vectorised. For the interpretation a simplified and modified classification key from

the Corine Land Cover was elected. In this case it is primarily a demonstration of

research possibilities of urban growth (Muhmmad 2004).

The method of single-image photogrammetry with collinear transformation was

used (Pavelka 2001). When more than four control points were found and

implemented, the adjustment at individual point deviations from the ideal state

was found. Achieved deviations varied between 15 and 20 m on the ground control

points for the declassified satellite images from a relatively flat area (theoretical

geometrical resolution depends on the quality and satellite system; it can be 10 m or

better for high quality and resolution images). Better results cannot be achieved

without image orthogonalization. Due to the character of this project the absolute

accuracy is not the main factor. The main objective was to evaluate the content of

images on a case project that demonstrates the potential of this technology.

The main challenge was the image quality, which varies greatly. Images from

the 1970s have been worse from a radiometric point of view even after digital

image processing. In terms of evaluating the condition and type of vegetation

unambiguously these images are not suitable for such work because panchro-

matic range does not give a good alternative to separate classes using classifica-

tion and the number of classes is very hard to recognize. Either additional

information about the landscape (e.g. archive maps) or multispectral images

should be used. Unfortunately these images are not available for older data.

The classification of high quality black and white aerial photographs into core

classes (various types of built-up areas, roads, fields, low vegetation outside the

agricultural fields, forests of different ages, isolated trees, water) achieved an

accuracy of 86–93 % class depended. Experiments were made using recognition

software based on object-oriented classification with help of newly calculated

channels (Halounová 2004a, b, c).

Theoretically, it would be logical to start from the oldest images and to expand

the vector database to rectify based on visible changes. The procedure was neces-

sary to reverse because the latest images are of the best quality. There is a sufficient

amount of additional material and the possibility of multispectral images for the

new images. It is also possible to assume that the character of some essential parts

hasn’t changed fundamentally. The final task was to choose a suitable interpretive

key from the Corine Land Cover.
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Content of the photographs were interpreted as closed polygons which formed

each area. Those were assigned an attribute that categorized all areas as a type of

code. As in the Corine project the smallest interpreted elements of about 1 ha or

linear elements with a width of 20 m were defined (it is necessary to set a

generalization limit at this stage). The resulting classification images were not

possible to overlay and thus created exact differences between individual years.

The problem was the different size of the scanned area. For example, in 1951 an

image of the city centre without the outside city parts was the only one available,

whereas from the earlier period there were only sketches without the wider neigh-

borhood. Interpreted elements analysis was performed approximately in the area

around the city for the elements that clearly belonged to the urban areas (parks,

buildings, etc.), i.e. not losses of arable land. A full analysis would require cropping

all the interpretations made by the smallest of them and find out a comprehensive

acreage for each of the included classification classes. Given the purpose of

demonstration analysis selected classes for the entire area of the city were

performed.

3.3.3 Creating a Base Map of the Al-Qala Citadel

The Citadel is spread out over more than 10 ha of land (300–350 m in diameter). It

is a classic case of adapted hillock – “tell”. The height of hillock averages to about

30 m around flat surroundings. No maps or plans of Citadel were at our disposal –

only a copy of a cadastral plan from 1920 was available. Complex documentation of

this object during a short expedition was not possible. For this reason, the terrestrial

photogrammetry and satellite images were used.

In 2007, the vector plan of the Citadel was created based on aerial photos and

satellite data (supplemented and improved in 2010). On the other hand we have

processed photogrammetrical images into a virtual 3D model of the Citadel forti-

fication and the valuable objects inside (a big part inside was damaged and the

inhabitancies are provisory – slum). The last part of this project was the creation of

an information system for the Citadel, which can be used for all information

storage.

In the research and preservation of cultural heritage in Erbil, it is necessary to

take consideration of the rapid development and lack of documentation of things

such as maps and especially the older city status. As was mentioned above, the city,

after World War II, had about 40,000 residents while today the population is more

than 1.5 million. These information have been notified us by the governorate of the

city of Erbil in 2010 and also by consultation on local cultural heritage authorities.

About the postwar Erbil population other publications are written (Justa and

Houska 2006; Muhmmad 2004).

After the war in Iraq and the emergence of the Kurdish autonomous region,

experienced a markedly accelerated development mainly due to capital inflows

from abroad has been achieved. This enormous city growth brings many negatives.
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A number of historically valuable sites have been destroyed through quick con-

struction. The majority of finances is intended for economic activity. Planned,

responsive and sustainable development of the city is very problematic and hints

inter alia on lack of information about the state of the city (actual maps and plans).

3.3.3.1 Photogrammetry

A calibrated digital reflex camera (Canon 20D) with 8 MPix resolution was used for

the photogrammetric survey. A wide-range 22 mm lens was employed for terrestrial

images and a 17 mm lens was used for aerial photographs. Terrestrial images were

taken during several days in different times of the day to avoid the influence of sun

and shadows. Approximately 1,000 terrestrial photographs of the Citadel’s fortifi-
cation and interior were acquired. Of course, not all photographs were processed

using intersection photogrammetry.

Terrestrial images taken from peripheral communication were not sufficient for

3D model creation, so aerial images had to be acquired. Considering the fact that

Iraq is a no-flight zone, it was very hard to perform aerial imaging. Historical

photographs do not exist or are not available, so finally a short flight by an

American army helicopter was arranged. During this flight more than 80 photo-

graphs of the Citadel’s fortifications were taken and then used for intersection

photogrammetry. Unfortunately no perpendicular images of the interior were

acquired, so QuickBird satellite images were used for basic photo plan and vector

plan of the Citadel.

In the case of the new mapping of the Al-Qala Citadel, the intersection photo-

grammetry was used as a base photogrammetric method for the creation of the 3D

model. It means that about 150 terrestrial and 80 aerial images (see Figs. 3.6 and 3.7)

around the Citadel were selected. Only a part (images with good intersecting axis)

from this set was processed in Photomodeler software to the 3D model. Only good

visible outside facades and big houses inside were processed in real 3D. Next, parts

of the Citadel were constructed from a plain vector map (H€ohle 2013).

3.3.3.2 Satellite Images

Unfortunately, no perpendicular images of the interior were acquired during the

helicopter flight, so QuickBird satellite images were used for the basic photo plan

and vector plan of the Citadel (see Fig. 3.8). Histogram adjustments, filtration

methods and resampling to 25 cm pixel size were performed on the satellite image.

3.3.3.3 Geodetic Survey

The interior of the citadel is a set of temporary shelters and building ruins that are

connected by winding aisles no more than 1–2 m wide. The axis of the Citadel is a
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Fig. 3.6 Details of aerial photos from a helicopter flight (2006) with provisory created control

point for photogrammetrical mapping (Photographed by K. Pavelka in 2006)

Fig. 3.7 Settlement tell and citadel (qal’a) of Erbil; an aerial view from southwest (Photographed

by K. Pavelka in 2006)
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main street with width from 5 to 10 m. The only bigger buildings are palace-like

and located on the right side of Citadel’s new main entrance. Roofs of these

buildings were used as survey stations and as ground control points for aerial

imaging. A total of 16 survey stations and 600 detailed survey points were

measured.

On selected points, a GPS survey was conducted in order to transform the data

into geographic coordinates. A Trimble 5,000 total station with self-reflective laser

and GPS Trimble instruments were used for measurements. A geodetic point field

had been calculated and adjusted with a standard error of position mxy¼ 20,32 mm,

with an average standard error of adjusted elevation mh¼ 15,05 mm. These results

are sufficient for photogrammetric work and for following geodetic survey inside

the Citadel.

3.3.3.4 Data Evaluation and 3D Model Creation

The evaluation of available data and 3D model creation was performed using

intersection photogrammetry methods. Stereoscopy methods could not be used

due to the absence of perpendicular stereo pairs of the Citadel’s interior. Intersec-
tion photogrammetry is more time consuming than stereo photogrammetry because

it is necessary to find a single point on two or more oriented images and to ascertain

its image coordinates. When dealing with a smaller amount of detailed points and a

lower complexity of the objects as in the case of the Citadel’s building facades, this
work can be done with no difficulties. The only problem was the large number of

photographs, so high-performance computer technology had to be used. Before

final processing, photographs had to be categorized and only the best ones were

Fig. 3.8 Creating of a virtual model – texturing
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s2pirast@uwaterloo.ca



used for the analysis. For a better orientation of the project the fortification had been

divided into 18 work packages. The orientation and processing of images had been

performed using PhotoModeller Pro software developed by Canadian company Eos

Systems Inc.

Relative orientation components were calculated using aerial images completed

with closely selected terrestrial images. Twenty-three images covering the entire

object had been oriented at the beginning. Photographs with fine resolution and

with maximum overlap were preferred. Tie points that connected were selected on

fortification facades, building roofs in interior and in surrounding terrain (hillsides,

low walls and communication under the Citadel). The relative orientation had been

extended by 11 photographs in order to enlarge intersections between images and

for better processing of the chosen objects inside the Citadel.

Absolute orientation on previously surveyed and adjusted ground control points

followed. Quantity and distribution of ground control points had to be analyzed.

Fourteen ground control points were chosen for the absolute orientation computa-

tions (see Fig. 3.9). The computed position error oscillated around 10 cm. For

accuracy improvement, 19 terrestrial images perpendicular to the facades were

added. These images were equally distributed around the Citadel’s perimeter. It was

found that best results are given when 10–20 connecting tie points are equally

distributed around an image. Computation in PhotoModeller had to be closely

watched and problems were solved by changing point configuration, deleting points

with high residual error, deleting points with small intersection angle, adding new

points and image replacements. A total of 53 images were oriented and were the

Fig. 3.9 Progress of the city growth (Erbil: 1944, 1951, 1968, 1975, 1980, 2000, 2012). Red-urban
area; green-parks; yellow-cemetery; blue-streets, train station and airport (new dominant after

1980)
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base for detailed point processing. The result is a line 3D model of the fortification.

The final point accuracy when using 53 photographs varies from several centime-

ters’ to 0.5 m depending on point position. Lower accuracy occurs on interior points

and on points with a mall beam intersection angle.

3.3.3.5 Vector Plan Creation

The survey of the entire Citadel interior by classical geodetic measurements is

hardly achievable. Part of it had been surveyed from building roofs; other parts

were processed from satellite images. No convenient images for vector plan

creation were acquired from the army helicopter flight due to its high speed (combat

type helicopter) and low flight height. Even if the flight height had been sufficient

many details were distorted or hidden. Due to this fact, an archived QuickBird

image with four multispectral channels (R, G, B, NIR) and one panchromatic

channel had been used. The resolution was 2.4 m in multispectral and 0.65 m in

panchromatic channel and the image was acquired on 2005-08-23. Pan sharpening

together with filtration methods and resampling to 25 cm pixel size had been

performed. The scene quality was excellent and together with geodetic survey

and PhotoModeller results these data were used for basic plan of the Citadel (see

Fig. 3.10).

The next necessary step was to transform the satellite data to geodetic coordi-

nates using ground control points measured by geodetical survey. Polynomial high-

level transformation based on number of ground control points was performed. Due

to problems with PhotoModeler data transformation, affine transformation had been

used for different type data merging. The deviations vary between 10 and 30 cm,

which are sufficient when the resolution of satellite image is taken into account.

Fig. 3.10 (a) Scheme of control points and measured data: black (Photomodeler), green (total

station), red (control and geodetic points), black lines (vectorisation of satellite image, 8/2007),

red lines (electric line); (b) vector processing of the Al Qala Citadel
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3.3.4 Citadel Information System

A virtual model of the citadel was created based on image data processing (Meyer

et al. 2007). Terrestrial, aerial and satellite data has been used. All 3D constructions

were created in Photomodeler software and supplemented and edited in AutoCAD

with original textures (see Fig. 3.11). After processing, the model was transferred

using an interchanging format to a newly established virtual information system

(.dxf to .wrl). The base map of the Al Qala Citadel was made from a QuickBird

satellite image which was digitally enhanced.

The information system was also partially developed in Aalborg University,

Denmark during an Erasmus internship (H€ohle 2013; Králová 2008). It consists of a
3D model of the citadel in Erbil based on the photogrammetric and satellite remote

sensing surveying, database of the citadel, according the demands of the archaeol-

ogists. It consists of more detailed data about the monument and user interface,

which is necessary for comfortable work with graphical data and database content.

It is built up separately in various programming languages like HTML (Hypertext

Markup Language), PHP (PHP Hypertext Pre-processor), SQL (Structure Query

Language), VRML (Virtual Reality Modeling Language), JavaScript and CSS

(Cascading Style Sheets). The emphasis is placed on open source software solutions

(Králová 2008). Final output is in wrl format, which can be investigated using open

source browsers like Cortona or BS Contact. The part of this system is accessible on

http://lfgm.fsv.cvut.cz/citadel/.

Fig. 3.11 A virtual model of the citadel created from a QuickBird imagery
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3.4 Results

3.4.1 Processing of the Image Time Series for Erbil

In this project, old sketches, historical (declassified) satellite data and new satellite

data were used. The aim of the project was to demonstrate the usefulness of

combining historical data for city growth documentation. The biggest develop-

ments of the city were recorded between 1950 and 1960 and after 2000.

Only a simple classification scheme similar to the one used for the Corine land

cover was used. With the use of satellite images, land uses are manually classified

into four classes: urban areas (red); parks (green); cemetery (yellow); and streets,

railways and airport (blue). The train station and airport are new dominants after

1980. For better classification, complementary data are needed. Although it is a

simple classification, it is a very well documentable enormous city growth and

outlines the directions of construction expansion. This can help in land use planning

and sustainable city development. The next pictures (Fig. 3.11) show the intensive

city growth of Erbil based on old plans or sketches and later on from satellite

images from the range of 1944–2012 is shown.

3.4.2 Creating a Base Map of Al-Qala Citadel

The second part of the project was to map Erbil’s historical centre (Al-Qala citadel).
The whole Citadel has never been documented with modern methods before. A

satellite image from the QuickBird satellite was used for the ground plan of the

Citadel (date of image acquisition: 2005-08-23). The satellite image was processed

by using Geomatica 10.0, ENVI Classic (pan-sharpening) and Adobe Photoshop

7.0. As mentioned above, the image sharpening, filtration and interpolating to

25 cm pixel were used for image quality improvements. The outputs of this

procedure are encouraging and enable the next step to process with better quality.

A provisory geodetic network in the Citadel area was built and over 600 object

points were geodetically measured. Next, 16 control points were signalized and

measured for aerial imaging, mainly on the roofs. The Photomodeler software was

used for all photogrammetric image processing (Pavelka and Bı́lá 2013). Finally the

33 aerial images and 19 terrestrial images were adjusted to the base model. The

mathematically least square adjustment and absolute transformation utilizing the

control points were sufficiently accurate: the mean co-ordinate’s error of control
points was approximately 15 cm (mean position error 20 cm). In the 3D model

about 1,000 object points were measured and calculated. A comparison of

geodetically measured and Photomodeler calculated object points were made; a

small systematical and scale error had been found (the model from Photomodeler

was a little bit bigger and moved to south; the typical differences were approxi-

mately 15–30 cm in comparison to geodetic measurement by total station). These
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s2pirast@uwaterloo.ca



displacements were solved by affine transformation into the geodetical measure-

ments. Finally, we had geodetically measured object points, points from

Photomodeler processing, measured control points and a transformed satellite

photo plan (as an under layer photo plan). These data were then used for processing

to the base vector plan (see Fig. 3.10).

3.4.3 Citadel in Erbil Information System

After creating a virtual model (see Sect. 3.4), an information system according to

the given specifications was created. It consists of a photorealistic, virtual reality 3D

model of the monument, a database, and a web-based user interface. Objects of the

model have built-in interactive elements that allow the bi-directional connection

between the model and the database. The database stores detailed data of interest to

the archaeologists (Ardissone et al. 2013). The user interface enables comfortable

work with both the graphical data and the database content. The system allows

remote access and management of the data in the Internet environment. There are

different access rights for system administrators, specialists, and general (anony-

mous) users. The emphasis is placed on open source software usage.

All outputs were stored as a model of the Citadel. For valuable parts, an

interactive information system was created, in which archaeological, architectural,

building structural, restoration and next information are stored. Our citadel infor-

mation system contains:

• Photo-realistic VR 3D model of the monument, database, web-based user

interface;

• User-friendly interface, different access rights, remote access;

• Interactive elements, bi-directional connection between model and database;

and

• Necessary – ordinary web browser with Java Script and cookies for working

with the database, for viewing the three model, one of several freeware plugins is

needed.

3.5 Discussion

Knowledge of behavior trends of techno-economic systems and processes is nec-

essary for their further development prediction. Economic phenomena lead to

fluctuations in the uniform development. To understand the behavior mechanisms

of the area development and their long-term activity, it is necessary to analyze the

previous development.

It appears that with some exceptions the development of the area in time series

can be made using a relatively simple method based on interpreting aerial and
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satellite images. Long-term trends in built-up areas are clearly visible. In the long-

term proportions urban areas, roads, housing and industrial estates enlarges. To

obtain the most reliable results it would be necessary to ensure the scanned

negatives of photos and to determine internal orientation parameters of the used

camera together with other supporting data like an approximate image scale, the

exact date, etc. If possible, it would be convenient to create orthophotos from either

a stereo image pair or from photogrammetric images and sufficiently accurate

digital terrain model. Digital terrain models can be obtained from photogrammetric

processing or the digitized contour lines from maps can be used; recently airborne

laser scanning can be employed. The archived maps are suitable to data set

complement. They often describe interpreted components the best and they allow

one to obtain appropriate control points. The transformation of historical maps is a

separate issue (Cajthaml 2013; Krejčı́ and Cajthaml 2009). In some cases they are

available only in a form of sketches that are low or locally different positional

accuracy.

The turn of the twenty-first century brought rapid development in satellite and

aerial image technology together with data processing. A number of various

innovations had been made. There is the utilization of airborne laser scanning for

3D city model creation. Satellite images with geometrical resolution better than 1 m

in panchromatic range and with a resolution of 2–4 m in multispectral range are

available. Precise GNSS instruments are at our disposal. This considerably

increases accuracy and possibilities available when applying classification

methods. Given the tumultuous growth and development of settlements in many

places on the world together with accumulation of people in megacities, such data is

extremely valuable. If one wants a longer look to the past, a necessary compromise

on details and on existing data quality must be made.

In our case study, increasing or decreasing areas of classes, for example in

graphs or tables, can be seen (based on differences in the sum of individual classes

given by an interpretative key). In many cities the development of industrial areas

can be observed with a peak in the 1960s and after the year 2000, always accom-

panied by a certain kind of housing construction. Transport infrastructure often

tends to delay significant changes from occurring in the construction of airports and

motorway junctions. On the contrary, the railway did not develop as rapidly as in

the last century (only high-speed tracks in Europe, Japan or China). A clear trend is

the migration of people to big cities in the 1980s, which still continues. In many

cases on the earth, this leads to uncontrolled expansion, which is very hard to

handle. This rapid expansion can be only observed or, with certain difficulties,

predicted. This allows us to perform timely interventions. However, it is possible to

successfully document the development and direction of the city growth through

the above-mentioned technology. It is necessary for planning and especially for the

sustainable development of the area.

The virtual model of the Al Qala Citadel has been created. The analysis of the

model quality assessed the precision of the model and showed ways of precision

improvements, which were realized. The field calibration of aerial and terrestrial

image sets was very important. It has improved the project precision and, at the
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same time, it has supported the theory of Shortis et al. (2006) that digital cameras

equipped with zoom lenses may be used in photogrammetry practice with the

exception of projects with high precision demands.

For the Al-Qala citadel, there are distinctive benefits:

• A combination of different imagery types for a historic monument modeling;

• A visualization of the model with photo textures using precise methods;

• Model precision analysis;

• Information system creation consisting of a 3D model and a database;

• Information system establishment designed for archaeological data storing and

managing, promotion of the monument;

• The first documentation of the Citadel, though it is an important historical

monument that was placed on the UNESCO list of endangered historic sites;

• The project can serve as an example of documentation obtained in hard condi-

tions in a developing country. It may show a possibility of development of a

commonly usable technology for creating such systems of historical object

documentation;

• The project fulfilled the requirements of precision – a point error of 0.5 m

(standard deviation). Points in the PhotoModeler project have standard deviation

of 14 cm (internal project precision). Taking into account the data from geodet-

ical surveying, the estimated accuracy of point measurement is 45 cm; and

• A way to orient an irregular set of oblique aerial and terrestrial images together

with a satellite image was found. To solve such a large project meant to find a

solution for a system of equations with thousands of unknowns. Suitable soft-

ware, such as PhotoModeler, was chosen and special sequences of operations

were kept.

3.6 Conclusions

The use of satellite or aerial images provides a low-cost, non-contact and complex

overview for city planners and managers from comprehensive areas. This chapter

discusses the combined use of maps and sketches, declassified satellite data and

new satellite data for city growth documentation. As a case project, the city of Erbil,

Iraq was selected. This is an example of the mapping of urban dynamics based on

land cover/land use analysis. It can be helpful not only for the documentation of

Erbil in the past, but also for sustainable city development, especially in developing

countries, where the growth of cities is very rapid and there aren’t precise urban

plans, maps or documentation. The processing of historical and on-going satellite

images can partially solve this problem. The presented project is focused on city

growth monitoring based on the processing of historical sketches, old aerial images,

military declassified satellite images and new satellite images. In many countries,

there are no historical data for long-term area development monitoring at our

disposal. For this reason, declassified military satellite images give us the
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possibility to preview the past in the same way old maps or sketches would have.

The development of many cities and regions in recent years is almost uncontrolla-

ble and historical information is often absent. It was shown that it is possible to join

different image data sources. From image time series it is possible extract historical

information about cities. In this case project, the final classification based on land

use technology is very simple, because we did not have any additional information

at our disposal (but they do exist).

The second part deals with the mapping of Erbil’s city centre. A new vector map

of Al-Qala Citadel was created based on satellite images. Next, an accurate,

dynamic, and photorealistic virtual model of the citadel was made. The 3D model

of the citadel is based on photogrammetric surveying and vector mapping such as

on advanced virtual presentation technology.
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Halounová L (2004b) Automatic classification of forest areas from B&W aerial orthophotos. In:

Remote sensing and geographical information systems for environmental studies – application

for forestry, vol 1. J.D.Sauerländer’s Verlag, Frankfurt am Main, pp 176–183
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Chapter 4

Long-Term Change Dynamics Using Landsat
Archive for the Region of Waterloo
in Ontario, Canada

Anqi Fu, Jonathan Li, and Saied Pirasteh

Abstract Urban land use and land cover classification have always been crucial

due to the ability and to link many elements of human and physical environments.

Timely, accurate, and detailed knowledge of the urban land cover information

derived from remote sensing data is increasingly required among a wide variety

of communities. This chapter presents a surge of interest that has predominately

driven from the recent innovations in data, theories in urban remote sensing, and

technologies. The Region of Waterloo was chosen for land use and land cover

classification by applying remote sensing techniques to satellite images from 1984

to 2013.

4.1 Introduction

To date, the entire world is continuously experiencing rapid urbanization (Ridd and

Hipple 2006). Urban growth is mainly caused by population growth, economic

growth, environmental condition, availability of technologies and frequent human

activities such as industrialization and migration from rural to urban area and

resettlement (Bhatta 2010; Ridd and Hipple 2006). It is obvious that the aforemen-

tioned will inevitably lead to land use changes and landscape pattern alteration at

local and regional scale (Yin et al. 2011; Tan et al. 2009; Deng et al. 2009;

Sundarakumar et al. 2012). Those changes include losses of agriculture fields,

water bodies, forest and other vegetated green spaces and non-vegetated fields

(Yang 2002; Sexton et al. 2013a, b; Sundarakumar et al. 2012; Yin et al. 2011).

Disturbance of natural environment by urban growth can bring various urban
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environmental issues such as climate change, urban heat island effect, water quality

deterioration, vegetation degradation, increased flooding risk, decreased air quality

(Bhatta 2010; Sexton et al. 2013a, b; Li et al. 2011; Tan et al. 2009; Sundarakumar

et al. 2012; Thapa and Murayama 2009). Therefore, consistent monitoring of land

use and land cover (LULC) change at local and regional scale is an urgent need for

planners and policy makers to understand change dynamics of an area to make it

more appropriate and effective decisions of planning and environmental manage-

ment in the future.

With recent development of remote sensing technologies and accessibility to

remotely sensed data, the study of identifying detailed spatial and temporal changes

of urban area and monitoring urban growth have become more cost-effective and

successful (Huang et al. 2011; IRS 2013; Jensen 2006; Thapa and Murayama 2009;

Patino and Duque 2013; Lunetta et al. 2004). To date, various change detection

methods have been explored and developed for detecting LULC change analysis

(Singh 1989). Technically, image algebra (i.e. image differencing and image

ratioing), principal component analysis (PCA), post-classification change detection

(PCCD), direct multi-date classification, and change vector analysis (CVA) are

most widely used methods for change detection (Singh 1989; Alumutairi and

Warner 2010; Coppin et al. 2004; Jensen 2005). From an application perspective,

most of the previous studies on urban growth and LULC change detection were

based on bi-temporal and coarsely multi-temporal analyses.

The previous researchers indicated that the bi-temporal and coarsely multi-

temporal analyses have their own advantages of providing useful change informa-

tion. They are unable to observe dynamic change patterns and higher-order com-

plexities, such as acceleration, deceleration of specific LULC change within a long-

term time span (Sexton et al. 2013a, b). The dynamic change patterns include

spatially and temporally complex changes in water, forest, agriculture, and urban

built-up area caused by natural and anthropogenic processes (Sexton et al. 2013a,

b). Moreover, the impacts on ecosystems caused by frequent human activities

exhibit nonlinearities, time lags, and legacy effects, and the change dynamics is

only able to be detected by long-term repeatedly measurements (Sexton

et al. 2013a, b).

With the opening of Landsat archive from United States Geological Survey

(USGS) in 2009 (Sexton et al. 2013a, b; Wulder et al. 2011), an increased demand

of long-term time-serial analysis of urban growth and LULC change dynamics can

be met (Sexton et al. 2013a, b; Hansen and Loveland 2012). Therefore, with a free

access of Landsat archive, processing dense datasets with high frequency will shift

research focus from analyzing static bi-temporal change to comprehending more

detailed long-term change dynamics in which planners, policy makers and resource

managers are much more interested (Sexton et al. 2013a, b).

In this chapter, the role of satellite data and Landat archive data for change

detection analysis will be introduced. In addition, an overview of change detection

methods will be provided. To reveal the superiority of long-term change dynamics

analysis using high-dense Landsat images, this chapter focuses on a case study of

change detection analysis of the Region of Waterloo. Also, based on a case study

64 A. Fu et al.

s2pirast@uwaterloo.ca



the limitations and uncertainties of the change dynamics analysis method will be

discussed. In addition, some recommendations will be considered for future studies.

4.2 Satellite Data and Change Detection Methods

4.2.1 Satellite Data for Monitoring LULC Change

The objects on the earth surface and sometimes subsurface can be interpreted from

remotely sensed data such as Landsat ETM+, Quick Bird etc. The various tech-

niques can be applied to extract the information from the satellite images. Basically,

objects are interpreted based on their reflected or emitted electromagnetic radiation

(Patino and Duque 2013; Jensen 2005). Thus land use and land cover, urban

morphology, vegetation distribution, and some other biophysical information can

be extracted for planners and environmental scientists to analyze the environment

disturbance (Patino and Duque 2013). Since the late 1950s, aerial images have been

used for LULC change analyses. However, with the launch of several earth-orbiting

satellites, the focus of studies has shifted from using aerial images to satellite-based

images because of their lower costs, wider area coverage, and frequent image

updates (Patino and Duque 2013). Since the earliest satellite Landsat 1 with Mul-

tispectral Scanner (MSS) was launched in 1972, many satellites with various

sensors in different spectral, spatial and temporal resolutions were launched in

the past four decades (Patino and Duque 2013; Jensen 2005). Patino and Duque

(2013) reviewed that Earth-orbiting satellite sensors such as Landsat 5 Thematic

Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), SPOT 1–5,

QuickBird, IKONOS, NASA Terra Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER) and Indian Remote Sensing (IRS-1C) are the most

often used earth observation (EO) systems in LULC change detection studies. They

also stated that the moderate spatial resolution images are appropriate for detecting

LULC change. It is because historical images can be used dating back to 1970s. To

illustrate the lengths of the archives of listed remote sensing systems, a time scale

figure, showed in Fig. 4.1 was generated by Patino and Duque (2013).

A long-term record of global landscape information has been acquired since the

first Landsat satellite launched in 1972 (USGS 2013a, b, c, d, e, f). Landsat project

is the oldest satellite project in the United States for land-surface observation

(Jensen 2007). Landsat Project which was initiated by National Aeronautics and

Space Administration (NASA) and USGS has launched eight satellites to collect

data from the earth surface. This provides the resources for people who manage

regional development, manage natural resources, and those who do research in

various environmental fields throughout the United States and worldwide (USGS

2013a, b, c, d, e, f). Based on Landsat Project Statistics on USGS website (2013) the

most primary use of Landsat data is detecting LULC change. To consider estab-

lishment of routinely gather earth resource information from space, the Landsat
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satellites have had a very well performance during their missions, expect for

Landsat 6 (USGS 2013a, b, c, d, e, f). To continue the mission of Landsat Project

of observing land-surface information the Landsat 8 with providing higher quality

data was recently launched on February 11, 2013 (USGS 2013a, b, c, d, e, f).

With technologies development, sensors onboard Landsat satellites have been

improved as well. Spectral and spatial information retrieved from USGS (2013a, b,

c, d, e, f) of each Landsat sensor are specified in Table 4.1. Landsat Multispectral

Scanner (MSS) was the primary sensor placed on Landsat 1, 2, and 3. MSS images

have four multispectral bands from green to near-infrared (IR) with 80 m resolution

and one thermal band with 240 m resolution only onboard Landsat 3. Thematic

Mapper (TM) sensors were placed on Landsat 4 and 5 with two added shortwave

infrared (SWIR) and one thermal band. Resolutions have been increased to 30 m for

visible and infrared bands and to 120 m for thermal band. Enhanced Thematic

Mapper Plus (ETM+) onboard Landsat 7 has one more panchromatic band in 15 m

resolution; and thermal band increased to 60 m resolution. As for the newly

launched Landsat 8, Operational Land Imager (OLI) sensor has eight spectral

bands in 30 m resolution. In OLI the following bands have been added (a) one

deep blue band and one cirrus band, and (b) one panchromatic band in 15 m

resolution. In addition, the Thermal Infrared Sensor (TIRS) has two thermal

bands with 100 m resolution (USGS 2013a, b, c, d, e, f).

4.2.2 Change Detection Methods

As Singh (1989) defined, “change detection is the process of identifying differences

in the state of an object or phenomenon by observing it at different times”. Changes

can be detected because of the radiance values of the objects and also change in

LULC alterations (Singh 1989). To monitor landscape changes effectively by using

remote sensing techniques, a variety of change detection methods have been

Fig. 4.1 Time scale of several remote sensing systems (Source: Patino and Duque 2013)
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developed and applied in many studies (Singh 1989; Jensen 2005; Lu and Weng

2004). Four important aspects of monitoring changes were suggested and summa-

rized by Macleod and Congalton (1998). They are (a) determination of whether or

not the changes happened, (b) identification of the nature of the changes,

(c) detection of the areal extent of the changes, and (d) analysis of the change

patterns. It is worth that to know selecting an appropriate change detection method

is very critical to obtain reliable results because of different purposes and objectives

of applications (Jensen 2005; Lu and Weng 2004). To illustrate and compare the

key characteristics, advantages and disadvantages of the most often used change

detection methods, Table 4.2 is depicted in terms of some previous review works

(Singh 1989; Jensen 2005; Lu and Weng 2004; Coppin et al. 2004; Alphan 2011;

Lunetta and Elvidge 1998).

The methods listed in Table 4.2 have been proved to be effective for detecting

changes in various applications. Image algebra method can be used in monitoring

forest canopy change (Hayes and Sader 2001), monitoring irrigated crops

Table 4.1 Band designations for Landsat sensors

Sensor

Spectral bands

Wavelength (μm) Resolution (m)Landsat 1,2,3 Landsat 4,5

MSS 4 – green 1 – green 0.5–0.6 80

5 – red 2 – red 0.6–0.7 80

6 – near-IR 3 – near-IR 0.7–0.8 80

7 – near-IR 4 – near-IR 0.8–1.1 80

8 – thermal (Landsat 3) 10.4–12.6 240

TM and ETM+ 1 – blue – green 0.45–0.52 30

2 – green 0.52–0.60 30

3 – red 0.63–0.69 30

4 – near-IR 0.76–0.90 30

5 – SWIR 1 1.55–1.75 30

6 – thermal 10.40–12.5 120; 60 (ETM+)

7 – SWIR 2 0.98–2.35 30

8 – panchromatic (ETM+) 0.52–0.90 15

OLI and TIRS 1 – coastal/aerosol 0.43–0.45 30

2 – blue 0.45–0.51 30

3 – green 0.53–0.59 30

4 – red 0.64–0.67 30

5 – near IR 0.85–0.88 30

6 – SWIR 1 1.57–1.65 30

7 – SWIR 2 2.11–2.29 30

8 – panchromatic 0.50–0.68 15

9 – cirrus 1.36–1.38 30

10 – thermal 1 10.60–11.19 100

11 – thermal 2 11.50–12.51 100
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Table 4.2 Summary of most often used change detection methods

Methods Characteristics Advantages Disadvantages

Key

considerations

Write function

memory (WFM)

Visual interpreta-

tion by inserting

three individual

bands from mul-

tiple dates into

Red, Green, and

Blue planes to

highlight the

change area

Quick visual

interpretation

of the

changeat two

and even

three dates

No quantitative

information

Determine

appropriate

bands

Normally not

necessary to

have atmo-

spheric

correction

No “from-to”

change class

information

Image

algebra

Image

differencing

Subtract one

image of one date

from another

image of second

date

Simple and

quick method

to identify

change/no

change

information

No “from-to”

change class

information

Determine

appropriate

bands

Normally not

necessary to

have atmo-

spheric

correction

Difficult to

determine the

threshold to

distinguish

change/no

change

information

Threshold

should be

identified

carefully

Image

regression

Identify the linear

relationship

between images

from two dates.

Subtract the first

image from the

regressed image

Impacts of

atmospheric

effect and sun

angle effect

can be

reduced

No “from-to”

change class

information

Develop

regression

model

Need to estab-

lish accurate

regression

model

Determine

appropriate

bands and

threshold

Image

ratioing

Calculate the

ratio of two

images from two

dates, band by

band

Simple and

quick method

to identify

change/no

change

information

No “from-to”

change class

information

Determine

appropriate

bands

Normally not

necessary to

have atmo-

spheric

correction

Difficult to

determine the

threshold to

distinguish

change/no

change

information

Select appro-

priate

threshold

Vegetation

index

differencing

Calculate vegeta-

tion index for two

dates before

using image

differencing

method

Difference of

spectral fea-

tures can be

enhanced

Enhance ran-

dom noise and

coherent noise

Determine

appropriate

vegetation

index

Reduce

impacts of

topographic

effects

Select appro-

priate

threshold

(continued)
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Table 4.2 (continued)

Methods Characteristics Advantages Disadvantages

Key

considerations

Principal component

analysis (PCA)

Put bands from

two dates into

one single

dataset. Perform

PCA and analyze

minor component

which represents

change

information

Data redun-

dancy can be

reduced

Difficult to

label change

classes

Need skills to

identify the

component

which repre-

sents the

change

information

Change can

be visually

interpreted

from minor

component

Threshold is

needed to iden-

tify change/no

change

information

Select appro-

priate

threshold

Normally not

necessary to

have atmo-

spheric

correction

Multi-date composite

classification (MCC)

Put bands from

two or more dates

into one single

dataset. Super-

vised or

unsupervised

approach is used

to extract change

information

Requires only

one

classification

Data

redundancy

Need thor-

ough exami-

nation of the

images to

label the

change

classes

Difficult to

select training

sites because

of many

change classes

Change vector analy-

sis (CVA)

Direction and

magnitude of

change from one

date to another

date are gener-

ated. Direction

vector determines

the change types.

Magnitude vector

determines

whether the

change happens

Have ability

to process any

number of

spectral bands

Difficult to

identify change

trajectories

Determine

direction of

change

Detailed

change infor-

mation can be

provided

Identify

threshold for

magnitude of

each change

vector

Post classification

change detection

(PCCD)

Change informa-

tion is obtained

by comparing

independently

classified the-

matic maps

No atmo-

spheric cor-

rection

required

Requires two

classifications

Sufficient

training sam-

ple for

classification

Provides

“from-to”

information

Accuracy of

change infor-

mation heavily

relies on the

accuracy of

classification

results

Jensen (2005) and Lu and Weng (2004, 2007)
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(Manavalan et al. 1995), detecting land cover change (Kleynhans et al. 2011;

Kaufmann and Seto 2001), detecting mining process and land use change (Prakash

and Gupta; 1998), and monitoring landscape change of coastal area (Alphan 2011).

Using PCA method, land cover change (Byrne et al. 1980; Parra et al. 1996), forest

conversion (Jha and Unni 1994) can be detected. CVA also can be used in

vegetation degradation detection (Lunetta et al. 2004), desertification monitoring

(Dawelbait and Morari 2012), and LULC change detection (Song et al. 2012). As

for PCCD method, thematic maps and valuable “from-to” change information can

be obtained from PCCD (Jensen 2005). Therefore, many applications are focusing

on LULC change and urban growth employed PCCD method to identify specific

categories of LULC. Thus to explore the change pattern and change effect on

surrounding environment (Abd El-Kawy et al. 2011; Yuan et al. 2005;

Sundarakumar et al. 2012; Peiman 2011) has been stressed.

To monitor nation-wide LULC change of the U.S. and evaluate and manage the

consequences of change, USGS had developed a Land Cover Trends (LCT) project

to detect LULC changes at ecoregional scale for the 1972–2000 period using

Landsat data (USGS 2013a, b, c, d, e, f). The PCCD method has been employed

to obtain specific “from-to” information (which LULC classes are changing, what

they are changing to, and how much they change) and monitor LULC change

dynamics (Sleeter et al. 2012). The study of Mojave Basin and Range Ecoregion

is a typical example of LULC change detection. Since Las Vegas is one of the

fastest growing cities in the U.S., significant urban growth in place of grassland has

been detected. It showed that the most rapid growth happened during 1986–1992. In

2011, Huang et al. applied PCCD method using the Iterative Self Organizing Data

Analysis (ISODATA) classifier to analyze urbanization process and its effect on

irrigation districts of the Lower Rio Grande Valley in the south of Texas. Using the

same PCCD method, Tan et al. (2009) evaluate the impact of land surface temper-

ature by monitoring urban expansion based on LULC maps which were classified

by maximum likelihood classifier (MLC) in Penang Island, Malaysia. For spatial

progressive urban growth mapping of Atlanta metropolitan area Yang (2002) and

Yang et al. (2003) designed a change detection scheme based on multi-temporal

map-by-map comparison. Similarly, Yin et al. (2011) detected urban growth

dynamics applying multi-temporal change detection scheme. They evaluated how

Shanghai metropolitan area conformed to the “reform and opening-up” policy. In

addition, Yin et al. (2011) generated radar graphs to illustrate spatial orientation of

LULC change. Moreover, other studies, conducted by Yuan et al. (2005),

Sundarakumar et al. (2012), Tang et al. (2008), Afify (2011), and Abd El-Kawy

et al. (2011) proved that PCCD is a very useful and popular approach for LULC

change detection.

According to previous studies, most of the urban area change detection analyses

were conducted based on bi-temporal scheme (Afify 2011) or coarsely multi-

temporal scheme (Abd El-Kawy et al. 2011; Yuan et al. 2005; Sundarakumar

et al. 2012; Peiman 2011; Tian et al. 2011; Zha et al. 2003; Zhao et al. 2005).

With easy accessibility of data availability recently, more and more studies used

multi-temporal datasets to detect change dynamics of urban area. However, as
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Sexton et al. (2013a, b) mentioned that in order to understand the causes and

consequences of urbanization, coarsely multi-temporal datasets are still insuffi-

cient. To detect the spatially and temporally complex change of LULC of North

Carolina Piedmont from 1984 to 2007, Sexton et al. (2013a, b) derived LULC

information from a dense time-serial Landsat dataset using supervised classification

approach. The results clearly illustrated the change dynamics, and well depicted the

trajectories of each LULC type spanning a long-term period. Such long-term

detailed change information has great potential for planners, policy makers, social

scientists and ecologists to better understand the complicated urbanization process

and human-natural systems (Sexton et al. 2013a, b). Therefore, in this chapter, a

case study of long-term change dynamics analysis has been performed on the

Region of Waterloo, a prosperous growing region in Ontario, Canada in order to

detect the trajectory of LULC long-term change. It subsequently shows the effec-

tiveness and superiority of change dynamics analysis method.

4.3 Research Design

4.3.1 Study Area and Data

The Region of Waterloo is located in the southern Ontario. It comprises of cities of

Waterloo, Kitchener, Cambridge along with four rural townships (North Dumfries,

Wellesley, Wilmot, and Woolwich). The region of Waterloo is one of the rapidest

growing regions in Canada after its formation in 1973 (RGMS 2006a, b; Region of

Waterloo 2010). The location of Region of Waterloo is shown in Fig. 4.2. The

region is 1,369 km2 in size and the Region’s population was 507,079 as of the 2011
census (Region of Waterloo 2010). Population of urban area of Waterloo Region

has increased by 5.7 % from 2006 to 2011. With such tremendous population

growth, urban area of Waterloo Region is now ranked as the fourth largest in

Ontario and tenth largest in Canada (Statistics Canada 2011). To detect the

LULC change caused by urban growth the study area is determined as the union

of the municipal area of the cities and the official-defined urban built-up area, which

is depicted in Figs. 4.2. and 4.3.

As an overview, within this study area, urban built-up area is one of the most

typical land cover types. They are included of low-density urban use area

(e.g. single/multiple family houses, local roads, etc.) and high-density urban use

area (e.g. commercial and industrial areas, high-density residential areas, etc.).

Another typical land cover type is vegetation such as agriculture area and grassland

(e.g. pastures, golf courses, parks, etc.). Forest land, considered as very important

land cover type, occupies relatively small area in general. This study area also

covers some water bodies, such as part of Grand River and Laurel Creek Reservoir.

Moreover, there are small areas of exposed lands, including natural barren land and

building sites.

4 Long-Term Change Dynamics Using Landsat Archive for the Region of Waterloo. . . 71

s2pirast@uwaterloo.ca



Free access of a long-term Landsat archive data provides opportunity to

detecting time-serial change dynamics at regional scale. In this study, Landsat

archive data is the core data of extracting urban LULC information. Some other

ancillary data are utilized as reference during Landsat data processing and accuracy

assessment. Landsat data are listed in Table 4.3.

The entire study area can be covered by the WRS-2 path-18/row-30 scene.

Images are projected in Universal Transverse Mercator (UTM) coordinates based

on World Geodetic System of1984 (WGS84) datum. Since the time span of this

study is from 1984 to 2013, one scene of each year is needed. To obtain high quality

data, images with no cloud and no haze were selected. Data for 1988, 2004, and

Fig. 4.2 Location of Region of Waterloo
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Fig. 4.3 Map of study area

Table 4.3 Landsat images used for classification

Year Sensor system Date (mm/dd) Year Sensor system Date (mm/dd)

1984 Landsat 5 TM 06/13 1999 Landsat 7 ETM+ 09/03

1985 Landsat 5 TM 09/20 2000 Landsat 5 TM 08/28

1986 Landsat 5 TM 06/03 2001 Landsat 5 TM 08/15

1987 Landsat 5 TM 09/10 2002 Landsat 7 ETM+ 08/01

1989 Landsat 5 TM 06/11 2003 Landsat 5 TM 06/02

1990 Landsat 5 TM 09/02 2005 Landsat 5 TM 08/26

1991 Landsat 5 TM 07/19 2006 Landsat 5 TM 08/13

1992 Landsat 5 TM 08/22 2007 Landsat 5 TM 06/29

1993 Landsat 5 TM 08/09 2008 Landsat 5 TM 09/03

1994 Landsat 5 TM 10/15 2009 Landsat 5 TM 05/17

1995 Landsat 5 TM 07/30 2010 Landsat 5 TM 05/20

1996 Landsat 5 TM 05/29 2011 Landsat 5 TM 06/08

1997 Landsat 5 TM 07/19 2013 Landsat 8 OLI and TIRS 09/17

1998 Landsat 5 TM 05/19
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2012 were eliminated due to a large cloud obstructed area. In order to minimize the

phenological effect during change detection analysis, data acquired in summer

season were preferred. Most of the data are obtained from June to September. All

used Landsat data were retrieved from USGS Global Visualization Viewer

(GloVis) interface (http://glovis.usgs.gov/).

To help select training samples of the supervised classification and reference

samples for accuracy assessment, two full-colour digital orthoimages with 12 cm

spatial resolution have been acquired from University Geospatial Centre. These two

orthoimages cover the entire area of Waterloo Region in 2006 and 2010 respec-

tively. With 12 cm spatial resolution, the orthoimages have been projected in UTM

coordinates and they are stored in MrSID image format accompanying with SDW

world files. The datum used is the North American Datum of 1983 (NAD83).

Another data that can be used for aiding choosing training samples is a land use

shapefile of Waterloo Region in 2007. It also has been obtained from the University

of Waterloo Geospatial Centre. This shapefile parcels the study area into polygons

based on different land use types. Additionally, Google Map is providing high

spatial resolution aerial or satellite images of the world. It is an auxiliary source for

training samples selection and accuracy assessment. Selecting appropriate training

samples is very critical for satisfactory classification results. Even though there is

no reference data for every year, the two orthoimages (i.e. the land use shapefile and

images from Google Maps) are the effective reference data for understanding the

land surface information of this study area.

4.3.2 Classification Scheme

Image classification is the most important process for obtaining accurate LULC

information. To generate consistent classification results, an appropriate classifica-

tion algorithm needs to be determined. For this case study a support vector machine

(SVM) was used for the classification process. It is because of its outstanding

performance in contrast to traditional classifier such as MLC for LULC classifica-

tion using remote sensing techniques (Huang et al. 2002; Pal 2005; Frohn and

Arellano-Neri 2005; Gislason et al. 2006; Kotsiantis 2007; Benediktsson

et al. 2007; Mellor et al. 2013). SVM is based on statistical learning theory and

used structural risk minimization method proposed that was by Vapnik to discrim-

inate class members (Nemmour and Chibani 2011; Song et al. 2012). SVM employs

optimization algorithms to decide the location of optimal boundaries that can best

separate the classes (Huang et al. 2002; Pal and Mather 2005). Thus a minimal

generalization error can be obtained by minimizing the probability of misclassi-

fication of the unseen data points. The workflow of classification process is shown

in Fig. 4.4.

An appropriate classification system and sufficient representative training sam-

ples are very critical for a successful classification (Lu and Weng 2007). As

referring to the USGS “Land-Use/Land-Cover Classification System for Use with
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Remote Sensor Data” (Anderson et al. 1976) the classification design in this study

has been determined at a mixed USGS Level I/II based on the consideration of

spectral and spatial resolution of Landsat image. With visual interpretation and

analysis of the satellite images and supplementary data, eight classes were deter-

mined. They are were water, forest land, agricultural land I (green cropland),

agricultural land II (fallow), low-density urban built-up area, high-density urban

built-up area, grassland, and barren land. Explanations of the classes and examples

of training sites are illustrated in Table 4.4. Examples are displayed in RGB by true

color composite (Bands 1, 2, 3) and false color composite (Bands 2, 3, 4) of 2006

image.

One of the key factors of training samples selection is identifying relatively

homogeneous pixels of each class from the satellite images. Different classes are

distinguished by their different color, shape, textures, tones, and spectral signatures.

Training sites are selected by visual observation of Landsat images and higher

resolution orthoimages, and distinguishing spectral characteristics of each LULC

type. As for the number of samples, a minimum of 10–100n pixels have been

selected for each class, where n (is 6 in this study) is the number of spectral bands

that is been used for classification. The total number of training samples is approx-

imately 8,000 for each image in this study. Moreover, training samples were

distributed dispersedly over the study area to obtain sufficient representative

samples.

Supplementary
data

Reference data

Reference data
selection

All
Landsat
image

All Landsat
images

All Landsat
images

Training samples
selection

Training
samples

Classification for all
images (using SVM)

Post-classification
processing

LULC classification
map for each year

Accuracy assessment

Accuracy report
Workflow direction

Output data

Input data

Process

Supplementary
data

Supplementary
data

Fig. 4.4 Workflow chart of image classification process
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4.3.3 Accuracy Assessment

Accuracy assessment requires unbiased design, strict sampling procedures, and

rigorous analysis of the classification results to make the accuracy itself reliable

(Congalton and Green 1999). Some factors and issues need to be considered when

performing accuracy assessment, which are reference data selection, sample size,

sampling schemes, assessment techniques (confusion error matrix), etc. (Congalton

1991). Reference data were selected on Landsat images based on visual interpre-

tation of the high resolution orthoimages to identify the pixel type. As for the

sample size, it has been minimized to reduce the cost and time, and also has a large

enough to generate an appropriate error matrix (Congalton and Green 1999). A

general guideline is to collect a minimum of 50 samples for each land cover type

(Congalton and Green 1999). In this study, a more reliable sample size determina-

tion method Thompson (1992) was used. When investigating the accuracy of multi-

class classification map, sample size can be calculated by:

N ¼ BΠi 1� Πið Þ
bi

2
ð4:1Þ

where N is the sample size; Πi is the proportion of the ith class out of all classes that
has the proportion closest to 50 %; bi is the desired precision; B is determined from

the chi-squared (χ 2) table that B is the upper (α/k)� 100th percentile of the χ 2

distribution with one degree of freedom; α is the allowable probability of error; and

k is the number of classes. When determine the sample size before performing

accuracy assessment, the allowable probability of error α should be determined first

(Thompson 1992). 100 %(1-α) is called the confidence interval. Confidence interval
is a very important parameter of estimating the sample size, because generally it

shows the reliability of an estimation (Thompson 1992). In this study, α and bi was

set to be 0.05 and 0.05 respectively. χ 2 value that used to determine B was

1� ¼ 0:99375. Then B was obtained as 7.568 from the chi-squared table. Since

the values of Πi varied from image to image of different years, 2006 classification

map was taken as an example here. The value ofΠi was 39 %. Then sample size can

be determined as 720.

Sampling scheme is another important factor that needs to be considered before

accuracy assessment. Stratified random sampling scheme was employed in this

study to ensure that sufficient samples can be selected for each class. This method

considers classes as strata; then certain number of sample points can be selected

randomly without bias within each stratum (Thompson 1992).

Table 4.4 Accuracy assessment of multi-temporal classification maps

1984 1990 1996 2002 2008 2013

Overall accuracy (%) 90.37 92.90 88.67 88.55 92.08 92.84
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4.3.4 Change Detection Method

The change detection method that used in this study is post-classification change

detection. LULC information of each year was extracted to detect changes. To fully

understand the change occurred in recent three decades, multi-temporal (in 6-year

interval) and time-serial change analyses were performed. The logic of change

detection analysis and some major outputs are illustrated in Fig. 4.5.

In order to minimize the vegetation phenological effect and periodic cultivation

cycle of agriculture in suburban and rural area, green cropland, fallow, and grass-

land were combined into one category, which is called “vegetated area”. Forest land

was not combined into the new class because forest is important natural resource

that needs to be considered individually. Other classes also remained the same.

Then LULC information was extracted for change detection analyses. Analyses

were conducted both qualitatively and quantitatively. Multi-temporal analysis has

detected changes based on classification maps in 6-year interval, which were 1984,

1990, 1996, 2002, 2008, and 2013 classification maps. Time-serial analysis is used

in all images to illustrate the trajectories of each LULC type change dynamics over

these three decades. Various graphics and tables have been created to help interpret

and analyze the results shown in Fig. 4.5. For example, change maps demonstrating

LULC
classification

maps (8 classes)

Classes combination

LULC
classification maps

(6 classes)

Multi-temporal change
detection analysis (84, 90, 96,

02, 08, 13)

Bar chart of
multi-temporal

changes

Statistics of the
changes

Bar chart of time-
serial LULC
trajectories

Time-serial change
dynamics analysis (all

images)

Input data

Process

Output data

Workflow direction

Fig. 4.5 Workflow chart of change detection analysis
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significant spatial change of LULC types can be obtained; and confusion matrix

showing very detailed statistical “from-to” information of each class can be

generated.

4.4 Change Detection Analysis

4.4.1 Multi-temporal Change Detection Analysis

To detect relatively more detailed change processes over the 30-year time period

than bi-temporal approach, multi-temporal change detection has been conducted

with 6-year interval. The classification maps extracted from the satellite images of

the years 1984, 1990, 1996, 2002, 2008, and 2013 have been used for analysis

(Fig. 4.6). Overall accuracy of each classification map is shown in Table 4.4. All

classification maps have shown a high overall accuracy. The growth process of

built-up area are detected roughly by visual interpretation of the maps. It is obvious

that both low-density built-up area and high-density built-up area expand outward

in general. Low-density area grows surrounding the existing built-up area in

Waterloo and Kitchener region, while it grows eastward and southward in Cam-

bridge. As for high-density built-up area, a significant growth has been occurred in

the following areas: (a) north of waterloo, (b) south of Kitchener, and (c) middle of

Cambridge. Another emergence of high-density industrial area is detected near the

boundary of Kitchener and Cambridge with rapid growth. In addition to outward

growth, high-density built-up area also has inward growth pattern which increases

Fig. 4.6 Classification maps of (a) 1984, (b) 1990, (c) 1996, (d) 2002, (e) 2008, and (f) 2013
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built-up density inside urban area. Correspondingly, the coverage of vegetated area

shrinks. Some barren lands detected in earlier years and are replaced by built-up

area successively. Furthermore, the newly emerged barren lands are mostly located

on the fringe of the urban built-up area.

To detect specific change processes quantitatively, the area and percentage of

change of each class over each time interval are calculated and summarized in

Table 4.5. Looking at the table we can see that only a vegetated area experiences

constant shrinkage during each time period with total loss of about 81 km2. To the

contrary, coverage of both low-density and high-density built-up area keeps

increasing and the expanded areas are about 63 km2 and 19 km2 respectively. As

for forest land, it only has gained in coverage during 1990–1996 period; and over

other time period, the area decreases slightly and constantly. Comparatively, gain

and loss of coverage of water and barren land are erratic. To more intuitively detect

the change process of each class over this time span, the area net changes is

represented by percentage in municipality area of each class and are shown in

Fig. 4.7. Much of the change occurs during time period of 1990–1996 and 1996–

2002, while least change occurs during 2008–2013 according to the present

research. Gain in urban area is mainly cost by the loss of great amount of vegetated

area and small portion of forest land. It is clearly shown that vegetated area

experiences constant great loss from 1984 to 2002 with a decrease about 23 % of

the entire municipality area. Low-density built-up area increases most rapidly

during 1996–2002 time period and the gaining area is about 8 %. During other

four time periods, low-density urban area grows at similar rates and they are about

3 % in average. High-density urban area grows relatively slower than low-density

urban area. The most rapid growth occurs during 1990–1996 and 2002–2008 time

period with increasing area about 2 %. Barren land fluctuates around gain and loss

within the 30 years. And water experiences very subtle change that is not easy to

detect.

Table 4.5 Statistics of multi-temporal LULC net change

Time

period Water

Forest

land

Vegetated

area

Low-density

urban area

High-density

urban area

Barren

land

1984–

1990

km2 �0.848 �1.981 �20.898 10.941 4.694 8.113

% �0.27 �0.62 �6.58 3.44 1.48 2.55

1990–

1996

km2 0.321 15.535 �28.716 9.937 5.633 �2.748

% 0.10 4.89 �9.04 3.13 1.77 �0.87

1996–

2002

km2 �0.543 �4.541 �24.634 24.818 1.912 2.984

% �0.17 �1.43 �7.75 7.81 0.60 0.94

2002–

2008

km2 0.761 �6.430 �3.880 8.124 5.609 �4.252

% 0.24 �2.02 �1.22 2.56 1.77 �1.34

2008–

2013

km2 0.046 �2.355 �3.040 8.756 1.042 �4.174

% 0.01 �0.74 �0.96 2.76 0.33 �1.31

1984–

2013

km2 �0.263 0.228 �81.168 62.577 18.889 �0.077

% �0.08 0.07 �25.54 19.69 5.94 �0.02
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4.4.2 Change Dynamics Analysis

In terms of coarsely multi-temporal change detection method, intermediate LULC

classification maps have been generated with given time interval and are used and

analyzed to reveal the change processes during the time period. However, to detect

more complex dynamics of LULC changes, all classification maps need to be

involved to accomplish time-serial analysis. A trajectory of change process of

each class is clearly illustrated in Fig. 4.8. It shows a dynamic change of each

class too.

Obviously, urban built-up area experiences growth over the 30 years in general.

However, based on the statistics recorded in Table 4.6, the overall trend of built-up

area has been increased, but the process is torturous. The area increases in 1 year,

but falls back slightly in next year and increases again in later years. For example,

according to the table total percentage of built-up area is 48.3 % in 2002, but the

value decreases to 47.9 % in 2003 and rebounds to 51.3 % in 2005. The situation of

vegetated area is similar as built-up area that the coverage decreases over the period

but experiences fluctuation. As for forest land and barren land, they have erratic

change throughout the years, while water cover keeps relatively stable values

around 2 %. Based on the observation of built-up area over the entire time span,

the Region of Waterloo has experienced relatively accelerating urbanization pro-

cess in 1990s and in early 2000s.

Area net change
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Fig. 4.7 Normalized net change in municipality area by time period for each LULC class
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Fig. 4.8 LULC dynamic change from 1984 to 2013

Table 4.6 Percentage of each class in municipality area for each year

Class Water

(%)

Forest

land (%)

Vegetated

area (%)

Low-density

urban area (%)

High-density

urban area (%)

Barren

land (%)Year

1984 2.14 14.37 52.44 24.71 5.32 1.03

1985 1.75 13.06 52.09 24.42 5.79 2.88

1986 2.09 8.99 54.67 25.31 5.82 3.09

1987 1.84 12.02 49.79 25.35 5.98 5.03

1989 1.97 12.21 47.22 28.01 5.92 4.67

1990 1.89 13.71 45.95 28.09 6.74 3.64

1991 1.83 14.58 42.34 29.59 6.56 5.07

1992 2.22 14.31 41.21 30.97 6.03 5.21

1993 1.83 18.88 36.93 29.20 7.56 5.58

1994 1.78 22.83 33.99 31.26 8.09 2.03

1995 1.93 15.74 37.56 33.27 8.31 3.19

1996 2.03 18.65 36.83 31.11 8.61 2.77

1997 1.92 11.65 42.01 32.09 8.80 3.50

1998 2.18 17.57 32.41 34.17 8.64 5.04

1999 1.74 19.41 34.29 33.07 8.63 2.85

2000 1.79 19.97 30.43 35.21 8.87 3.70

2001 1.82 17.43 26.70 37.71 8.99 7.32

2002 1.82 17.31 28.92 39.14 9.19 3.62

2003 1.99 16.53 29.92 38.49 9.43 3.62

2005 2.01 17.28 26.51 41.83 9.51 2.83

2006 1.90 18.39 24.85 41.39 10.15 3.29

2007 2.35 10.53 32.72 40.91 10.50 2.98

2008 2.09 15.16 27.77 41.49 10.90 2.55

2009 2.25 13.03 29.49 42.55 11.03 1.63

2010 2.06 12.31 30.14 42.48 11.27 1.73

2011 2.32 13.25 28.44 43.89 11.32 0.78

2013 2.19 14.50 26.80 44.37 11.29 0.98
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4.5 Discussion

With the free access to Landsat archive data, LULC change dynamics can be

completely explored by extracting LULC information from the temporally dense

and extensive time-serial classification maps. Complexities of LULC change of

urban systems of the Region of Waterloo have been successfully detected. One

major finding has been obtained from the time-serial trajectory analysis and it

shows that LULC change processes of urban area of the Region of Waterloo are

very complex, not simply increasing or decreasing all the way. Taking built-up area

as an example, it experienced dramatic growth over the time period, but the

coverage still had irregular fluctuation up and down during the process. Water

and forest which were not supposed to change too much, also experienced observ-

able fluctuation during this time period.

Apart from the real change, those fluctuations might be resulted from other two

aspects. One is the classification error which cannot be completely eliminated

because of the medium spatial resolution of Landsat data and atmospheric noise.

The other one might be the phenological effects that influence the classification

results. Under this circumstance, the use of long-term dense datasets reveals its

superiority of reducing the impacts caused by those factors. Time-series trajectory

analysis detects the long-term change of complex ecosystems in a macroscopic

view and reducing reliance on one single classification map. For example, it can be

detected that there was an acceleration of growth of urban built-up area of the

Region of Waterloo in 1990s and deceleration in late 2000s. Such valuable infor-

mation of change complexities are required by environmental researchers and

decision makers. However, it cannot be detected by bi-temporal method or coarsely

multi-temporal method.

4.6 Limitations and Uncertainties

Based on the case study of the Region of Waterloo there are some limitations and

uncertainties of performing change dynamics analysis. From the data perspective,

in order to detect long-term dynamic change of urban area the remote sensing data

are required for sufficiently dense and extensive in time. With long-term record and

free open policy Landsat archive data is the best choice for this study. However,

Landsat data with medium spatial resolution ( 30 m) cannot detect every subtle

object on land surface. Therefore, classification errors should be counted in a study

since it cannot be eliminated. In addition, in this study a classification was

performed on each Landsat image taken from 1984 to 2013 except for 1988,

2004, and 2012. Training samples were selected for each year. In this way, the

quality of classification maps can be guaranteed because the training samples are

sufficient. However, for high dense dataset selecting training samples for each year

was a huge task in this study. The work might become more burdensome when the
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study area is large. Additionally, it is hard to control all sets of training samples with

the same quality. Therefore, effective image normalization methods should be

developed to let training sample selection process much easier. During classifica-

tion process parameters determination of using SVM is critical for obtaining the

best result. Also, it is difficult to determine which combination of the parameter

setting is the most superior.

4.7 Recommendations

Based on both the superiorities and limitations of this study, some potential future

studies are proposed here. With the global coverage of Landsat data, the time-serial

change detection method can also be applied to other cities or metropolitan areas or

even global scale to detect the LULC dynamic change. As for urban area analysis

by using remote sensing data, an effort can be given into improving the urban area

classification result. Since machine learning classifiers can deal with high dimen-

sional dataset, various input features can be integrated together to investigate their

effectiveness of improving the classification result. Moreover, the time-serial

remote sensing data, GIS data and socio-economic data can be also incorporated

to generated more accurate urban growth model. Furthermore, the accessibility of

long-term Landsat record also makes it possible to detect time-serial dynamic

change of different land cover types, such as dynamic change of forest cover,

glacier, watershed and coastline.

4.8 Summary

This chapter gives an introduction of long-term change detection from a different

perspective. By using long-term high-dense Landsat dataset, specific detailed LULC

change dynamics can be extracted based on per-image classification. Compared to

coarsely multi-temporal change detection, long-term trajectory of LULC dynamic

change can provide higher-order complexities of LULC change. Information, such as

acceleration and deceleration can be analyzed. The detailed long-term change pro-

cesses are very valuable information for planners and governments to understand the

causes and consequences of LULC change to make more appropriate and effective

regulations and policies for better planning and environmental management.
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Chapter 5

Influence of Political Regime Change to Land
Use Development in Urban Areas
in the Czech Republic

Lena Halounová and Vladimı́r Holubec

Abstract This chapter focuses on the development of some selected cities in the

Czech Republic during the last 40 years. This time period has two halves. The first

one is before 1990 when the country was part of Czechoslovakia, one of the

communist countries; the second period covers a democratic regime after 1990.

Land use development of dozens of cities was analyzed on the base of basic land

use classes. These classes allow in an objective way to compare all the cities. The

development is shown through values of 14 attributes for cities grouped into

3 categories – big, medium and small cities. Spatial values show land use devel-

opment as total areas of land use classes and as ratios of the number of inhabitants

and land use areas. All the values are also related to road traffic intensity, as one of

the most important indicators of the development of society in the last 40 years.

Time development of the values of the indicators, multiple linear regression and

correlation for both periods were used to show their dependency on road traffic

intensity. The main conclusion from this analysis is that the political change

followed by economical change had a strong impact on some of the land use

class changes and road traffic intensity.

Keywords Land use • GIS • Multiple linear regression • Road traffic intensity •

Correlation coefficient

5.1 Introduction

Stimulating the development of human society is based on production, the

exchange and consumption of goods and other products of human activity. Trans-

port routes substantially influence the dynamics in an increase of production and

exchange. The main carrier of these economic relations is road transport; which has
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the highest transport volume. The quick growth of cities/towns, the development of

urbanization in other words, is closely connected with large investments in traffic

infrastructure, mainly roads (Vepřek 2000, 2009).

Urbanization is an important phenomenon of the last 50 years which has

occurred in most countries of the world and has resulted in larger cities, even

megacities. It is not the case in the Czech Republic. Urbanization is accompanied

by many problems in the environment and human life. It is the reason why urban

development is analyzed by many authors. One of the most important impacts of the

political change in the Czech Republic is the growth of road traffic intensity, which

is a source of increasing noise and emissions since other sources of emissions –

industry and heating – were substantially lowered by protecting devices and

changes in heating sources.

Urbanism is influenced by many indicators. This paper deals with some of them

under two different political regimes. The political regimes in the Czech Republic

differ in prevailing parts in the socio-economic situation of a high number of the

population. Analyses of urban development under different political regimes were

not publicized very often. Anthony (2014) took into account political influence and

analyzed the 5 largest cities of 123 nations from 1960 to 2005. He focused on

political determinants on urban population distributions, tested and evaluated four

hypotheses related to the length of capital status as well as colonial, democratic, and

communist experiences. The main findings suggest that the length of a nation’s

largest city’s capital status is positively associated with urban primacy. Conversely,

nations with longer democratic or communist regimes have lower levels of urban

primacy while the results from colonial experience are curvilinear. China is not a

country where a sharp political change has occurred, however, economic develop-

ment is significant. Yen and Wu (2014) show in their study for 1999–2009 period

that 286 Chinese prefecture-level cities with higher real estate investment pushed

towards higher urbanization. Political influences can be found in Newton and

Schuermans (2013) who studied housing, spatial planning and urban development

in post-apartheid South Africa and found an important improvement in housing

conditions carried out by various bodies. Local political changes since 1960s

influencing the relation between transport and urban development in four cities

in Switzerland on one side and France on the other side are described in

Gallez et al. (2013). They analyzed the contents of master plans, principal technical

solutions and projects that have been implemented, and the means of inter-sectorial

coordination used. Stead (2001) found that more socio-economic reasons than land-

use characteristics had an impact on travel conditions. These were mainly socio-

economic conditions which changed in post-communist countries thanks to new

political regimes.

Urban development in this paper was analyzed by 13 indicators in relation to

road traffic intensity as an important impact of development of urban areas under

different political regimes (Halounová and Holubec 2014). Many authors have

studied this topic under a given political situation from the transport energy

consumption view (Kitamura et al. 1997; Næss and Sandberg 1996; Handy

1992). Litman and Steele (2013) describes the methods for evaluating how trans-

port planning decisions influence land use – and how land use planning decisions
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affect transport. He uses 12 factors as a location of development relative to the

regional urban centre, which reduces vehicle mileage per capita. The higher number

of people or jobs per unit areas reduces vehicle ownership, etc. He mentions that the

actual impacts will vary depending on the specific conditions and combinations of

applied factors. Similar argumentation about the relation between transportation

and land use can be found in (Jacobson 2003) who states that land use type

distribution and transportation systems are interdependent. The affects of various

land use characteristics on travel activity were analyzed in many other publications

(e.g. Barla et al. 2011; Ewing and Cervero 2010; Kuzmyak et al. 2006; Ristimäki

and Kalenoja 2011).

The relation between transport and land use has an impact on business analysis,

especially access management. Banister (2011a) and Banister et al. (2011)

emphasize that transportation infrastructure is one of the crucial phenomena of

economic development, which is a typical feature that changed in two different

political regimes in the Czech Republic. The increasing trend of road traffic is

unsustainable (Banister 2011b) causing high energy consumption. He suggests

reducing energy consumption based on a change of travel habits taking in to

account to land use and its planning.

Some other authors focus on this topic from the point of view of commuting. Ma

and Banister (2007) deal with commuting and its efficiency linked to the urban

form. They take into account excess commuting (additional journey‐to‐work travel

represented by the difference between the actual average commute and the smallest

possible average commute, given the spatial configuration of workplaces and

residential sites). Another type of analysis is of urban expansion by the gradient

analysis of multi-temporal data and the influence of road traffic (Fan et al. 2009).

5.2 Cities in the Czech Republic

A city or town is a geographical area with a set of attributes differentiating it from a

village. These attributes are the relative size of the area if we compare it with

villages, density of population, compactness, and concentration of urban areas.

Inhabitants of cities have typical demographic, social and professional structures, as

their employment is in services, industry, and business offering managing, educa-

tional business and cultural functions for larger surrounding areas.

The history of cities in the Czech Republic is similar to other European coun-

tries. Multifunctional centralized places came into being during the early Medieval

Ages. Places were more densely occupied and their inhabitants were not employed

in agriculture. These places were situated close to castles or bishop’s seats, and

monasteries in prevailing parts. The other reasons were suitable locations for

mercantile travelling, crossing of paths, places near fords or springs. These centers

accumulated crafts and markets. This city pattern is formed by centralized areas

with many job opportunities and surrounding areas dedicated to residential, pro-

ductivity and other areas.
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There are only a low number of cities in the Czech Republic whose history is

different. Ostrava, one of these processed cities, is such an example. It is a city,

which is not centralized as other Czech cities even though it is the third largest city

in the country as far as number of inhabitants. Ostrava (north-eastern part of the

Czech Republic) arose from the small city of Moravian Ostrava and seven

neighbouring settlements in the period of opening hard coal mines in the eighteenth

century and the development of heavy industry plants – steelworks in the nineteenth

century. The city of Ostrava as a unit has existed only since 1924.

There are 593 cities in the Czech Republic. The largest one is Prague with more

than 1,290 million inhabitants. According to the present Czech law about munic-

ipalities, the lowest number of inhabitants to become a city is 3,000.

One fifth of the inhabitants of the Czech Republic live in its three largest cities –

Prague, Brno and Ostrava. Moving people from rural areal to cities is a trend that

occurs in the Czech Republic as well as in many parts of the world.

The Czech Republic was a part of Czechoslovakia with the communist political

regime before 1990. The regime did not allow its inhabitants to become owners of

enterprises, companies, etc. All decisions about land use/land cover were performed

by the government, and local, district and regional representatives of the communist

party according to a planning system of short or long periods. The change to the

political system at the end of 1989 brought substantial development in many

spheres. The previous society, where most of the population was practically on

one standard of living without important differences, started to differentiate after

1990. This differentiation created a more layered society, which is allowed and able

to control and manage the country taking into account also the financial aspects of

individual decisions. The impact of this new way of thinking and management can

be also found in, for better or worse, land use development.

5.3 Methodology

5.3.1 Definition of Terms of Urban Areas

The urban development of Czech cities after 1970 was a reason why parts of their

areas have individual names of urban areas classification. The urban changes

(highlighted below) were allowed, initiated, and decided by governmental and

local authorities.

• Administrative city areas are their entire areas in individual years. They were

determined by local, regional and country headquarters of individual cities in

individual years using cadaster data of boundaries.

• Core city areas are administrative areas of individual cities at the end of 1970s

and early 1980s. The first half of 1980s was the first period when some villages

in the neighborhood of cities were amalgamated; the second half of 1980s was

the second period. Their land enlarged the original administrative areas of these
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cities. Original city areas (before joining) were separated from these villages by

agricultural and/or forested areas in many cities. Core areas and amalgamated

ones did not have a common historical development and created in fact a set of

individual urban areas with a central headquarter, services, etc.

• Associated areas are neighboring cadasters of villages that enlarged the core

areas in 1980s.

• Peripheral areas are villages that became self-standing administrative areas. The

separations occurred in the Czech Republic after the political change in the

country in early 1990s.

Core areas represent compact urban areas with a common historical develop-

ment – described in Sect. 5.2. – forming thus homogenous units from the point of

view of urbanization. It was the reason why the authors analyzed the development

within core areas of cities and administrative areas.

5.3.2 Selected Cities

To analyze the influence of political regimes on land use development in the Czech

Republic, a set of 36 cities of various sizes was processed. These cities had a

complete set of indicators of 35 year period from the end of 1970s till 2005. The

communist regime covers in this analysis 1970–1989 period and the democratic one

1990–2005.

It was decided to analyze the differences in the developments of urbanization in

this time scale and as a function of road traffic intensity. Road traffic intensity

expresses significantly economical differentiation among the population and is one

of the more important indicators of urban areas. Figure 5.1 shows a distinct break of

the number of cars between both periods/regimes in examples of big cities (Brno,

Ostrava, Olomouc, Hradec Králové) and small cities (Zlı́n and Kutná Hora).

Table 5.1 comprises of a list of all the cities which are processed is in the chapter.

Three groups of cities were used for processing to separate them into groups with

relatively common sizes and therefore similar conditions within each group. The

groups were created according to the number of inhabitants in the processed cities.

Location of the cities is in Fig. 5.2 and the position of the Czech Republic in

Europe is in Fig. 5.3.

5.3.3 Spatial Data

Spatial data had two different sources. One of them were data of the Czech Office of

Survey, Mapping and Cadastre (COSMOC) that determines administrative bound-

aries. Administrative areas of individual years were derived from a list of cadasters

which formed the given city area in the appropriate year.
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The second group of spatial data was determined for core areas. The group of

spatial data defined land use, however, from the urban architecture point of view.

Land use classes, also called functional classes, used in the analyses were residen-

tial, production, transport, recreational and other areas. They were processed from

image analysis and interpretations in core city areas. These land use areas were

derived using city plans (vector data), aerial orthophotos and satellite images (both

are raster data). City plans represent the actual state of land use of cities and plans

Fig. 5.1 Development of number of cars in some Czech cities since 1970

Table 5.1 List of processed cities ordered according to their number of inhabitants

Small cities number of

inhabitants <30,000

Medium cities number of inhabitants

�30,000 and <70,000

Large cities number of

inhabitants �70,000

Pı́sek Kladno Ostrava

Valašské Meziřı́čı́ Most Olomouc

Litvı́nov Frýdek-Mı́stek Liberec

Český Těšı́n Opava České Budějovice

Havlı́čkův Brod Děčı́n Hradec Králové

Žďár nad Sázavou Jihlava Pardubice

Strakonice Chomutov

Klatovy Přerov

Kutná Hora Jablonec nad Nisou

Náchod Mladá Boleslav

Mělnı́k Třebı́č

Česká Třebová Znojmo

Přı́bram

Cheb

Kolı́n
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for their future. Two steps were done to determine land use data in individual years.

Detailed city map classes of the latest period were simplified and aggregated (see

Table 5.2) and thus more general classes were formed. Detailed class polygons

were edited according to the real land use state by eliminating areas only planned

and merged into the above-mentioned simplified five land use classes and respec-

tive polygons.

Fig. 5.2 Distribution of administrative areas of processed cities in the map of the Czech Republic

Fig. 5.3 Position of the Czech Republic in Europe
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To determine land use development in individual cities GIS tools were applied.

The latest GIS layer created from city maps and remote sensing data was used as the

first input data to determine the previous (¼ older) GIS land use layer. A copy of the

“younger” land use layer was edited using historical aerial photos to create

the “older” one. It is a method which allows to maintain topology among layers –

to avoid slivers of polygons of different years – and to make the interpretation

relatively easy and quick. This is because large areas, especially in city centres,

have not changed considerably within dozens of years. The mapping of these areas

by editing saves time. GIS tools are irreplaceable for this time series processing –

both for editing and multilayer vector data quality. Aerial photographs (20–50 pixel

size) offer a suitable scale for visual interpretation. Satellite data were applied only

in cases where no aerial photographs of a given city in a given year were available.

Orthophoto data were provided by COSMOC (colour orthophotos) and from the

military archives (black and white photographs). Satellite Landsat data of the

appropriate years were downloaded from http://glovis.usgs.gov. GIS vector data

of land use classes were a source of spatial data functional classes for indicators in

Tables 5.3 and 5.4. The functional class areas can be dated by remote sensing data

measurements. Dates of measurements are dates of the data capture of aerial

photographs and satellite images. The time difference between the analyzed years

Table 5.2 Aggregation of detailed city map classes to functional classes

Area type in city plan Complex type of land use Functional class

Mixed residential area Housing Residential areas

General residential area

Purely residential area

Rural residential area

Public areas

Central mixed area Facilities

Civic facilities

Areas of work activities Production and storage Production areas

Production areas, industry

Sports areas Recreation Recreational areas

Areas of gardening

Parks and cemeteries Greenery

Gardens

Area close to nature

Other greenery

Water features Water

Cultivated areas Agriculture Other areas

Vineyards

Agricultural land

Railway Transport Transportation areas

Road class I, II, III

Local roads

94 L. Halounová and V. Holubec

s2pirast@uwaterloo.ca

http://glovis.usgs.gov/


(1970, 1980, 1990, 1995, 2000 and 2005) and the remote sensing data was less than

2 years. Land use polygons of individual years were edited and topologically

corrected not only for individual years, but also between years.

The application of remote sensing data and city maps data allowed to use the

knowledge of urban architects and to process a reliable and objective land use of

urban areas. City maps combined with aerial photographs – show and help to

interpret individual land use classes. Aerial photographs are – unlike city maps –

accurately dated and it is necessary for additional analyses with other data. GIS

analyses are a very good method how to locate trends in the spatial development of

features occurring on Earth, in individual countries, or regions. The key point is to

decide what spatial/remote sensing data are suitable, especially their scale and thus

Table 5.3 List of indicators and their trends of cities from Figs. 5.4, 5.5, and 5.6 in two regimes/

periods

Name of indicators

Small cities 1970–

1990/1990–2005

Medium cities

1970–1990/1990–

2005

Big cities 1970–

1990/1990–2005

Average number of inhabitants Growth/decline Growth/decline Growth/decline

Average population growth in

core areas

Growth/decline Growth/decline Growth/decline

Average ratio of number of

inhabitants and core areas

Growth/decline Growth/decline Growth/stable

Average ratio of number of

inhabitants and residential areas

Growth (up to

1995)/decline

Growth (up to

2000)/decline

Growth (up to

1995)/decline

Average ratio of population

growth and residential areas

Growth/decline

(growth since

2000)

Growth/growth Decline/growth

Average ratio of number of

inhabitants and administrative

areas

Growth/growth Growth/decline Stable/decline in

2005

Average ratio of number of

inhabitants and transportation

areas

Growth/decline Growth/decline Growth/decline

Average ratio of number of

inhabitants and production areas

Growth/decline Growth/decline Growth/decline

Development of average trans-

portation areas in core areas

Growth/growth

with smaller

gradient

Growth/growth

with smaller

gradient

Growth/growth

with smaller

gradient

Development of average resi-

dential areas in core areas

Growth/growth

with smaller

gradient

Growth/growth

with smaller

gradient

Growth/growth

with smaller

gradient

Development of average other

areas in core areas

Decline/decline Decline/decline Decline/decline

Development of average recre-

ation areas in core areas

Decline/growth Growth/growth

with higher

gradient

Growth/growth

Development of average pro-

duction areas in core areas

Growth/growth Growth/growth Growth/growth
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spatial resolution, spectral bands, and temporal resolution, and to choose other data

describing the features. As there are various data with similar spatial and spectral

characteristics like aerial photographs and VHR data, e.g., temporal resolution, date

and price can become the decisive issues.

5.3.4 Non-spatial Data

Non-spatial data were twofold. Statistical data were collected and processed from

the Czech Statistical Office (CSO) and are available on their web site http://www.

czso.cz. They are updated at least once per year. The only statistical indicator from

CSO used in this chapter was the number of inhabitants in cities. The rest – 12 – of

the indicators were calculated from the statistical and spatial data and are in

Table 5.3. The 14th indicator is road traffic intensity.

The average number of inhabitants (see Table 5.3) is calculated for individual

years as an average of value of all cities in individual groups – small, medium and

big cities from statistical values in the appropriate years. Average population

growth and other indicators were calculated in the same way. All these values

were used in the following indicators where individual land use areas were deter-

mined from spatial data for individual years (1979, 1980. . .). Six indicators show

the spatial development of land use areas and core areas in individual city groups

and were determined in GIS. Six indicators were calculated as ratios between the

average number of inhabitants and individual land use areas (one value for each

city) and core areas.

Road traffic intensity data have been collected since 1968 and are archived by

the Road and Motorway Directorate. At present this chapter comprises of the

evaluations from 1973, 1980, 1990, 2000, and 2005. The Directorate measures

the number of all passing vehicles in selected points within 24 h. These points are

Table 5.4 List of indicators used for multiple linear regression analysis

Indicators used in Small cities Medium cities Big cities

Administrative areas x x x

Transportation areas x x

Residential areas x x

Other areas x x

Recreational areas x x

Production areas x x

Number of inhabitants x x

Population growth x

Number of inhabitants/traffic areas x x

Number of inhabitants/production areas x x x

Number of inhabitants/residential areas x x x

Number of inhabitants/ administrative areas x x
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defined by their identification numbers and geographical coordinates and are

located on important roads of various classes in the entire country – both in, and

outside of urban areas. Their number has increased since the first year of the

measurement in 1968, however, the original points were preserved in most cases

and many new ones were added in all cities.

The intensities were used as two different values – average and maximal road

traffic intensities. Average road traffic intensity is a sum of the measured intensities

in all points of one city core area divided by the number of the points. This value

provides a chance to compare cities with an unequal number of points where road

traffic intensities were measured. The number of points varied from 3 to more than

60. Maximum road traffic intensity is a sum of all arriving and departing vehicles to

core areas from other directions. It provides an overview of the influences of

incoming and outgoing traffic.

5.4 Method of Evaluation and Results

5.4.1 Interpretaion of Graphs of Development
of Individual Indiators

The list of analyzed indicators is in Table 5.3. The first analysis was made from

individual graphs for individual indicators and groups of cities (small, medium and

big). Graphs in Figs. 5.4, 5.5, and 5.6 are shortly summarized in Table 5.3.

Table 5.3 and Figs. 5.4, 5.5, and 5.6 show great differences between periods –

before and after the year of 1990 separating the communist and democratic regimes.

The development of the average number of inhabitants (indicator 1) grew in cities

of all sizes during the communist regime and went down in cities of all sizes in the

democratic regime. One of the main reasons was that the democratic regime opened

a large work market and young women replaced/shifted from a “family life period”

to an “active work period”. These were economical reasons which had an important

social impact on society. Similar behaviour can be found in the number of inhab-

itants in core areas of all cities. The only difference among them is that the decline

of the population in medium cities started in 1995 unlike small and big cities where

the break occurred in 1990. It shows that changes appeared in small cities with a

substantially lower number of work opportunities and in big cities with a far larger

range of economic opportunities directly after the political change.

The positive growth of the number of inhabitants (indicator 2) lasted in all group

of cities up to 1995. Trends of five indicators (3, 4, 7, 8, 11) changed in 1990 from

growth to decline and/or stable. Transportation, indicator 9, residential, indicator

10, and recreational areas, indicator 12, grew in both periods, however, the gradient

was lower after 1990. Production area growth has not shown a significant difference

between the periods. Growth of residential, transportation, production and recrea-

tional areas was at the expense of other areas.
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It is necessary to realize that individual cities have different values of indicators

and the table shows the average values of the whole groups. This simple method

shows clearly the substantial differences between the two political periods, which

have generally occurred in all city sizes in the country.

Fig. 5.4 Development of indicators of small cities
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5.4.2 Regression Analysis

To analyze mutual relations among indicators, multiple linear regression analysis

was chosen. Road traffic intensity is one of the very important indicators of urban

areas. There are significant differences between road traffic intensity in the regimes

(see Figs. 5.4, 5.5, and 5.6) and therefore road traffic intensity was chosen as one of

the indicators that reflects changes between the political periods. This analysis

should confirm if there is a dependency between the intensity and indicators of

land use areas in different regimes. Both periods show growth of road traffic

intensity. However, the intensity of growth in big cities was 25 % during the

Fig. 5.5 Development of indicators of medium cities

5 Influence of Political Regime Change to Land Use Development in Urban. . . 99

s2pirast@uwaterloo.ca



communist regime and 80 % in the democratic regime, 19 % and 81 % in medium

cities, and 18 % and 44 % in small cities. It was the reason why the analysis of land

use dependency on road traffic intensity during different political regimes was

processed.

The list of indicators was not the same for all city groups (see Table 5.3). The list

of indicators had to be adapted to a number of processed cities in individual groups

as the low number of cities allowed for the use of only a lower number of indicators.

A group of big cities comprises of only six cities.

Regression analysis is a statistical method whose goal is to find a relation

between dependent and independent variables. If we use one independent variable

Fig. 5.6 Development of indicators of big cities

100 L. Halounová and V. Holubec

s2pirast@uwaterloo.ca



and one dependent (explanatory) variable and if we suppose a linear dependency,

we work with a simple linear regression with the following definition:

y ¼ b1 þ b2:xþ E ð5:1Þ

where y is dependent variable

b1 is a constant value for independent variable equal to zero

b2 is a slope of the line of dependency or a coefficient of the x2 variable
x is independent/explanatory variable

E is a “noise” factor, which shows an influence of other phenomena, which are not

included in independent variables.

Multiple linear regression uses line of dependency and uses more than one

independent/explanatory values (x1, . . .. xn), as the following equation shows

y ¼ b1 þ b2:x1 þ b2:x2 þþb3:x3 þ . . . :bn:xn þ E ð5:2Þ

where y is dependent variable

b1 is a constant value for independent variable equal to zero

b2, b3, .. bn are coefficient of the x2, x3, ..xn variables

Table 5.5 Results of multiple linear regression analysis for small cities before and after 1990

Indicator Std. error t- stat P-value

Transport areas 70-90 21.59477837 �2.224422349 0.268961497

90-05 1.822978 �10.5839 0.059972

Residential areas 70-90 12.22371537 0.57080272 0.669801755

90-05 1.047294 14.81925 0.042894

Other areas 70-90 0.475742124 0.10104548 0.93589005

90-05 0.0432 8.582103 0.073847

Recreational areas 70-90 0.448298719 �2.679595562 0.227390043

90-05 0.036784 �26.6697 0.023859

Production areas 70-90 22.2153785 0.961241538 0.512579375

90-05 1.397767 10.05442 0.06311

Number of inhabitants 70-90 0.322577794 1.720817818 0.335129853

90-05 0.023357 7.200552 0.087851

Number of inhabitants/traffic area 70-90 9.1951904 �0.944071454 0.518309718

90-05 0.716079 �10.6351 0.059685

Number of inhabitants/production area

70-90

10.97723256 �0.478570031 0.715840227

90-05 0.796793 �6.45812 0.0978

Number of inhabitants/residential area

70-90

72.33747079 0.007553272 0.995191529

90-05 6.740035 7.310378 0.086547

R2 value 70-90 0.97574884

R2 value 90-05 0.99980001
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x2, x3, .xn are independent/explanatory variables

E is a “noise” factor.

There were only land use areas, number of inhabitants and ratios of the number

of inhabitants and land use areas which were applied in the multi linear regression.

The regression was processed separately for individual groups of cities.

Tables 5.5, 5.6, and 5.7 show some of the resulting values of the regression. The

values in the regression result tables are:

• R2 is a coefficient of determination. It shows what percentage of the dependent

variable is explained by the model.

• t-statistic is the ratio of the estimated value of the regression and standard error

of the coefficient

• P-value, called also significance level, is the probability of obtaining a test

statistic at least as extreme as the one that was actually observed, assuming

Table 5.6 Results of multiple linear regression analysis for medium cities before and after 1990

Indicator Std. error t-stat P-value

Transport areas 70-90 4.917899915 �1.430615699 0.38837265

90-05 10.12631679 �2.254593704 0.265768316

Residential areas 70-90 31.09119476 �1.771237807 0.327200782

90-05 41.83472391 3.114846718 0.197765202

Other areas 70-90 0.470168635 �2.204974981 0.271058188

90-05 1.555199034 �0.412508925 0.750926839

Recreational areas 70-90 0.547781888 �3.779889992 0.164650661

90-05 0.628239138 �1.503790647 0.373592857

Production areas 70-90 12.36180238 1.828703984 0.31857109

90-05 37.53990291 2.052132608 0.288665321

Number of inhabitants 70-90 0.514347275 1.807619885 0.321688528

90-05 0.703811916 �2.787696006 0.219265371

Population growth 70-90 3.084603385 �2.25270524 0.265966087

90-05 5.833536804 1.172736585 0.449493778

Number of inhabitants/traffic area 70-90 0.828696907 �3.463182379 0.178957402

90-05 3.34419677 �2.500000411 0.242237847

Number of inhabitants/production area

70-90

16.29315569 1.906977699 0.307467405

90-05 33.8839719 1.578108941 0.359568902

Number of inhabitants/residential area

70-90

237.6857397 �1.755190986 0.329687036

90-05 286.1630563 3.073065201 0.200281138

Number of inhabitants/administrative area

70-90

237.214962 �0.066127463 0.957963152

90-05 228.2258806 �2.326113909 0.258477162

R2 value: 70-90: 0.98585041

R2 value: 90-05: 0.95922436
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that the null hypothesis is true. It confirms whether the components of the

regression line are statistically significant. P-value< 0,01, < 0,05, or< 0,1 are

usually used as significant (Sykes 1992).

The results of the regression analysis show that independent variables ¼ explan-

atory indicators determine from 92,1 % (big cities in 1990–2005) to 99,98 % (small

cities in 1990–2005).

However, all P-values (except for two of nine indicators of small cities from all

used indicators) are higher than 0,05. In other words they have lower level of

significance. All indicators for small cities are smaller than 0,1 for the 1990–2005

period, however none for 1970–1990. It means that nearly none of the dependent

variables are statistically significant in all city groups in both periods. P-values for

the 1970–1990 period are in most cases even ten times higher (¼worse) than in

1990–2005 for small cities. The P-values for small cities in 1990–2005 are the best

in the complete set of regimes and periods and vary in single percentage only.

Medium cities have some P-values higher in the democratic period and some in the

communist regime. P-values in big cities are lower in the 1970–1990 period.

The results of the individual groups of cities are different. As there are only six

cities in the group of big cities, the number of used indicators is substantially lower

and therefore the results are less representative. The regrouping of cities by adding

smaller cities to this group would not be correct as their “character” is different due

to their economical state, position in governmental hierarchy, education

opportunities, etc.

5.4.3 Correlation Analyses

Another tool was suggested to analyze the dependency of road traffic intensity and

land use areas in cities. It was the correlation coefficient. The equation for the

correlation coefficient is

Table 5.7 Results of multiple linear regression analysis for big cities before and after 1990

Indicator Std. error t- stat P-value

Number of inhabitants/traffic area 70-90 1.83503145 8.096590597 0.07823194

90-05 5.14758132 1.217860622 0.437664771

Number of inhabitants/production area

70-90

1.700598733 �3.553981472 0.174613907

90-05 4.859125158 �1.14128285 0.458056324

Number of inhabitants/residential area

70-90

13.95538909 �6.973847392 0.09066868

90-05 35.95796002 �2.819766287 0.216961197

R2 value 70 – 90: 0.9876

R2 value 90 – 05: 0.921
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CC ¼
X

x� xð Þ: y� yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x� xð Þ2: y� yð Þ2
q ð5:3Þ

where x, y are independent and depend data values

x, y are average values of x, y.
Correlation coefficients were calculated (see Tables 5.8 and 5.9) for individual

years and all cities as one group. The correlation coefficients were evaluated twice

for two different road traffic intensities. The first one was average road traffic

intensity and the second one was maximum road traffic intensity defined in the

part of non-spatial data.

The correlation between the average road traffic intensity and land use areas

shows the break between the regimes at residential areas (growth after stagnation).

It is a result of new residential areas built outside of city centers and in prevailing

part without facilities. Therefore inhabitants from these areas were forced to use

Table 5.8 Correlation between average road traffic intensity [number of vehicles/24 h] and land

use areas [ha]

Years Small cities Medium cities Big cities All cities

Transportation areas 1970 �0.029 �0.074 0.142 0.331

1980 �0.059 �0.044 �0.267 0.281

1990 0.389 0.016 0.121 0.41

2000 0.888 �0.027 0.495 0.545

2005 0.737 0.044 0.572 0.568

Residential areas 1970 0.057 0.202 0.091 0.383

1980 0.46 �0.209 �0.08 0.421

1990 0.512 �0.086 0.366 0.443

2000 0.742 0.379 0.514 0.575

2005 0.777 0.4 0.727 0.625

Other areas 1970 0.069 0.214 0.776 0.279

1980 0.359 0.293 0.121 0.278

1990 0.474 0.644 �0.81 0.26

2000 0.615 0.451 0.886 0.404

2005 0.537 0.239 0.532 0.312

Recreational areas 1970 0.161 �0.013 �0.042 0.211

1980 0.063 �0.375 �0.403 0.059

1990 0.088 �0.177 �0.096 0.181

2000 0.057 0.285 0.73 0.421

2005 0.118 0.046 0.867 0.343

Production areas 1970 0.481 0.645 0.071 0.335

1980 0.607 0.245 �0.105 0.314

1990 0.761 0.377 0.431 0.41

2000 0.554 0.172 0.388 0.434

2005 0.773 �0.098 0.575 0.462
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personal vehicles for commuting and services. Recreational areas suggest a break

by higher correlation values in medium and big cities. The break can be found also

in production areas in all cities from higher values in 1990 than 2000, however, this

decreasing trend changes between 2000 and 2005 to increasing in small and big

cities.

The correlation between maximum road traffic intensity and land use areas is

negligible. There are only two land use areas showing the dependency. The

correlation coefficient grows for transportation areas in small cities and decreases

to high negative values in big cities. The negative values trend in big cities occurs

also in the correlation coefficient in production areas. The other correlations do not

show any changes between the regimes.

Table 5.9 Correlation between maximal road traffic intensity [number of vehicles/24 h] and land

use areas [ha]

Years Small cities Medium cities Big cities All cities

Transportation areas 1970 �0.264 �0.023 0.98 0.316

1980 �0.013 0.124 �0.203 0.19

1990 �0.146 0.042 �0.171 0.176

2000 0.292 0.018 �0.658 0.248

2005 0.404 0.064 �0.753 0.264

Residential areas 1970 �0.053 0.633 0.917 0.601

1980 0.152 0.524 �0.478 0.189

1990 0.207 0.171 �0.452 0.177

2000 0.497 0.212 �0.813 0.257

2005 0.668 0.203 �0.792 0.298

Other areas 1970 0.027 0.674 0.971 0.516

1980 �0.044 0.813 0.596 0.511

1990 �0.245 0.591 0.609 0.307

2000 �0.043 0.228 0.362 0.194

2005 0.054 0.109 0.147 0.16

Recreational areas 1970 �0.085 0.044 0.834 0.188

1980 0.177 0.235 �0.036 0.267

1990 0.034 0.183 0.025 0.234

2000 0.298 0.269 �0.383 0.331

2005 0.033 0.212 �0.283 0.284

Production areas 1970 0.361 0.781 0.928 0.757

1980 0.333 0.86 �0.497 0.124

1990 0.147 0.685 �0.466 0.135

2000 0.263 0.576 �0.859 0.114

2005 0.283 0.327 �0.892 0.089
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5.5 Conclusions

The real political change in 1989 was replaced by 1990 in the analysis since the

most important economical changes occurred in 1990. It was a year when a lot of

private enterprises and companies came into being. It substantially changed the

relation between people and production, and people and the service sector. It was

also the starting year of activities of international organizations in Czechoslovakia –

previous country of the Czech and Slovak Republics. Higher economical power of a

certain part of the society appeared. Impacts of the change in cities were analyzed

using land use and other indicators. One of them was even visually detectable –

road traffic.

To determine the differences between two political and therefore also econom-

ical periods, three approaches were applied. Fourteen attributes were analyzed –

land use, number of inhabitants and its growth, ratios calculated from number of

inhabitants and land use areas, and road traffic intensity – are processed in this

chapter.

The first method shows development of individual indicators in discrete years –

in this chapter in 1970, 1980, 1990, 2000 and 2005 for two given periods: 1970–

1990 (communist regime) and 1990–2005 (democratic regime). These graphs were

processed for selected 14 indicators (each indicator in an individual graph for one

city group) show clearly how different the two political regimes are (see Table 5.3).

The development of residential areas in all city groups was relatively unchanged.

They grew in both periods, however, the growth gradients were different – higher in

the democratic regime. The higher growth started shortly after 1990. A similar

situation occurred in production areas. Distinctive differences can be found in

recreational areas where different behavior suggests in small cities than in medium

and big cities.

More distinctive values presented in the graph system were the ratios of the

number of inhabitants and individual land use areas. All these ratios had an

increasing trend in the first period and a decreasing trend in the second period

even though most land use areas increased since 1970s. The values in an objective

way describe the differences between the regimes in land use connected to the

number of inhabitants. These calculated indicators are more useful for determining

differences.

It is a quick evaluation when all necessary data are available. To make the result

clearer, the gradient of growth and decline can be calculated. The advantage of the

first method is its simplicity, easy visualization, calculation of trends individually

for individual indicators. The disadvantage of the method is the missing informa-

tion on mutual dependencies among indicators. It should be taken into account if we

would like to understand the changes in the land use indicators under different

political regimes.

Road traffic intensity is an indicator which clearly shows the differences

between both regimes. Therefore this indicator was used as a dependent variable

to find which indicators of urban areas influence the intensity.
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Multiple linear regression was used as the second method. It shows the differ-

ences between both political regimes using all the selected urban development

indicators in one calculation. The method determines which indicators have/had an

important or less important influence. The results of the method showed that all

used indicators reliably explain road traffic intensity with a coefficient of determi-

nation higher than 90 %. However, the statistical significance of many variables/

indicators was quite low. The behavior within the individual groups of cities were in

the framework of individual regimes similar and different than in other groups of

cities and regimes.

Multiple linear regression shows a complex dependency of all selected indica-

tors. The disadvantage of the method is a limit of used independent variables given

by the number of input data of used cities; in other words, a sufficient number of

cities for this analysis is necessary for each set of indicators. The analyses were

again processed for the 1970–1990 and 1990–2005 periods. Four from six models

(small, medium, big cities for two periods) had all a level of significance of all

indicators higher than 0,05. Thus the indicators had a low significance. This method

brings interesting results showing the differences between the regimes especially in

statistical significance of individual indicators.

The last method – correlation allowed to find a dependency between road traffic

intensity and individual indicators regardless other indicators More information can

be found using average road traffic intensity. Correlation shows that there are great

differences between city groups. A significant impact of political change can be

found in all groups of cities but in the dependency of different land use areas as

well. The differences between the regimes using the correlation in big and medium

cities occur in all classes except for transportation areas, in small cities only for

residential and production areas. A relatively high number of correlation coeffi-

cients in the communist regime are very low and have an increasing trend either to

positive or negative values. It means that the dependency between the road traffic is

higher in the democratic regime than in the communist at average road traffic. This

dependency of maximum road traffic intensity is substantially lower than of the

average. It suggests that it is the land use of cities which raises the intensity

especially in the democratic regime in the country. Each of the methods presented

in this chapter proved to be a useful tool for analyzing the time series of more

variables and from a different point of view.

All the results of the analyses proved that political change followed by econom-

ical change has a very strong impact on road traffic intensity. Eighty to ninety per

cent of the road traffic intensity is formed by personal cars, motorcycles which

cover less than 3 %, and the rest is formed by heavy vehicles. The high increase of

the number of personal cars since early 1990s and developing residential areas

situated usually out of city centers deteriorated the traffic situation having a doubled

road traffic intensity if compared between 1970 and 2005. Both these features

reflect a different state of the society in the post communist period.

There is a large scale of indicators of various types which influence the changes

and development in urban areas. Geospatial science is the only really objective tool

which is able to store, analyze and model urban development based on historical
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data and their mutual relations. The advantage of geospatial science is its open

character allowing to implement an unlimited number of available attributes and

update the data on one side, and to visualize both data, and partial and/or final

results of analyses and modelling using spatial and non-spatial data.

The application of remote sensing data and city maps data allows for the use of

knowledge of urban architects to map the land use of urban areas. City maps

combined with aerial photographs – show and help to interpret individual land

use classes. Aerial photographs are – unlike city maps – accurately dated and that is

necessary for additional analyses with other data. GIS analysis are a very good

method how to find trends in the spatial development of features occurring on the

earth, in individual countries, or regions. The key point is to decide what spatial/

remote sensing data are suitable, especially their scale and thus spatial resolution,

spectral bands, and temporal resolution, and to choose other data describing the

features. As there are various data with similar spatial and spectral characteristics

(aerial photographs and VHR data, e.g.), temporal resolution and price can become

the decisive issue.
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Chapter 6

Mapping Sea Ice from Satellite SAR Imagery

Linlin Xu and Jonathan Li

Abstract Sea ice information is crucial for ensuring safe marine navigation and

supporting climate change studies in the polar regions. Spaceborne synthetic

aperture radar (SAR), due to its ability to cover large inaccessible areas without

the dependence on weather condition or sun-light illumination, provides a powerful

tool for sea ice mapping. This chapter provides a comprehensive overview of SAR

image analysis approaches to sea ice mapping with a focus on sea ice segmentation.

Sea ice segmentation is an essential step in computer-aided sea ice mapping

systems. Automated segmentation of SAR sea ice imagery is a difficult task due

to the complex sea ice physics and the ever-changing ocean environment, as well as

the numerous sensor parameters. In light of the difficulties, an efficient segmenta-

tion method has to utilize the spatial and textural information for modeling the label

correlation and increasing the discriminative capability. This Chapter presents a

Bayesian method for segmentation of SAR sea ice imagery, where a novel kernel

principal component analysis (KPCA) model is used for accounting for the textual

information, and a Markov random filed (MRF) is used for addressing the label

correlation effect. The proposed method is optimized by the graph-cut approach.

The results demonstrate that the proposed method is capable of effectively delin-

eating different sea ice types. Moreover, it requires less computational time than the

other advanced approaches.

Keywords Sea ice segmentation • Synthetic Aperture Radar (SAR) • Bayesian

estimation • Maximum a posterior • Markov random field (MRF) • Kernel principal
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6.1 Introduction

Sea ice information in the polar regions is essential for various applications,

especially for climate change study and marine navigation. Sea ice is an integral

part of the Earth’s climate system. It interacts with both the ocean and the atmo-

sphere by modulating the heat and moisture fluxes. The state and dynamics of sea

ice determines and alters the surface albedo and salt-freshwater redistributions

(IGOS 2007). In particular, because of its high albedo, sea ice tends to reflect

most of the sunlight back to the atmosphere, resulting in cold climate in the polar

regions. However, with the current trend of the contraction of Arctic ice caps

(Kwok et al. 2009), the failure in controlling the amount of sun ray may cause

climate change in local or global scale, leading to serious influence on human life,

the earth’s ecosystem and natural environment. Consequently, sea ice information,

such as extent, type, concentration and thickness, has been recognized as an

Essential Climate Variable by both the World Meteorological Organization

(WMO) and the United Nations Framework Convention on Climate Change

(UNFCCC). Moreover, the sea ice information is essential for ensuring safe marine

navigation. The Northern Sea Route (NSR) in the Arctic region is the shortest

sailing route linking northwestern Europe and northeastern Asia. However, the

navigation in this region is greatly hampered by the presence of sea ice and iceberg

(Johannessen et al. 2006). Therefore, information regarding the conditions and

distributions of different sea ice types is required for reducing hazards of marine

transportation and offshore operations.

While optical sensors can be used for obtaining sea ice information, they depend

on weather condition or sun-light illumination, and are therefore limited by clouds

and darkness. Satellite synthetic aperture radar (SAR), due to its ability to penetrate

the cloud and work day and night, provides a powerful tool for sea-ice monitoring.

RADARSAT-1 and -2 have been the primary source for sea ice monitoring. At the

Canadian Ice Service (CIS), the operational interpretation of SAR sea ice images

relies on human operators to manually process a great number of image scenes

annually. The sea ice charts, as the final product, label each identified region with an

egg code, which indicates sea ice information (e.g., the type, concentration, stage of

development, and floe size). This visual interpretation of SAR sea ice images,

although capable of incorporating human knowledge and experiences, is very

demanding due to the vast amount of daily sea ice observations. Hence, there is

an urgent need to develop automatic programs that are capable of accurately and

time-efficiently discerning the types and extends of different sea ice from SAR

imagery.

This chapter is organized as follows. Section 6.2 describes the principles of SAR

imaging. Section 6.3 summarizes the available satellite SAR sensors. The auto-

matic segmentation of SAR sea ice imagery and the challenges are described in

Sect. 6.4. The proposed method for SAR sea ice segmentation is introduced in

Sect. 6.5. The results of experiments on both simulated and real SAR sea ice images

are presented in Sect. 6.6. Lastly, Sect. 6.7 concludes the study.
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6.2 Principle of SAR Imaging

SAR is a radar system (see Fig. 6.1a) where a transmitter generates successive

microwave pulses (A), which are focused by radar antenna into a beam (B) to

illuminate the surface obliquely, finally the receiver records the backscattered

energy (C) from various objects within the beam. The time delay between the

signal transmission and ‘echo’ reception is used to infer the distance of the targets to
radar, and thus the location of the targets. With the moving of sensor platform, the

continuous recording and processing of backscattered energy form a

two-dimensional image of the surface.

The SAR imaging geometry contains five elements (see Fig. 6.1b), i.e. flight

direction (A), nadir point (B), swath (C), range (D), azimuth (E). The spatial

resolution of SAR system entails the range resolution which is determined by the

pulse length, and the azimuth resolution which is determined by the angular width

of the beam and slant range distance. Because beam width is inversely proportional

to the length of radar antenna, a fine azimuth resolution requires antenna length

longer than what can be carried on satellite platform. To overcome the antenna size

limitation, the SAR system is designed to synthesize a very long antenna by taking

advantage of the moving of the platform. Most SAR systems have very high spatial

resolution, e.g. RADARSAT system provides resolution between 3 and 100 m. For

sea ice monitoring, the most commonly used RADARSAT mode is ScanSAR

narrow and wide modes which have spatial resolution of 50 m and 100 m

respectively.

Fig. 6.1 Illustration of (a) the principle of SAR imaging, and (b) the basic elements of SAR

imaging geometry (From CCRS 2009)
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6.3 Summary of SAR Imaging Satellites

Remote sensing of sea ice can be performed in visible, infrared (IR) ranges, using

sensors such as MODIS (Moderate Resolution Imaging Spectroradiometer), and

AVHRR (Advanced Very High Resolution Radiometer) and SeaWiFS (Sea Wide

Field of view Spectrometer). However, these sensors are limited by their coarse

spatial resolution and the susceptibility to the influence of weather conditions.

In contrast, the SAR sensors onboard satellites have been widely used for sea ice

monitoring, primarily because of the following reasons. First, SAR sensors are

active sensors, which are capable of sending radiations to the earth surface, and

receiving the backscattered signals. Consequently, SAR sensors do not rely on the

sun illumination and are able to work 24 h a day. This characteristic is especially

important for the polar regions that have long dark period in winter. Second, SAR

sensors work at microwave ranges, and therefore are capable of penetrating the

cloud. This feature also makes SAR sensors more suitable than the optical sensors

for monitoring the polar regions, where cloud is easily formed in the melting season

due to open water and the cold atmosphere. Third, SAR sensors are generally

characterized by wide coverage with medium spatial resolution. And this combi-

nation is suitable for delineating sea ice without compromising too much the

monitoring efficiency.

Various SAR sensors have been used for ocean monitoring, as summarized in

Table 6.1. Seasat launched in 1978 is almost the earliest SAR sensor that is

designed for ocean monitoring. ERS-1 and -2, launched by the European Space

Agency (ESA) in 1991 and 1995 are also specifically designed for ocean surveil-

lance. RADARSAT-1, launched by Canadian Space Agency (CSA) in 1995, has the

optimal combination of spatial resolution and coverage that is suitable for detecting

ocean features over large area. For example, with a spatial resolution of 50 m

(100 m) and swath width of 300 km (500 km), the ScanSAR Narrow (Wide) beam

mode in RADARSAT-1 is capable of providing detail information of large sea ice

area. The ENVISAT, launched by ESA in 2002, carries an advanced SAR (ASAR)

sensor, which is capable of providing the Precision and ScanSAR modes, with

spatial resolution of 30 m and 150 m, and swath width of 100 km and 400 km

respectively. In 2007, two X-band SAR satellites, the TerraSAR-X and COSMO-

SkyMed were sent into space. RADARSAT-2 was launched by CSA in the same

year, and it has widely been used for sea ice monitoring (Ochilov and Clausi 2012).

It is worth to mention that Canada has initiated a new mission, called the

RADARSAT Constellation Mission (RCM) in 2005 and intends to launch three

RCM satellites in 2018. Using the three satellites, RCM will be able to provide

complete coverage of Canada’s land and ocean with daily revisit, as well as daily

access to 95 % of the Earth’s surface.
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6.4 Automatic Mapping of Sea Ice in SAR Imagery

Sea ice backscatter in SAR imagery depends primarily on the surface roughness and

the dielectric constant of sea ice or open seawater (Carsey 2013). Generally

speaking, rougher surface enables more radiation to be backscattered to the sensor,

causing brighter appearance in SAR imagery. The dielectric constant of sea ice

decreases as the degree of salinity decreases. Lower dielectric constant generally

causes stronger backscatter. This implies that thicker sea ice tends to assume

brighter color due to its lower salinity, and new or fresh sea ice appears darker in

the image due to the relatively higher dielectric constant. Therefore, different

sea-ice types are generally distinguishable on SAR images because they admit

different physical characteristics, i.e. salinity and surface roughness, resulting in

the varying magnitudes of SAR backscattering.

Unfortunately, the complex sea ice physics and ever-changing ocean environ-

ment, as well as the numerous sensor parameters cause large inner-class gray tone

variation in the observed SAR sea-ice images. First of all, SAR sensor inherently

produces speckle noise, which renders the observed pixel values either brighter or

darker than the true pixels values, leading to great variability in areas that should be

homogeneous. This variation would reduce the separability of different sea-ice

types. Moreover, the existence of ridges, rubble, rims and deformations produced

by compression forces can also produce inhomogeneity in gray tone values (Shokr

1991). In addition, the same sea-ice type could appear different tone values as the

changing of SAR incidence angle.

The significant inner-class variation imposes a fundamental challenge on the

automatic techniques for sea ice image segmentation. Current algorithms for SAR

sea ice image segmentation can be categorized as pixel-based and texture-based.

The former clusters pixels based on gray tone values, e.g., local thresholding

(Havercamp et al. 1993), Gamma (Samadani 1995) and Gaussian (Karvonen

2004) mixture models, and K-Means clustering (Redmund et al. 1998). Due to

the sensitivity of single pixels to speckle noise, these methods always produce

many artifacts. The suppression of speckle noise by some denoising methods (Lee

1980; Frost et al. 1982; Kuan et al. 1985) however will introduce new problems,

such as the blur of the ice boundaries which serve as important information to

delineate sea ice.

As opposed to using single pixels, the texture-based approaches use for segmen-

tation the texture features, which are linear or nonlinear functions of neighboring

pixels, e.g., variation (Burns et al. 1982; Heolbaek-Hansen et al. 1989), gray-level

co-occurrence matrix (GLCM) (Haralick et al. 1973; Shuchman et al. 1989; Baraldi

and Parmiggiani 1995; Barber and LeDrew 1991; Soh and Tsatsoulis 1999; Clausi

2002), Markov random fields (MRF) (Deng and Clausi 2005) and Gabor filter

(Clausi 2001). Comparing with pixel-based approach, these methods are more

robust to inner-class variation. However, due to the vast amount of texture features

and their varying specializations, it’s difficult to select the best group of features for
the current task at hand. Moreover, most texture-based approaches are
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computationally intensive, thus are not suitable to support operational usage. This

chapter therefore aims to explore sea ice segmentation technique that is both

efficient and accurate.

6.5 Proposed Method

6.5.1 Bayesian Segmentation of SAR Sea Ice Imagery

In this chapter, we denote the discrete lattice spanned by SAR sea ice imagery by N,

and a site in the lattice by t 2 N. We represent the image patch centered at site t by

yt, a p-dimensional random vector taking on different grayscale values, and the

label of site t by lt, a random variable taking on a class {1, . . . ,K}. Then a SAR sea

ice image can be denoted as Y ¼ yt
��t 2 N

� �
, and the labels of this image as

l ¼ lt
��t 2 N

� �
. For automated segmentation of SAR sea ice imagery, we are trying

to infer l based on Y, which, in the Bayesian framework, can be achieved by

maximizing the posterior distribution of lt given yt, i.e.,

p lt
��yt

� �
p yt

��lt
� �

p ltð Þ ð6:1Þ

where p yt
��lt

� �
denotes the probability distribution of patch variable yt conditioned

on lt, which allows the modeling of textural information, and p(lt) is the a priori

probability of labels, which allows the modeling of label correlation effect. The

maximum a posterior (MAP) estimation of the labels can be expressed as:

bl ¼ arg maxl
Y

t2N p lt
��yt

� � ð6:2Þ

or

bl ¼ arg minl
X

t2N �logp yt
��lt

� �� logp ltð Þ� � ð6:3Þ

In this letter, p yt
��lt

� �
is approached by kernel principal component analysis

(KPCA) to mine the most discriminative textural information, whereas p(lt) is

implemented by the MRF-based multiple logistic (MLL) prior to modeling the

label correlation effect. The maximum a priori (MAP) problem is solved by the

graph-cut-based α-expansion algorithm.

6.5.1.1 Likelihood Implementation

Since image patches yt characterize the spatial relationship of local pixels, using

image patches instead of individual pixels would allow better representation of
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texture patterns and is more capable of resisting the influence of speckle noise.

However, the drawbacks of using yt lie in the fact that yt assumes high level noise,

high dimensionality, and that yt itself may not reveal the most discriminative

texture patterns. Therefore, one essential issue for sea ice segmentation is to explore

the most compact and discriminative texture features as model input. Many texture

features, as linear or nonlinear transformations of yt have been used instead of yt,

e.g. GLCM (Haralick et al. 1973; Clausi 2002) and Gabor filter (Clausi 2001).

However, due to the vast amount of variations of these texture features and their

varying specializations, it’s difficult to select the best group of features for the

current task at hand. Moreover, it is difficult to predict the statistical distribution of

texture features.

In Sect. 6.5.2, we present a KPCA model to extract compact and discriminative

texture features with Gaussian-like noise characteristics. We will illustrate that the

proposed KPCA local texture features assume some meaningful characteristics that

benefit sea ice segmentation. The KPCA features zt in site t can be obtained by

transferring yt into KPCA domain. Accordingly the KPCA features in class lt ¼ i

can be expressed as:

z it ¼ μi þ η ð6:4Þ

where μi is the mean vector of class i, and η is class-independent noise. In

Sect. 6.5.2, we will prove that η satisfies independently and identically distributed

(i.i.d.) zero-mean Gaussian-like distribution:

p ηð Þ ¼ 2πσ2
� �� p=2

exp �σ�2=2ηTη
� � ð6:5Þ

where σ2 is noise variance. Accordingly, the likelihood function can be expressed

as:

p zt
��lt ¼ i

� � ¼ 2πσ2
� �� p=2

exp �σ�2=2 zt � μi
� �T

zt � μi
� �n o

ð6:6Þ

The likelihood function in KPCA domain p zt
��lt

� �
will be used to substitute p yt

��lt
� �

in Eq. (6.1) for estimating the labels.

6.5.1.2 Label Prior Implementation

The MRF is a classical method for modeling contextual information (Geman and

Geman 1984). It promotes identical class labels for spatially close pixels. The

MRF-based approach is often implemented by the MLL model, which can be

expressed as (Li 2001):
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p ltð Þ ¼ 1

Z
exp �

X
t2N

X
u2Gt

δ lt; luð Þ
	 


ð6:7Þ

where Z is a constant normalization term, Gt denotes the neighborhood centered at

site t; and δ lt; luð Þ ¼ �1 if lt ¼ lu, whereas δ lt; luð Þ ¼ �1 if lt 6¼ lu.

6.5.1.3 Complete Algorithm

The likelihood function and MLL label prior in Sects. 6.5.1.1 and 6.5.1.2 are

incorporated into a Bayesian framework and solved by the MAP criterion. The

optimal labelingbl can be obtained according to MAP criterion:

bl ¼ arg minl
X

t2N
��zt � μlt

��
2 þ γ

X
u2Gt

δ lt; luð Þ
n o

ð6:8Þ

where γ is the weighting parameter that determines the relative contribution of the

data likelihood and the label prior. The unknown parameters include labels l and

class mean vectors {μi}. This is an ill-posed optimization problem, since the

number of unknown parameters is more than the number of observations. The

Expectation and Maximization (EM) algorithm can be used for solving this prob-

lem. The EM algorithm is a variant of the maximum likelihood estimation. It treats

l as missing observations and iterates the E- and M-step. In E-step, it estimate l by

assuming known values of {μi}, while in M-step, {μi} is updated based on the

estimate of l.

The estimation of l in E-step using the MLL label prior is essentially a combi-

national optimization issue. While many traditional algorithms, such as the simu-

lated annealing (Geman and Geman 1984) and iterative conditional mode (Besag

1986) can be used for solving this problem, the more advanced method, i.e. graph-

cut (Boykov et al. 2001), has not been adopted for sea ice segmentation. The graph-

cut approach generally requires less computation time than other approaches and is

more capable of finding the global optima. In this study, we therefore use the graph-

cut alpha-expansion approach (Boykov et al. 2001; Bagon 2006) for efficient and

effective MAP segmentation SAR sea ice image.

The complete algorithm is summarized into the following steps:

1. Transform the patch observations {yt} into KPCA domain, to get KPCA features

{zt};

2. Estimate the initial value of {μi} using K-means algorithm;

3. E-step: estimate bl using graph-cut alpha-expansion algorithm, based on the

current value of {μi};

4. M-step: update {μi} based on the current estimate ofbl . Estimate μi as the mean

value of the KPCA features in the ith class zt
��lt ¼ i

� �
;

5. Repeat E- and M-step until the estimate of {μi} stabilizes or a given number of

iterations being reached.
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6.5.2 Kernel PCA Texture Feature

The likelihood function is realized as the distribution of KPCA features. In this

section, we introduce in detail the proposed KPCA features. This section is orga-

nized as follows. First we briefly introduce KPCA approach. Then we explain the

extraction of texture features based on KPCA approach as well as the interpretation

of the extracted features. Lastly, we explore the compatibility of KPCA texture

features with K-Means algorithm.

6.5.2.1 Kernel Principal Component Analysis

Similar to classic PCA, the KPCA approach intends to obtain a series of orthogonal

directions that explain most of data variance. However, KPCA works in nonlinear

feature space rather than the original space (Sch€olkopf et al. 1998). As such, the
KPCA is supposed to be more powerful in terms of discovering meaningful patterns

hidden in the dataset. The nonlinear transformation is achieved by a mapping

function Φ (�) that maps the original space to feature space. Then KPCA can be

achieved by performing classic PCA in nonlinear feature space. Alternatively,

KPCA can be implemented by using kernel function without explicitly exploring

the form of mapping function (Sch€olkopf et al. 1998). This purpose of approach is

mainly to avoid the complexity of nonlinear mapping operation. In this chapter, we

adopt the logarithmic function as the mapping function in order to take into

consideration the multiplicative nature of SAR speckle noise. And we employ the

mapping function instead of the kernel function, considering that the mapping

function here is not complex and does not increase the dimensionality of the data.

6.5.2.2 KPCA Local Texture Features

Texture features are usually predefined linear or nonlinear transformations of

original image pixels. However, instead of using these predefined texture features,

we design a set of totally data-driven local texture features based on KPCA

technique. These adaptive features are capable of revealing meaningful information

hidden in image patches, while achieving Gaussian-like noise characteristics.

Assuming that the speckle noise is fully developed, a SAR image patch variable

can be modeled as (Hoekman 2001):

y ¼ x1n1, x2n2, . . . , x pn p

� �T ð6:9Þ

where xi and ni are respectively the terrain backscatter intensity and the speckle

intensity of the ith pixel in image patch. For fully developed speckle noise, xi and ni
are independent, and ni is spatially uncorrelated. Accordingly, we denote the SAR

image as a collection of all the image patches by a data matrix:
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Y ¼ y1; y2; . . . ; yN½ �T ð6:10Þ

where yt (t 2 N) represents the tth patch that is obtained by placing a small square

window at the tth pixel (Fig. 6.2). Essentially, the proposed KPCA model seeks

linear PCA directions in nonlinearly transformed feature space instead of in the

original space. The transformation can be achieved by a nonlinear mapping func-

tion Φ (y). To account for the multiplicative nature of SAR speckle noise, in this

chapter, we define:

Φ yð Þ ¼ log yð Þ ð6:11Þ

where log (y) represents performing logarithmic operation on each element of y.

Suppose Φ (y) has been centralized, the covariance matrix in logarithmic feature

space is:

C ¼ 1=N
XN

t¼1
Φ ytð ÞΦT ytð Þ ð6:12Þ

Note that C is a p� p matrix, because the mapping functionΦ y
!	 


does not change

the dimensionality of y. The KPCA can be achieved by performing singular value

decomposition (SVD) on the covariance matrix in logarithmic feature space:

C ¼
Caa Cab � � � Cai

Cba Cbb � � � Cbi

⋮
Cia

⋮
Cib

⋱ ⋮
. . . Cii

0
B@

1
CA

¼
wT
1

wT
2

⋮
wT

p

0
BB@

1
CCA

T
λ1
0

0

λ2

� � �
� � �

0

0
⋮ ⋮ ⋱ ⋮
0 0 0 λ p

0
BB@

1
CCA

wT
1

wT
2

⋮
wT

p

0
BB@

1
CCA ð6:13Þ

where element CAB in C represents the covariance between the two pixels at

position A and B across the image in logarithmic feature space. So C provides a

a b c
d e f

g

SAR image

Patch variable
h i

Fig. 6.2 Illustration of

patch acquisition in SAR

sea ice image
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statistical description of relationship among pixels in SAR image. Pixels that do not

belong to the same patch are considered uncorrelated. Hence the size of the patch

determines the scale of spatial patterns that can be described. Generally speaking,

bigger-sized patch considers larger-range correlations, and hence is more capable

of capturing larger-scale textural patterns in SAR image. However, for SAR sea ice

image that is usually devoid of strong texture pattern, small patch-size (e.g. 3� 3) is

sufficient.

The p� 1 vectors w j

� �
j ¼ 1, . . . , pð Þ, denote mutually orthogonal PCA direc-

tions of sequentially largest variances in logarithmic feature space. The KPCA

texture features ztf g t ¼ 1, . . . ,Nð Þ, can be obtained by projecting the image patch

onto the PCA directions:

zt ¼ WTΦ ytð Þ ð6:14Þ

The elements zti i ¼ 1, . . . , pð Þ in zt are called Principal Components (PCs), whose

variances are represented by λif g i ¼ 1, . . . , pð Þ. As discussed in Sect. 6.5.2.1,

while we adopt the mapping function for obtaining KPCA features, it is equivalent

to follow the approach presented in (Sch€olkopf et al. 1998) by using the kernel

function: k yt; yq
� � ¼ log ytð Þlog yT

q

	 

.

The above-described KPCA texture features assume several interesting charac-

teristics that benefit sea ice segmentation.

1. The features admit Gaussian-like noise with stable variance. Although most

statistical methods, e.g. PCA, K-Means and GMM, require symmetrically-

distributed noise with constant noise level, this requirement cannot be satisfied

in the case of SAR image. Due to the multiplicative nature, the speckle noise

renders the variance of y unstable across the image, and the data distribution

“heavy-tailed”. Nevertheless, the KPCA features solve this problem by adopting

a mapping function that maps the original domain into logarithmic domain.

y
! ¼ Φ yð Þ ¼ x

! þ n
! ð6:15Þ

where x
!

and n
!

are respectively the terrain backscatter intensity and speckle

intensity of image patch in logarithmic domain. After being mapped nonlinearly

into logarithmic domain, the probability density function (PDF) of n
!
is close to

Gaussian distribution, and the mean and variance of n
!
do not change across the

image (Hoekman 2001). Therefore, we can approximately treat n
!

as Gaussian

noise with zero mean and isotropic variance matrix Ipσ
2, where Ip denotes the

p � p identity matrix. Not only does the distribution of n
!

satisfy the implicit

assumption of PCA model (Tipping and Bishop 1999), it also enables the

resulting KPCA features to assume i.i.d. zero-mean Gaussian noise, as proved

in Sect. 6.5.2.3. Because of this property, in Eq. (6.8), the MAP estimation of
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labels is independent of noise variance. Therefore, the number of unknown

parameters can be reduced.

2. The features are discriminative. The KPCA texture features are linear projec-

tions of image patches onto the leading principal axes. Since the principal axes

reveal the largest variations in patch stack, the corresponding PCs therefore

amount to linear texture patterns that reflect the greatest variations among

different sea ice types. The subspace with the largest variance is highly possibly

the subspace where sea ice classes demonstrate their differences. Suppose that

texture patterns are similar within a certain class, but are different among

different classes. Then the KPCA’s goal of seeking subspaces with large vari-

ances will naturally drive it to find the subspaces that are capable of revealing

between-class variations, instead of subspaces revealing within-class variations.

3. The features are compact. In KPCA domain, the signal is mainly captured by

several leading PCs, while the last PCs are primarily due to noise. Therefore,

dimension reduction can be achieved by preserving several leading PCs as

texture features. In practice, KPCA features zt include only the first several

PCs that explain a fixed amount (e.g. 80 %) of the data variance. Therefore, it

can help reduce the computation in Eq. (6.8), since zt has much lower dimen-

sionality than yt. Moreover, due to the orthogonal constraint, the variables in zt
reflect mutually independent information, thus are capable of reducing informa-

tion redundancy.

4. The features are adaptive. For predefined features, such as Gabor filter and

GLCM, it is always a hard task to select relevant texture features from all

available ones. But it is not the case for the KPCA features, because they are

totally data-driven and capable of automatically adapting to the “best” trans-

formations of the pixel values.

Therefore, the KPCA local texture features are powerful for sea ice segmenta-

tion. While in this chapter we adopt KPCA features to be combined use with MRF

in a Bayesian framework for sea ice segmentation, it is also promising to combine

them with other clustering or classification techniques for other SAR applications.

6.5.2.3 Noise Distribution of KPCA Texture Features

Since the data likelihood in the MAP estimation is realized by KPCA texture

features, it is important to investigate the noise distribution of KPCA features.

In logarithmic feature space, following Eq. (6.15), we express the centralized

patch variable as:

y
! ¼ x

! þ n
! ð6:14Þ

where y
! ¼ y

!
1; y

!
2; . . . ; y

!
p

h iT
, x
! ¼ x

!
1; x

!
2; . . . ; x

!
p

h iT
and n

! ¼ n
!
1; n

!
2; . . . ; n

!
p

h iT
.

Based on Eq. (6.15), n
!

roughly satisfies i.i.d. Gaussian distribution with variance
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matrix σ2Ip. Since x
!
and n

!
are independent for fully developed speckle noise, we can

get:

Σ
y
! ¼ Σ

x
! þ σ2I p ð6:15Þ

where Σ
y
! and Σ

x
! denote respectively the covariance matrices of y

!
and x

!
. The PCA

analysis can be achieved by performing SVD on Σ
x
!.

Σ
x
! ¼ WSWT ð6:16Þ

where the column vectors in W represent the PCA bases with sequentially largest

variances, andS ¼ diag λ1; . . . ; λ p

� �
is a diagonal matrix with the diagonal elements

being the variances of PCs. Then, we have

Σ
y
! ¼ WSWT þ σ2WWT ¼ W

λ1 þ σ2 � � � 0

⋮ ⋱ ⋮
0 � � � λ p þ σ2

2
4

3
5WT ð6:17Þ

So we can see, Σ
x
! and Σ

y
! share the same PCA bases. As in Eq. (6.14), the texture

features can be obtained by projecting the image patch onto PCA bases:

z ¼ WT y
! ¼ WTx

! þWT n
! ¼ zx þ η ð6:18Þ

where zx ¼ WTx
!
and η ¼ WTn

!
stand respectively for the signal and noise parts in

texture features z. Denote the variance matrix of z by Σz:

Σz ¼ Σzx þ Ση ¼
λ1 � � � 0

⋮ ⋱ ⋮
0 � � � λ p

2
4

3
5þ

σ2 � � � 0

⋮ ⋱ ⋮
0 � � � σ2

2
4

3
5 ð6:19Þ

Since the noise of KPCA feature η is a linear function of n
!

and Ση ¼ σ2I, the
distribution of η can be approximated as:

p ηð Þ ¼ 2πσ2
� �� p=2

exp �σ�2=2ηTη
� � ð6:20Þ

Since η assumes i.i.d. zero-mean Gaussian noise, in Eq. (6.8), the MAP estimation

of labels is independent of noise variance. Therefore, the number of unknown

parameters can be reduced.
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6.6 Results and Discussion

In this section, the results achieved by the proposed method are reported and

discussed, in comparison with several other popular methods. Before reporting

the results on real SAR images, we first examine the results on simulated SAR

sea ice images, where clean images with ice-like gray tones were degraded by

speckle noise. In simulated study, the clean images were used as ground truth to

produce numerical measures for performance evaluation. For real SAR images, the

evaluation of segmentation result was by visual interpretation based on prior

knowledge and ice-chart concerning sea ice types and their spatial distributions.

6.6.1 Results on Simulated Imagery

One clean image (Fig. 6.6a) was degraded by speckle noise that satisfies a squared-

root Gamma distribution (Xie et al. 2002). Simulated images with different noise

levels measured by equivalent number of looks (ENL) were used to feed segmen-

tation methods, in order to examine their robustness to varying noise levels.

On the simulated images, we compared the proposed method with four popular

methods, such as K-Means clustering (Redmund et al. 1998), Gamma mixture

(Samadani 1995), GLCM (Clausi and Yue 2004) and VMLL technique (Deng

and Clausi 2005). Moreover, we also used for comparison the combination of

KPCA features and K-Means clustering model, where the KPCA features are

used to feed K-Means method. For the MRF-based method, we adopted the gray

tone values as features, used 150 EM iterations and 10,000 simulated-annealing

iterations. For GLCM, we used 12 features (i.e. entropy, dissimilarity and correla-

tion in four directions), 64 quantization levels and the patch-size of 15� 15.

Figure 6.3 presents the segmentation results obtained by different algorithms

when ENL¼ 4. The results suggest that the proposed method outperformed the

other three techniques. As we can see, Gamma mixture and K-Means approaches

produced intense artifacts, due to the sensitivity of single pixel to speckle noise. The

GLCM and MRF methods, although were better at resisting the influence of speckle

noise, produced certain misclassifications. For example, GLCM failed to delineate

the boundaries accurately; MRF also failed to provide smooth boundaries. KPCA

also produced artifacts due to the fact that the label correlation effect is not

addressed. The proposed Bayesian method nevertheless produced segmentation

results that are very similar to the true image.

We adopt the overall accuracy for quantitative evaluation. The overall accuracy

is calculated as the ratio between the number of pixels that are correctly classified

and the total number of pixels. Figure 6.4 shows the overall accuracy of different

algorithms as a function of noise level measured by ENL. As we can see, the values

of overall accuracy of the proposed method are above all the other methods. With

the increasing of noise level, Gamma mixture deteriorated sharply, while MRF
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achieved relatively stable results. The curve of KPCA is generally above the curve

of GLCM. It is remarkable that GLCM increased slightly with the increasing of

noise level. It is probably because the performance of GLCM relies on strong

textual patterns, which tend to be available when speckle noise is abundant. In

contrast, the proposed method achieved stable overall accuracy values on different

noise levels, indicating that the proposed method is robust to speckle noise.

6.6.2 Results on RADARSAT-2 Sea Ice Imagery

A HH-polarization RADARSAT-2 image comprising several sea ice types located

off the coast of Newfoundland, a Canadian island province, was provided by the

CIS for this study. The image was acquired in ScanSAR Wide beam mode at

22:29:36 UTC on 16 March 2009. Considering the large size (7,291� 7,296 pixels)

of the original image scene (Fig. 6.5), a subset of 684� 544 pixels was used for fast

processing (see Fig. 6.7).

Fig. 6.3 Simulated images segmented by different techniques, (a) true image, (b) image with

speckle noise (L¼ 4), (c) Gamma mixture, (d) K-Means, (e) GLCM, (f) MRF, (g) KPCA, (f) the
proposed method
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In order to evaluate segmentation results, it is important to know accurately the

location and extent of different sea ice types. The CIS website provides daily

regional ice charts which provide a series of egg codes, indicating the sea ice

concentrations, stages of development, and form of the ice for each segment of

sea ice-covered regions. Figure 6.6 shows the daily regional ice-chart covering the

study area. By carefully interpreting the egg codes for each segment of the study

area, we found two sea ice types in Fig. 6.7, i.e. the gray ice with a thickness of 10–

15 cm and medium thick first-year ice with a thickness of 70–120 cm.

We tested different methods on three sub-images from Fig. 6.7. In this experi-

ment we used the same parameter setting as in the experiments on synthetic image.

In order to test the log-transformation on image segmentation, we implemented a

so-called log K-Means algorithm that transforms SAR images into logarithmic

domain before performing K-Means clustering. The results are shown in

Figs. 6.8, 6.9, and 6.10.

The results on real SAR images are consistent with simulated study. And we can

extract the following conclusions based on the results. The proposed method can

accurately resist the influence of speckle noise, while in the meantime discriminate

difference sea ice types very accurately. For example, in Fig. 6.8 suggests that

KPCA can precisely delineate sea ice boundaries. Moreover, although it is chal-

lenging to identify small classes, i.e. seawater in Figs. 6.9 and 6.10, the proposed

method delineated seawater areas accurately. Another powerful model, MRF

although performed quite well in Fig. 6.9, confused seawater with certain gray

ice in Fig. 6.10.
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Fig. 6.4 The plot of overall accuracy as a function of noise level measured by ENL
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Logarithmic projection should be adopted as a pre-processing step for SAR sea

ice image segmentation in general. Most statistical methods, e.g. PCA, K-Means

and GMM rely on symmetric distributed noise with constant noise level. However,

this requirement cannot be satisfied in the case of SAR imagery, where the

multiplicative speckle noise assumes “heavy-tailed” distribution with unstable

variance. Nevertheless, after mapping nonlinearly into logarithmic domain, the

PDF of speckle noise is close to Gaussian distribution, with constant mean and

variance (Hoekman 2001). This conclusion is confirmed by experiments. For

example, in Figs. 6.8, 6.9, and 6.10, where the classical K-Means method

misclassified seawater with gray ice, the log K-Means, which works in logarithmic

domain, demonstrated better separation of different sea ice types.

Last, the proposed method is much more computationally efficient than other

advanced algorithms, i.e. GLCM and MRF. All the algorithms were implemented

in MATLAB, and ran on a PC with an Inter(R) 2.40GHZ Quad-Core processor. To

process a 256� 256 pixels sub-image, it took K-Means, proposed method, GLCM

and MRF 0.038, 0.619, 113.090, and 5049.462 s, respectively.

Fig. 6.5 RADARSAT-2 image (7,291� 7,296 pixels) covering the sea area nearby the Island of

Newfoundland in Canada, ScanSAR Wide beam mode, HH polarization, taken at 22:29:36 on

March 16, 2009
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Fig. 6.6 Daily regional ice-chart covering the study area. The egg codes, i.e. the oval symbols,

contain ice information of different regions, i.e. concentrations, stages of development (age) and

form (floe size) of ice
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Fig. 6.7 Subset taken from the sea ice region (684� 544 pixels)

Fig. 6.8 RADARSAT-2 images with two sea ice types by different segmentation techniques, (a)
original image, (b) K-means (c) Log K-means, (d) GLCM, (e) MRF, (f) the proposed method
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Fig. 6.9 RADARSAT-2 images with three sea ice types by different segmentation techniques, (a)
original image, (b) K-means (c) Log K-means, (d) GLCM, (e) MRF, (f) the proposed method

Fig. 6.10 RADARSAT-2 images with three sea ice types by different segmentation techniques,

(a) original image, (b) K-means (c) Log K-means, (d) GLCM, (e) MRF, (f) the proposed method
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6.7 Conclusions

In this chapter, we have provided an overview of satellite SAR image analysis

techniques for sea ice mapping. Based on the characteristics of SAR sea ice

imagery, we have presented a Bayesian method for fast and accurate segmentation

of SAR sea ice imagery. The proposed segmentation scheme is capable of account-

ing for the spatial correlation effect on both pixel observations and the pixel labels.

The proposed KPCA technique was performed on the image patches to extract

compact and discriminative texture features with Gaussian-like noise characteris-

tics. These KPCA texture features are totally data-driven and capable of revealing

between-class variations. In the proposed Bayesian method, the combined use of

KPCA feature likelihood and the MRF label prior constitutes a coherent and

powerful scheme for automated segmentation of SAR sea ice imagery. Both

simulated SAR images and RADARSAT-2 sea ice images were used for comparing

our segmentation scheme with several other popular methods, such as K-Means,

Gamma mixture, GLCM and MRF. The results evaluated by both visual interpre-

tation and quantitative measures suggested that the proposed method achieved

higher accuracy than the referenced techniques. Moreover, the proposed method

achieved very high time-efficiency, thus may better support the operational seg-

mentation of SAR sea ice imagery.
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Chapter 7

Landscape Ecological Mapping
for Biodiversity Evaluation Using Airborne
Laser Scanning Data

Mamoru Koarai

Abstract In this chapter, we describe our method for landscape ecological map-

ping in support of biodiversity evaluation through the use of airborne laser survey

data. Our study areas include the Siretoko Peninsula, well known as a World

Natural Heritage area, and the Chugoku mountainous area in the Satoyama Region,

Japan. The landscape ecological map consists of the combination of a three

dimensional vegetation structure classification derived from a detailed digital

surface model (DSM) and a micro landform classification generated from a detailed

digital elevation model (DEM). Airborne laser survey data were used to derive

micro landforms under forest areas by using the last pulse data in a Fall season.

Vegetation classification was generated by using the seasonal difference of the

airborne laser survey data acquired in Summer and Fall. An overlay analysis of the

vegetation classification and the landform classification indicates that at

the Shiretoko Peninsula, three dimensional vegetation structures are more related

to terrain elevation rather than micro landforms. And at the Chugoku mountainous

area, some early deciduous high thin crown trees are located in historical mining

sites within several micro landform categories such as gentle slope, concave and

rough texture.

Keywords Airborne laser survey • Landscape ecological mapping • Three

dimensional vegitation structure • Automated micro landform classification

7.1 Introduction

For biodiversity assessment, in addition to the distribution of species and the degree

of deterioration of the natural environment, the topographic conditions of the

assessment area must also be examined. Thus, the importance of a landscape

M. Koarai (*)

Survey Department, College of Land, Infrastructure, Transport and Tourism (MLIT),

2-2-1 Kihei-cho, Kodaira, Tokyo 187-8520, Japan

e-mail: koarai-m9510@mlit.go.jp

© Springer Science+Business Media Dordrecht 2015

J. Li, X. Yang (eds.), Monitoring and Modeling of Global Changes:
A Geomatics Perspective, Springer Remote Sensing/Photogrammetry,

DOI 10.1007/978-94-017-9813-6_7

137

s2pirast@uwaterloo.ca

mailto:koarai-m9510@mlit.go.jp


ecological viewpoint that allows understanding of an ecosystem based on its

topographic conditions is now recognized. Since Japan is a contracting state of

the Convention on Biological Diversity, the acquisition of information on its

biodiversity based on landscape ecology is essential.

Landscape ecology is the science of studying and improving relationships between

ecological processes in the environment and particular ecosystems. This is done

within a variety of landscape scales, development spatial patterns, and organizational

levels of research and policy (Wu 2006). Landscape ecological map is the thematic

map which shows the distribution of eco-topes, which are the smallest ecologically

distinct landscape features with uniform landform, soil and vegetation. These maps

are usually consisting of the combination of landform classification and vegetation

classification with middle scale such as 1/25,000 or 1/50,000. Recently, by the

development of airborne laser survey technology (Light Detection and Ranging;

LIDAR), it is possible to detect micro landform under the forest (Sato et al. 2007)

and three dimensional forest structure (Nelson et al. 1984; Næsset 1997a, b).

This study aims at understanding the detailed topographic information and the

three dimensional structure of vegetation using airborne laser survey data (airborne

LIDAR data), and developing a technology to construct a dataset to be used for

biodiversity assessment in Japan, based on the above understanding. In this paper,

the author introduces two types of landscape ecological study and mapping using

airborne LIDAR data in natural heritage area and rural area (Koarai et al. 2010a, b,

2011, 2012).

7.2 Airborne Laser Survey Data

Airborne laser survey is an active measurement method in which the distance from

the sensor to the ground is measured by processing the laser beam emitted from the

onboard scanner and reflected on the ground. Aircraft positions are calculated using

combinations of GPS data, both on the aircraft and on the ground. Aircraft accel-

eration and three-axial attitude data measured by an IMU (Inertial Measurement

Unit) are also used for the calculation. Furthermore, the direction data of the laser

beams are measured by an onboard sensor. These data are combined to calculate the

three dimensional position (X, Y, Z) on the ground (Fig. 7.1).

Akutsu et al. (2005) shows vertical accuracy of airborne laser survey. The sites

which were selected as points for accuracy verification were flat ground surfaces

such as parks. Coordinates of verification points acquired by airborne laser survey

were compared with those derived from the ground survey using GPS and leveling.

The results of comparison with the altitude value of leveling, was 0.03 m on average

(maximum +0.42 m minimum �0.32 m) and the standard deviation was 0.16 m.

One of characteristics of airborne laser survey is the possibility to detect micro

landform under forest. Because of the stereo matching method using aerial photos

will match on a tree crown, DSMwill be made from aerial photo. Since a laser pulse

passes through between leaves and reflects a ground surface, it is possible to detect

micro landform under the forest using airborne LIDAR data. Many researches of
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the automatic landform classification were carried out using DEM with 50–10 m

grid size (Iwahashi and Pike 2007; Ho et al. 2011; MacMillan et al. 2003). Sato

et al. (2007) was performing the automatic landform classification using airborne

LIDAR data in Shirakami Mountain as the World Natural Heritage site, northeast

Japan, based on the method of Iwahashi and Pike (2007).

Another characteristic of airborne laser scanning is the possibility to acquire

vegetation three-dimensional information, using laser pulse reflected in levees and

branches of tree. For example, tree height can be extracted with about 1 m error

(Nelson et al. 1984; Næsset 1997a, b). Næsset (1997b, 2002) show that trees

numbers and sum of cross-sectional area of evergreen forest can be guessing

from LIDAR data.

7.3 Study Areas

The author had selected two study areas in Japan. One is Siretoko Peninsula,

Hokkaido Island as a wildness area, and another is Chugoku Mountain, Tottori

Prefecture as a Satoyama rural area (Fig. 7.2). The Shiretoko Peninsula is the World

Natural Heritage Site, and a great portion of the peninsula is designated as

Shiretoko National Park. The park has been subject to strict regulation as a nature

preserve, and entering is prohibited in some area. The objective of the study is to

understand biodiversity of this nature preserve, and to establish a landscape eco-

logical map to ensure protection of biodiversity by using high resolution airborne

Fig. 7.1 Principle of airborne laser scanning

7 Airborne Laser Scanning Data 139

s2pirast@uwaterloo.ca



laser survey data. The Chugoku Mountains is a typical region representing the

environment of Satoyama rural areas. Research is under way to create a landscape

ecological map to clarify the relationship between topography and vegetation at an

iron sand mining (Kanna-Nagashi) site, and to investigate the effects of human

interference activities on wildlife habitat.

7.4 Landscape Ecological Study of Shiretoko Peninsula
Using Airborne Laser Data

The author tried to produce landscape ecological maps for estimation of biodiver-

sity using airborne laser survey data. The targeted area is the south east foot of

Mt. Rausu in Siretoko Peninsula, Hokkaido (Fig. 7.3). Basic legend of landscape

ecological map consists of the combination of three dimensional vegetation struc-

ture classification using detailed DSM (Digital Surface Model) and micro landform

classification using detailed DEM (Digital Elevation Model). The author obtained

0.5 m grid DSM and DEM of 4 km2 on the south east foot of Mt. Rausu along a

hiking trail in early September, 2008. The vegetation classification map with three

dimensional vegetation structure was created by combining summer season (early

September) 0.5 m grid LIDAR data and archived autumn season 2 m grid LIDAR

data.

Fig. 7.2 Location map of study areas
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7.4.1 Produce of LIDAR Vegitation Map

Vegetation classification has been carried out using three dimensional vegetation

structure detected by the difference between DSM data during the two seasons. The

algorithm of producing LIDAR vegetation map (three dimensional vegetation

structure map) is as follows (Koarai et al. 2010a). The legend of LIDAR vegetation

map consists of the combination of vegetation height, thickness of crown and

differences between the two seasons (deciduous single layer tree, deciduous mul-

tiple layer tree and evergreen tree). Vegetation height of each grid is calculated by

differences between DSM and DEM. As the result of overlay analysis between

vegetation height by LIDAR and Actual Vegetation Map with 1/25,000 scale by the

Ministry of Environment, vegetation height is classified into four categories such as

bare, grass and Pinus pumila (under 1.5 m), low (over 1.5 m and under 6 m), middle

(over 6 m and under 10 m) and high (over 10 m). Thickness of crown of each grid is

calculated by difference of max value and minimum value of random point data

except ground surface. Thickness of crown of high tree is classified into two

categories such as thin (under 10 m) and thick (over 10 m). The author defines

that evergreen trees are those with difference between vegetation height on summer

(Hs) and vegetation height on winter (Hw) under 3 m and Hs over 7 m, and other

trees are deciduous trees. The deciduous tree, which Hw is over 5 m is defined to

Fig. 7.3 LIDAR survey area on the south east foot of Mt. Rausu, and photos of each ground

truth site
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deciduous multiple layer trees, because there are small evergreen trees under

deciduous trees, other is deciduous single layer trees. Figure 7.4 shows the algo-

rithm for vegetation classification of this study. Using this algorithm, it is possible

to classify vegetation into 11 categories. Figure 7.5 shows LIDAR vegetation map

of the south east foot of Mt. Rasue.

The results of comparison between LIDAR vegetation map and Actual Vegeta-

tion Map with 1/25,000 scale by the Ministry of Environment, shows that LIDAR

vegetation map is corresponds with Actual Vegetation Map. In this study, the

author carried out ground truth survey on four sites (Fig. 7.3). The results of

comparison between LIDAR vegetation map and ground truth data shows that

LIDAR vegetation map does not correspond completely with ground truth data

on Mt. Rausu, because of the size difference between crown size of tree and grid

side of LIDAR vegetation map.

7.4.2 Produce of Automated Landform Classification Map

Airborne laser survey data is useful for the detection of micro landform under forest

areas by using last palse data in autumn season. Automatic landform classification

was carried out using 2 m grid autumn season DEM, by combining three categories

Hs-Hw

Hs-Hw

Hs-Hw<3m (always Hs ≥ 7m), Evergreen trees; Hs-Hw>=3m, Deciduous trees

Hw

Hw Hw

Dw Ds

Hs
Hs

Hs<1.5m, Grass, pinus pumila, bare; Hs ≥ 1.5m, Trees

If Hs ≥ 7m, crown: If Hs ≥ 10m, crown: Ds ≥ 10m, thick; Ds<10m, thin.

Hw<5m, Single layer Hw ≥ 5m, Multiple layer

Hs ≥ 10
m, High

Hs ≥ 10
m, H.

Hs ≥ 10
m, High10m>Hs ≥ 7

m, Medium

Hs<6m,
Low

10m>Hs ≥ 1.5
m, Med. &
Low

10m>Hs
≥ 6m,
Med.

Dw ≥ 10m, thick;
Dw<10m, thin.

Hs

Grass, pinus
pumila, bare

Evergreen trees Deciduous trees (Single layer) Deciduous trees (Multiple layer)

Fig. 7.4 Algorithm for vegetation claasification (Koarai et al. 2010a)
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using the method by Iwahashi and Pike (2007), such as slope degree (gentle, middle

and steep), convexity (convex and concave) and roughness (rough and smooth)

derived from the DEM. Figure 7.6 shows automated landform classification map

with 12 category (Koarai et al. 2010b).

Fig. 7.5 LIDAR vegetation map on the south east foot of Mt. Rausu (Koarai et al. 2010a)
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7.4.3 Relationship Between Vegitation and Landform

The results of overlay analysis of LIDAR vegetation map and automated landform

classification map are shown in Fig. 7.7. Bare, grass and Pinus pmila, and deciduous

single layer trees have high ratio of gentle slope compared with deciduous multiple

layer trees and evergreen trees. There is gentle slope of pyroclastic flow deposits on

high elevation area. With these reasons, the author considers that three dimensional

vegetation structures on Mt. Rausu are subject to site elevation rather than micro

landform classification (Koarai et al. 2010b).

Fig. 7.6 Automated landform classification map of the south east foot of Mt. Rausu using 2 m grid

DEM (s steep, m middle, g gentle, cv convex, cc concave, sm smooth, ro rough) (Koarai

et al. 2010b)
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7.5 Landscape Ecological Study of Chugoku Mountain
Using Lidar Data

The targeted area of Chugoku Mountain is the north foot of Mt. Dogo, Nichinan

Town, Tottori Prefecture. The author obtained 1m grid DSM andDEMof 25 km2 on

targeted area in November 2008, and obtained 0.5 m grid DSM of 2 km2 on the north

foot ofMt. Dogo in August, 2009 (Fig. 7.8). Vegetation classificationmapwith three

dimensional vegetation structure was produced by the combination of summer

season airborne laser survey data and autumn season airborne laser survey data.

The topographic analysis was done using autumn season airborne laser survey data.

Figure 7.9 depicts topographic counter map with 1 m interval on the north foot of

Mt. Dogo by airborne laser survey data and some pictures. It is possible to detect olden

iron sand mining sites (Kanna-Nagashi) with concave gentle slope area in mountain

area surrounded by artificially cutting steep slope, using the method of counter line

interpretation. The author interprets that areas A and B are olden Kana-Nagashi sites,

and areas C and D are artificial cannels for mineral classification by specific gravity

method on Kana-Nagashi site. In ground survey, J. mandshurica (kind of nuts) is

dominated in concave gentle slope which is interpreted as Kanna-Nagashi site.

7.5.1 Produce of LIDAR Vegitation Map

Vegetation classification has been carried out using three dimensional vegetation

structure detected by the difference between DSM data in two seasons. Algorithm
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Fig. 7.7 Results of overlay analysis between LIDAR vegetation classification and 2 m grid DEM

automated landform classicification of Mt. Raus (Koarai et al. 2010b)
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Fig. 7.8 Study area of Chugoku Mountain

Fig. 7.9 Topographical counter map with 1 m interval of the north foot of Mt. Dogo by airborne

laser data (Koarai et al. 2010b)
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of producing LIDAR vegetation map is as follows (Koarai et al. 2010b). The legend

of LIDAR vegetation map consists of the combination of difference in two seasons

(early deciduous trees, late deciduous trees and evergreen trees), vegetation height,

thickness of crown and deference of forest structure (single layer or multiple

layers).

The author detects evergreen trees, roads by digital imagery interpretation. And

he classified areas which the vegetation height on summer (Hs) is less than 1.5 m

into bare or grass, and areas which the Hs is over 1.5 m into tree. Deciduous trees

area classified into two categories such as early deciduous tree which the difference

between Hs and vegetation height on winter (Hw) is over 3 m, and other trees are

late deciduous trees. Vegetation height is classified into three categories such as low

(under 5 m), middle (over 5 m and under 15 m) and high (over 15 m) for evergreen

trees, and two categories such as low (under 10 m) and high (over 10 m) for

deciduous trees. Thickness of crown of high tree is classified into two categories

such as thin (under 10 m) and thick (over 10 m). Deciduous trees are divided into

two categories such as single layer and multiple layers using histogram of random

point data in summer season. The decision tree of algorithm for vegetation classi-

fication was shown in Fig. 7.10.

Using this algorithm, it is possible to classify vegetation with 12 categories.

Figure 7.11 shows LIDAR vegetation map of the north foot of Mt. Dogo. In this

LIDAR vegetation map, early deciduous thin crown trees mean J. mandshurica.

Fig. 7.10 Decision tree of vegetation classification of Chugoku Mountain using airborne laser

survey data (Koarai et al. 2011)
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7.5.2 Produce of Automated Landform Classification Map

Automatic landform classification was carried out using 1 m grid autumn season

DEM, by combining three categories, such as slope degree (gentle and steep),

convexity (convex and concave) and roughness (rough and smooth) derived from

the DEM (Fig. 7.12).

Fig. 7.11 LIDAR vegetation map on the north foot of Mt. Dogo (Koarai et al. 2010b)
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Rough texture areas of 1 m grid DEM are dominated by flood plain and artificial

cutting areas such as Kanna-Nagashi sites. In particular, the areas, which the values

of roughness by 1 m grid DEM is approximately 0.4, correspond to Kanna-Nagashi

sites located along Mt. Dogo. It is expected the value of texture indicate the

existence of Kanna-Nagashi sites (Koarai et al. 2011) (Table 7.1).

7.5.3 Relationship Between Vegitation and Landform

The results of overlay analysis of LIDAR vegetation map and automated landform

classification map are shown in Fig. 7.13. This result shows many forests consisting

of early deciduous tree such as J. mandshurica were distributed in areas with gentle
slope, rough texture, and concave, which were considered to be mainly created by

Fig. 7.12 Automated landform classification map on the north foot of Mt. Dogo (s steep, g gentle,
cv convex, cc concave, sm smooth, ro rough) (Koarai et al. 2011)
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Kanna-Nagashi. J. mandshurica is often observed as riverside vegetation and it

inhabits places with abundant soil moisture. Since Kanna-Nagashi removes the soil

from the mountain slopes, the slopes were flattened to become gentle slopes with

rough texture and concave. Because of these unique topographic features, a

riverside-like environment with abundant soil moisture was generated.

J. mandshurica is characteristically distributed in a large area at present (Koarai

et al. 2011). The eco-tope elements model in Kanna-Nagashi site are shown in

Fig. 7.14.

7.6 Produce of Landscape Ecological Mapping
for Biodiversity Evaluation

The author produced landscape ecological map combined with three dimensional

vegetation structure and micro landform classification. Sample of landscape eco-

logical map of the north foot of Mt. Dogo is shown in Fig. 7.15. The author

Table 7.1 Value of texture on each artificial sites (From Koarai et al. 2011)

Sites Roughness (1 mDEM) Roughness (50 mDEM)

A (Valley plain) 0.56–0.58 0.63

B (Valley plain) 0.52–0.54 0.64

C (Iron sand mining site) 0.38–0.40 0.66

D (Iron sand mining site) 0.40–0.42 0.62

Fig. 7.13 Results of overlay analysis between LIDAR vegetation map and automated landform

classification map by 1 m grid DEM (s steep, g gentle, cv convex, cc concave, sm smooth, ro
rough) (Koarai et al. 2011)
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considered new type legend of landscape ecological map of studied area in this

research, using the results of overlay analysis of LIDAR vegetation maps and

automated landform classification maps. The legend of this map is matrix of three

dimensional vegetation map and automated landform classification map (Koarai

et al. 2012). He now plans to introduce the utilization method of landscape

ecological maps for natural environment conservation planning.

Since the Shiretoko Peninsula is the area currently afflicted by the vermin

damage of the deer, the thin crown thickness areas of the Shiretoko Peninsula can

be expected as the areas of a heavy vermin damage of a deer. In the Chugoku

Mountains, old sand iron mining sites (Kanna-Nagashi), which are the artificially

landform changed area, are detected as concave gentle slope areas with rough

texture by landform analysis using the detailed LIDAR DEM. The specific vegeta-

tion “J. mandshurica”, which is an early deciduous tree with a thin crown thickness,
is dominated in old sand iron mining sites.

Using landscape ecological map by LIDAR data, it is possible to extract the

important eco-topes, such as a place where a special ecosystem exists or where the

ecosystem is vulnerable, from all the surveyed areas. The author had given these

landscape ecological maps to the local office of the Ministry of Environment and

the Environmental Department of the local government. They will able to use the

landscape ecological maps made from LIDAR data for the fundamental material of

evaluation of biodiversity.

Fig. 7.14 Eco-tope elements model in Kanna-Nagashi site (old iron sand maining site) (Koarai

et al. 2012)

7 Airborne Laser Scanning Data 151

s2pirast@uwaterloo.ca



Fig. 7.15 Part of landscape ecologoical map of the north foot of Mt.Dogo (Koarai et al. 2012)
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7.7 Conclusion

The landscape ecological maps using airborne laser survey data have been pro-

duced in Mt. Rausu of the Shiretoko Peninsula as World Natural Heritage area and

Mt. Dogo of the Chugoku Mountains as rural area. The basic legend for landscape

ecological map consists of the combination of three dimensional vegetation struc-

ture classification using detailed DSM and micro landform classification using

detailed DEM. The legend of three dimensional vegetation structure maps consists

of the combination of vegetation height, thickness of crown and differences

between the two seasons (deciduous single layer tree, deciduous multiple layer

tree and evergreen tree). Landform classification has been carried out by automatic

landform classification using 1 m grid DEM, combining three categories, such as

slope degree, convexity and texture. At the Mt. Rausu, three dimensional vegetation

structures are subject to site elevation rather than micro landform classification. At

the Mt. Dogo, some early deciduous high thin crown trees (a kind of nut) are located

in historical mining sites (Kanna-Nagashi) with the following micro landform

categories such as gentle slope, concave and rough texture. As the landscape

ecological maps produced by LIDAR data in this study is possible to extract the

important eco-topes, these maps are useful for the fundamental material of evalu-

ation of biodiversity.
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Chapter 8

Grassland Productivity Simulation:
Integrating Remote Sensing
and an Ecosystem Process Model

Yuhong He, Zhangbao Ma, and Xulin Guo

Abstract The heterogeneous nature of semi-arid grasslands in Canada creates

significant challenges in monitoring grassland conditions, especially in light of

increasing human activities and rapid environmental changes. It is thus imperative

to develop a spatially-explicit tool to monitor and predict grassland productivity

and to examine its responses to land-use and environmental change processes. In

response to this need, we use a spatial BIOME-BGC model to estimate spatially

distributed net primary productivity (NPP) for a mixed semi-arid grassland in

Canada. Given the importance of the foliar C:N ratio in modelling terrestrial

biochemical cycles and the ability of remote sensing in deriving spatially distrib-

uted data, a C:N ratio map is first produced from MODIS data which is then used to

drive the spatial BIOME-BGC model. The simulated NPP driven by the fixed foliar

C: N (i.e., C:N¼ 24.0) has an average of 112.53 g C m�2 years�1, while simulated

NPP driven by MODIS-derived spatial foliar C:N has an average of 107.36 g C m�2

years�1. The latter better reflects the actual NPP on the ground which is 98.29 g C

m�2 years�1. The results demonstrate that spatial foliar C:N can produce a more

accurate simulation of grassland biogeochemical cycles thus improving NPP

simulation accuracy.

Keywords Grassland ecosystems • Productivity modelling • MODIS derived C:N

ratio map
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8.1 Introduction

Globally, grasslands are important in the study of terrestrial ecosystems as they

cover nearly 20 % of the Earth’s surface (Lieth 1978); contain approximately 30 %

of global carbon stocks (Ojima et al. 1996; Parton et al. 1996); and store at least

10 % of the global soil organic matter (Eswaran et al. 1993). There are approxi-

mately 24 M ha of mixed grasslands in Canada, serving a variety of economic,

environmental, and ecological purposes. In recent years, grassland degradation has

become a worldwide problem due to intense human activities and environmental

changes, and the mixed grasslands of Canada are no exception. As a result, mixed

grasslands have frequently been associated with fluctuating, and unreliable produc-

tivity (Curll et al. 1985a, b; Fothergill et al. 2000; He 2014; Laws and Newton 1992;

Orr et al. 1990; Schwinning and Parsons 1996a, b). To ensure the sustainable

development of Canadian mixed grasslands and to predict the cascading effects

of human activities and climate change on these grasslands, ecosystem process

modeling is required because it can simulate and predict vegetation productivity

and also project ecosystem response to a wide range of environmental conditions.

Over the past 30 years, a considerable number of ecosystem process models such

as BIOME-BGC (Running and Hunt 1993) and CENTURY (Parton et al. 1993)

have been developed to investigate many different aspects of ecosystems, including

vegetation productivity, changing vegetation distributions, and land carbon sinks

(Adams et al. 2004). These models have significantly improved our understanding

of the possible consequences and responses of terrestrial ecosystems to different

environmental conditions (e.g. Cramer et al. 1999; Song and Woodcock 2003). At

the core of most of these models is a net primary productivity (NPP) sub-model,

which can be used to simulate or predict global vegetation productivity for a

specific ecosystem. However, these NPP sub-models are typically site-specific,

meaning they assume vegetation is homogenous within the ecosystem under study.

When applied in a spatially distributed mode, ecosystem process models can

effectively integrate a diverse assemblage of data and simulate ecosystem condi-

tions with spatial details (Turner et al. 2004). Over landscape or regional scales,

remote sensing provides the only practical source of spatial information that is

required to parameterize, drive and validate process-based models (Psomas

et al. 2008; Turner et al. 2004). Many of the relevant data on vegetation ecosystems

are now available from remotely sensed platforms, and the integration of remote

sensing derived variables and process modeling is a rapidly evolving field (Cohen

and Goward 2004). Examples of ecological variables that can be obtained from

remote sensing data are: (1) biophysical parameters (the leaf area index and the

minimum canopy resistance to evaporation), which can be assessed by spectral

indices to aid biological processes that control fluxes of mass; (2) surface temper-

ature, which can be achieved from various satellite sensors to improve simulation of

energy balance components, and (3) surface soil moisture content, which can be

derived from microwave data to improve the process modeling of bare soil and

sparsely vegetated surfaces. The feasibility of using remote sensing data in
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ecosystem models has been demonstrated in several land cover types, such as

grasslands (Cayrol et al. 2000; forests (Hasenauer et al. 2012; Liu et al. 1997;

Ranson et al. 2001), and croplands (Bouman 1992; Clevers and van Leeuwen 1996;

Guerif and Duke 2000; Maas 1988; Weiss et al. 2001).

For Canadian mixed grassland ecosystems, a conceptual remote sensing-based

BIOME-BGC model simulating spatially explicit mixed grassland productivity has

already been developed (He 2008). However, there still remains a question to be

addressed within this modeling framework: to what extent and with what limita-

tions can the critical parameter(s) required by the model be derived from available

remote sensing data? A critical parameter in a model is one in which minimal

changes to its value would generate major changes in model output (Makler-Pick

et al. 2011). When high uncertainty in a parameter coincides with high sensitivity of

the model to that parameter, model predictions may not be reliable.

Foliar carbon to nitrogen ratio (C:N) drives terrestrial biogeochemical processes

such as decomposition and mineralization, and is thus one of the most important

parameters that significantly controls NPP in the BIOME-BGC model (White

et al. 2000). Research conducted by Psomas et al. (2008) in semi-natural grassland

types in the Central region of the Swiss Plateau also indicated that NPP estimates

using spatial estimates of foliar C:N derived from remote sensing data are signif-

icantly different from those produced when single C:N values representing indi-

vidual land cover classes were used.

Since foliar C:N ratio within the current Biome-BGC model is assumed to be

constant for a given biome and given that it varies dramatically over space for

different species (Psomas et al. 2008), more spatially accurate information regard-

ing grassland spatial heterogeneity of this key parameter (i.e. foliar C:N ratio)

obtained from remote sensing is needed to improve model predictions. Thus, the

objectives of this research are to: (1) develop methodology for the estimation of

spatially distributed foliar C:N ratio from remote sensing data; (2) test the sensi-

tivity of the model to foliar C:N ratio; and (3) evaluate spatial C:N ratio driven

modelling results.

8.2 Study Area and Field Data

The study area is located in the West Block of the Grasslands National Park (GNP)

and its surroundings in southwest Saskatchewan, Canada (Fig. 8.1). A detailed

description of this area could be found from He (2014). Field data were collected in

mid-June 2005, the approximate date of peak growing season. A total of 24 ran-

domly selected sites were visited, 10 of which are located in upland areas, and the

remaining 14 in sloped areas. Each field site is limited to a homogeneous area of at

least 1 ha in size in order to accommodate positional errors. In each field site, fresh

biomass samples were collected from ten 50� 50 cm quadrats. A detailed descrip-

tion of field sampling design and field data collection protocol can be found in
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He (2014). The dominant native grass species found in the study sites are needle-

and-thread grass (Stipa comata), western wheat grass (Agropyron smithii), June
grass (Koeleria gracilis) and blue grama (Bouteloua gracilis). Fresh biomass

samples were dried in an oven for 48 h at 60 �C and weighed.

8.3 Integration of Remote Sensing Data and Modeling
Approach

The methodology section (Fig. 8.2) starts with a brief overview of the BIOME-

BGCmodel, is followed by the desicritpion of C:N ratio mapping for the study area,

and ends with an assessment of modeling results based on field observations. The

main focuses are on producing a C:N ratio map from MODIS data and on the

comparisons between field-based NPP, the fixed C:N ratio driven modeling results,

and the C:N ratio map driving NPP.

Fig. 8.1 Study area and distribution of sites in Grasslands National Park, Saskatchewan, Canada

and surrounding pastures
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8.3.1 Model Description and Parameterization

The ecosystem process model used in this study is the BIOME-BGC, which

simulates daily fluxes and storage of carbon, nitrogen, and water at specified

locations when provided with appropriate weather data, physiographic information,

and eco-physiological traits of the vegetation (Thornton et al. 2002). The site-

specific Biome-BGC model is free to use and the program is designed to operate

on the UNIX and Windows environment. The model was developed and is

maintained by the Numerical Terradynamics Simulation Group in the School of

Forestry at the University of Montana. Further development of the site-based model

has led to the grid-based (spatial) BIOME-BGC model by the Max-Planck-Institut

für Biogeochemie and also freely available (Trusilova and Churkina 2008).

The Biome-BGC model operates by using at least three input files to compute a

simulation. The three basic input files include but are not limited to the initializa-

tion, meteorological, and eco-physiological data files. The initialization file pro-

vides general information about the simulation, including a description of the

physical characteristics of the simulation site, a description of the time-frame for

the simulation, the names of all the other required input files, the names for output

files that will be generated, and lists of variables to store in the output files. The

primary driving variables for estimating ecosystem processes with Biome-BGC are

daily meteorological data. The model also uses a list of parameters to differentiate

biomes on the basis of their eco-physiological characteristics. There are a total of

43 such parameters that must be specified for each model simulation. Most of the

required parameters can be measured in the field, or can be derived from other

measurements. For implementation at a particular site, field-based measurements

should be used to set the relevant eco-physiological constants of the model. A list of

basic inputs for each file type can be found in Thornton et al. (2002).

Fig. 8.2 Flowchart for running the model using spatial C:N ratio map and fixed C:N ratio
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In this study, BIOME-BGC was applied in a pixel mode of 250� 250 m, the

same resolution as MODIS data. Initial modeling inputs, daily meteorological data,

and parameters other than foliar C:N ratio for the study area are described in

He (2008).

8.3.2 Mapping C:N Ratio Using Remote Sensing Data

To derive a C:N ratio map from remote sensing, experimental data and methods

from recent literature were adopted. Specifically, the foliar C:N values were

calculated by using a constant CCNT value (i.e., mean C value measured at the

27 grass sampling plots measured by Psomas et al. (2008), CCNT¼ 44.05) over the

N predictions from a MODIS NDVI exponential model (y¼ 9.98(�3.49x); Hansen

and Schjoerring 2003). In this study, MODIS Band 3 (459–479 nm) was used to

replace r440 in the equation, and MODIS Band 4 (545–565 nm) was used to replace

r573 (Hansen and Schjoerring 2003). Two MODIS images acquired on July 11 of

2005 (the same period that field data were collected) were obtained from the

Canadian Centre of Remote Sensing and used to calculate a vegetation index and

C:N ratio map.

8.3.3 Sensitivity Analysis of the Model to C:N Ratio

Sensitivity analysis (SA) is a commonly-used method to quantify the variation of

the model outputs to variation in model parameters (Saltelli et al. 2000). SA of

model parameters is carried out by changing them and observing the corresponding

response in the output variables. When local SA techniques are applied, parameter

values are changed one at a time, while fixing all other parameter values (Bar

Massada and Carmel 2008). Global SA alters a subset or all the parameters

simultaneously in a given model simulation (Helton et al. 2006). Two foliar C:N

ratio scenarios were applied in this study to examine the sensitivity of the BIOME-

BGC model, and to estimate the advantage of spatially distributed foliar C:N ratio

over the constant values. First, the “global C:N” scenario was applied using C:N

values ranging from 5 to 45 to drive the model. This range of foliar C:N ratio values

was determined by a previous study in which grassland foliar C:N ratio was found

to vary from 5.83 to 44.98 (Psomas et al. 2008). At the same time, special attention

was paid to the accuracy of simulated NPP while using the default C:N ratio defined

by the BIOME-BGC model (i.e., C:N¼ 24.0) which is most frequently used in

ecosystem process modeling studies. Second, the “Remote Sensing C:N” scenario

was applied using the foliar C:N map derived from MODIS data to drive the model.
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8.3.4 Modeling Results Evaluation

Above ground biomass data collected from the study area in the peak growing

season of 2005 were converted to NPP for the purpose of model evaluation. This

conversion is needed because simulated NPP is the total annual production which

includes both above ground and below ground production. Specifically, total

biomass was calculated using a ratio of 0.57 between above ground NPP and

total NPP. This ratio is adapted from Bradford et al. (2005), whereby above ground

NPP of native Northern American vegetation in the Great Plains was estimated to

be 164 g C/m2, while below ground NPP averaged 122 g C/m2. The assumptions

behind the above-ground biomass and NPP conversion are: (1) any standing dead or

litter was carried over from the previous year, and dead vegetation in the current

year is negligible; and (2) live biomass was not carried over from previous years.

To ensure that the biomass data collected in 100� 100 m2 sites could be used to

evaluate simulated NPP at a 250� 250 m2 scale, SPOT 5 imagery acquired in the

summer of 2005 was utilized to investigate the homogeneity of each site and for

visual comparison between vegetation density and modeling results. Mean NDVI

values were calculated from the SPOT image for the 100� 100 m2 sites and also for

the surrounding buffered 250� 250 m2 areas. If a significant difference of NDVI

values was found between 100� 100 m2 and 250� 250 m2 areas, the site was ruled

out for model evaluation.

8.4 Results and Discussion

8.4.1 MODIS-Based Foliar C:N Ratio

Using the two MODIS images, a foliar C:N ratio map was produced for the entire

study area – the West Block of the GNP (Fig. 8.3). In the park, the foliar C:N ratio

values range from 9.5 to 25.4 with a low ratio in the majority of the park area and a

high ratio along the Frenchman River. The descriptive statistical analysis of the

map indicates that mean C:N ratio in the park is 15.8 with a standard deviation of

5.5. The mean C:N ratio of 15.8 is much lower than the model default C:N ratio of

24 for C3 grass. Visually comparing the C:N ratio map with the SPOT 5 image

(Fig. 8.3) indicates that foliar C:N ratio is high in areas with high vegetation cover

(e.g. river bank), and low in areas with low vegetation cover.

8.4.2 Sensitivity of the Model to Foliar C:N Ratio

Figure 8.4 shows averaged model-simulated NPP, the highest simulated NPP

values, and the lowest simulated NPP values from the study area in 2005, as a
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function of foliar C:N ratio. As foliar C:N ratio values changes from 5 to 45, the

modelled NPP varies from 44 to 120 g C m�2 years�1 on average, from 46 to 136 g

C m�2 years�1 for a site with high vegetation cover, and from 44 to 92 g C m�2

years�1 for a site with low vegetation cover.

The model has a similar response to prescribed changes in foliar C:N ratio. In

general, modeled NPP increases greatly when the foliar C:N value is less than

15, and has marginal variation when foliar C:N values vary between 15 and 33, and

either increases or decreases under higher foliar C:N values. Consistently, higher

simulated NPP always appears in the site with higher vegetation cover (the site

VG2D), and lower simulated NPP always appears in the site with lower vegetation

cover (e.g. the site VG13D).

Results from sensitivity analysis of simulated NPP to foliar C:N parameter

reveal that spatial BIOME-BGCmodel is strongly sensitive to the critical parameter

foliar C:N ratio, especially when foliar C:N value is high or low.

Fig. 8.3 A map of foliar C:N ratio derived from MODIS images for the West Block of the GNP

(Top) and a SPOT NDVI image (Bottom)
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8.4.3 Total Biomass Data and Their Usefulness for Model
Evaluations

Total biomass data for 24 sites have been calculated based on field-collected above

ground biomass in 2005 (Fig. 8.5). Total biomass averaged 95.6 g/m2, with a range

from 43 to 172 g/m2.

To test the usefulness of the biomass data for model evaluation, each sampling

site was examined to see how well it can represent its surrounding area using the

SPOT 5 image. Figure 8.6 shows that only three sampling sites (SG2C, SG9C, and

U4T3) have a consistent NDVI between 100� 100 m2 site and its surrounding

areas, while the rest (21 sampled sites) shows a moderate to large difference.

Dramatic differences between 100� 100 m2 NDVI and 250� 250 m2 NDVI can
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be found in six sites (VG4D, VG5D, VG7D, VG8D, VG9D, and VG14D). Visual

interpretation of these sites in the SPOT 5 image in a standard false color composite

indicates that all six sites were adjacent to the Frenchmen river, with the most

heterogeneous vegetation composition at a scale of 250� 250 m2 in the study area.

As a result, the biomass data from these six sites had to be removed when evaluating

model NPP, as the biomass data collected in the areas of 100� 100 m2 cannot

represent modeled NPP at the 250� 250 m2 scale.

8.4.4 Evaluating Model Simulated NPP Data

After removing the sites that were not able to represent a 250� 250 m2 study area,

the field NPP averaged from 18 sites was 98.29 g C m�2 years�1 with a standard

deviation of 43.49 g C m�2 years�1. The simulated NPP based on the fixed foliar C:

N has an average of 112.53 g C m�2 years�1 with a standard deviation of 21.08 g C

m�2 years�1, while simulated NPP based on remote sensing derived spatial foliar

C:N has an average of 107.36 g C m�2 years�1 with a standard deviation of 35.38 g

C m�2 years�1 (Table 8.1). The results demonstrated that simulated NPP based on

remote sensing derived spatial foliar C:N parameters are better than those based on

the fixed C:N parameter for reflecting actual ground conditions.

In general, the model overestimated NPP in the area (Fig. 8.7). The relationships

and RMSE between simulated NPP and observed NPP (Figs. 8.7 and 8.8 –

R2¼ 0.17 using fixed C:N and 0.34 using spatial C:N; RMSE¼ 27 g C m�2 years�1

using the fixed C:N and 22.6 g C m�2 years�1 using spatial C:N) indicate a

relatively poor model predictability. Nevertheless, in comparison with fixed C:N

values, spatial C:N greatly increases the accuracy of modeling results.

Even when using the foliar C:N ratio map to drive the model, the modeling

accuracy is not very high. This is considered an acceptable deviation given that
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there is high uncertainty in the measured NPP, the C:N ratio map, and other

parameters used for the model prediction (Mitchell and Csillag 2001). In the spatial
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Table 8.1 Descriptive statistics of field NPP (g C m�2 years�1), simulated NPP (g C m�2

years�1) from the model outputs driven by fixed foliar C:N ratio and MODIS derived spatial

foliar C:N ratio

Descriptive

statistics

Observed

NPP

Simulated NPP driven by

fixed C:N

Simulated NPP driven by

spatial C:N

Average 98.29 112.53 107.36

Max 146.00 131.72 135.65

Min 59.15 89.62 65.32

STD 43.49 21.08 35.38
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C:N driven modeling process, two major factors may have contributed to the

uncertainty of the NPP prediction: the constant C that is used for C:N ratio

prediction and the N prediction model. As a result of unavailable field C and N

data, this study only contributes on narrowing the uncertainty in NPP simulation

that is introduced by the constant C:N ratio for Canadian mixed grasslands.

8.5 Conclusions

This study describes a method for integrating a critical remote sensing derived

model parameter with the spatial BIOME-BGC model to estimate NPP in Canadian

mixed grasslands. Consistent with previous findings in the literature (Psomas et al.

2008), the spatial BIOME-BGC model was also found to be highly sensitive to the

critical model parameter foliar C:N ratio. Given the importance of the foliar C:N

ratio in terrestrial biochemical cycles and the ability of remote sensing in providing

spatially distributed foliar C:N, we coupled remote sensing derived C:N maps and

ecosystem modeling in order to increase model accuracy for Canadian mixed

grasslands.

MODIS data were used to derive spatial foliar C:N values for the study area. The

foliar C:N ratio map indicated that MODIS derived C:N ratio has a much lower

mean than the model default C:N ratio. Grassland NPP was simulated using a foliar

C:N ratio map to drive the BIOME-BGC model, and field NPP data collected in

2005 were used to evaluate the model results. We found that simulated NPP based

on spatially-derived foliar C:N parameter is better than that based on the fixed C:N

parameter to reflect actual ground conditions. Further analysis indicated that sim-

ulated and observed NPP displayed acceptable correlations and RMSE. In compar-

ison with fixed C:N values, spatial C:N greatly increased the accuracy of modeling

results, although both simulated NPP outputs overestimated observed NPP. These

results demonstrate the importance of using spatially explicated foliar biochemical

parameters as an input to ecosystem process models. The use of spatial foliar C:N

ratio could also lead to a better understanding of local interactions on biogeochem-

ical cycles thus improving model accuracy.

Further work will focus on developing an experimental-based carbon and nitro-

gen dataset for different vegetation communities in the study area, and establishing

remote sensing based C:N ratio models for these vegetation communities. In the

longer term, we will also investigate other important model parameters and develop

methodologies to provide spatially explicit parameters to further improve model

accuracy.
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Chapter 9

Glaciological Studies at Pasterze Glacier
(Austria) Based on Aerial Photographs

Viktor Kaufmann, Andreas Kellerer-Pirklbauer, Gerhard Karl Lieb,

Heinz Slupetzky, and Michael Avian

Abstract This chapter describes and analyses glacier recession observed at

Pasterze Glacier, Hohe Tauern Range, Austria, for the time period 2003–2009.

Pasterze Glacier is the largest glacier of the entire Eastern Alps, and it is highly

indicative of ongoing glacier melt in the Alps. We evaluated three glacier stages

(2003, 2006 and 2009) and the glaciological changes between them. The quantita-

tive analysis is based on aerial surveys carried out during the summer of these years.

The photogrammetric workflow provided high resolution datasets, such as digital

elevation models and orthophotos of each stage. We evaluated the extent, surface

elevation, flow velocity field, supraglacial debris cover, and geomorphological

changes at the glacier surface and the adjacent paraglacial environment. The

main numerical results can be summarized as follows: the glacier covered

17.3� 0.1 km2 in 2009, the mean surface elevation change was �1.31� 0.07 m

a�1 for the period 2003–2009, the glacier surface flow velocity in two test areas at

the glacier tongue decelerated from 2003–2006 to 2006–2009 (�4 % and �31 %),

and the debris cover of the glacier tongue increased from 63 % (2003) to 72 %

(2009). We conclude that Pasterze Glacier is far from equilibrium and that its

glacier tongue will turn into a large dead ice body in the near future.
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Keywords Pasterze Glacier • Glacier change • Glacier recession •

Photogrammetric mapping • Geomorphological mapping

9.1 Introduction

Glaciers in the European Alps have lost around 50 % of their volume between the

end of the Little Ice Age (LIA, ~1850 AD) and 1975, approx. 10 % in the period

1975–2000, and again 10 % in the period 2000–2009 (Haeberli et al. 2007, 2013a).

These values highlight the strong influence of the first decade of this century on

glacier recession in the European Alps. Furthermore, projected future atmospheric

warming will cause almost complete deglaciation in the European Alps within a

matter of decades. However, predicting this evolution gets more complicated when

considering various feedbacks such as size effects (small/large glaciers), thermal

aspects (temperature/cold firn/ice areas), albedo, insulation (debris cover), surface

elevation (glacier surface lowering into warmer climate) and process changes (ice

collapse; lake formation) (Haeberli et al. 2013a, b; Vaughan et al. 2013). Glaciers

that persist tend to be (i) small ice patches on very high and/or radiation-sheltered

locations or (ii) mighty glacier tongues with large ice thickness which need longer

time periods to melt (Zemp et al. 2006; Haeberli et al. 2013b).

This study focuses on Pasterze Glacier, the largest glacier of the Eastern

European Alps with a present (2009) area of 17.3 km2. As all other glaciers in the

Alps, it has more or less continuously receded since the end of the LIA maximum

(~1850 AD), interrupted by relatively short periods of minor advances and stagna-

tions. During the LIA maximum the glacier covered 26.5 km2 (Paschinger 1969)

and has thus lost about one third of its area during the past 160 years.

Atmospheric warming is the driving force behind glacial recession. Tempera-

tures in the Alps increased by about +2 �C over the last 100 years (Auer et al. 2007).

The warming is indicated by long-term climatic observations at the Meteorological

Observatory Hoher Sonnblick (Sch€oner et al. 2000) located approx. 16 km to the

east of Pasterze Glacier. During the last few years accelerated recession and decline

of the glacier tongue has been observed (Avian et al. 2007; Kellerer-Pirklbauer

et al. 2008) accompanied by a considerable increase in the areal extent of the

supraglacial debris cover (Kellerer-Pirklbauer 2008). Ongoing mass balance studies

at Pasterze Glacier applying the glaciological method confirm the observed mass

loss (ZAMG 2013).

The glaciological and geomorphological changes examined in this paper are

largely connected to the specific topographical setting of the glacier. The upper part

is separated from the lower one by a distinct icefall known as ‘Hufeisenbruch’
(German for ‘horseshoe’). The icefall has changed its appearance substantially

since the 1990s with a steady increase in bedrock outcrops (hereafter termed

‘rock windows’) within the icefall on the one hand and a steady decrease in the

glacier motion through the icefall on the other. Rapid glacier disintegration created

circular collapse structures which occur more frequently at the glacier tongue
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(Avian et al. 2007). The morphology of the glacier tongue is peculiar: its right side

(as seen in the flow direction) is strongly debris-covered, whereas the left side is

relatively debris-free and bare ice occurs at the surface. The accelerated glacier

recession has important paraglacial implications (Ballantyne 2002) on the vicinity

of the glacier, e.g. by the exposure of unstable rock walls prone to rock fall events

(Kellerer-Pirklbauer et al. 2012) or by the development of a chaotic and highly

dynamic proglacial area where large volumes of sediments are stored (Geilhausen

et al. 2011).

The specific aim of this study is to analyze glaciological and related paraglacial

changes at Pasterze Glacier and its surroundings in the two time periods 2003–2006

and 2006–2009. We used high-resolution aerial photographs and products derived

therefrom, such as topographic line information, digital elevation models (DEMs)

and orthophotos. We (a) quantified changes of the entire glacier regarding surface

extent, elevation and volume, and (b) analyzed glacier velocities and the extent of

the supraglacial debris cover at the glacier tongue. In a further step (c) we quantified

major glacier-related morphological changes such as the evolution of rock windows

in the massive icefall of Pasterze Glacier and a large paraglacial rock fall event.

9.2 The Study Area

Pasterze Glacier is a valley glacier located in the central part of the Hohe Tauern

Range, Austria (Fig. 9.1). The glacier catchment consists of different metamorphic

rocks which are part of the Penninic tectonic unit. These rocks are predominantly

calcareous mica schist and prasinite (a type of greenschist derived from basalts)

with some amphibolite from the Jurassic to Cretaceous periods (H€ock and Pestal

1994). The climatic conditions are largely continental. At an automatic weather

station (AWS) near Pasterze Glacier located at 2,070 m a.s.l. (AWS-MA; see

Fig. 9.1), the annual precipitation in the period 2003–2009 was 1,000 mm and the

mean annual air temperature (MAAT) about 2.1 �C (data provided by VERBUND-

Austrian Hydro Power). The potential upper timberline can be estimated at 2,150 m

a.s.l. (Lieb 2007). The mean lower limit of discontinuous permafrost depends on

substrate and aspect and is at around 2,900 m a.s.l. on south-facing slopes and

2,600 m a.s.l. on northeast-facing slopes (Kellerer-Pirklbauer et al. 2012).

The glacier has a length of 8.3 km and a maximum ice thickness of about 190 m

considering georadar data (Span et al. 2005) and recent glacier thickness losses

based on own measurements (see below). Together with the nearby Großglockner

(3,798 m), Austria’s highest mountain peak, Pasterze Glacier forms a unique Alpine

landscape which attracts up to a million visitors a year. Glaciological surveys have

been carried out at Pasterze Glacier almost annually since 1878 (initiated by

Ferdinand Seeland) representing one of the longest time series of continuous glacier

monitoring globally (Wakonigg and Lieb 1996). The surveys include measure-

ments of glacier length, surface velocity and surface elevation change. The annual

campaigns have been organized by the Department of Geography and Regional
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Science, University of Graz, since 1958. These data and a large number of paint-

ings, photographs (Fig. 9.2) and topographic maps provide very detailed informa-

tion on the spatio-temporal changes of the glacier. These changes are in good

accordance with those observed for other alpine glaciers showing a strong recession

after the LIA maximum, a decelerated recession from the end of the nineteenth

century until the 1930s – although with intermittent periods of glacier advances in

the 1890s and 1920s –, and again a rapid recession from the mid-twentieth century

onwards with a slightly more favorable climatic phase between the mid-1960s and

early 1980s (Zemp 2006). Approximately two thirds of the Austrian glaciers

advanced during that period (Patzelt 1985). Years with mass gain did not last

long enough, however, to trigger advances of Pasterze Glacier, which can be

attributed to its long response time (Zuo and Oerlemans 1997). The mass surplus

flowed through the icefall with accelerated velocity, but melted gradually on its way

towards the glacier terminus (Wakonigg and Lieb 1996).

A massive rock fall was released at the southeast ridge of the mountain Mittlerer

Burgstall (2,933 m a.s.l.) in 2007 (Fig. 9.1 for location). This mountain is charac-

terized by a flat mountain plateau and steep rock walls, except for one facing

Fig. 9.1 Location map of the study area. The glacial stage shown was retrieved from the 1998

Austrian glacier inventory. Relief depiction is based on the 2003DEM
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northwest where the mountain slopes gently towards Pasterze Glacier. During the

LIA, Mittlerer Burgstall was fully surrounded by two glacier tongues of Pasterze

Glacier. Kellerer-Pirklbauer et al. (2012) presented possible causes (deglaciation,

permafrost degradation, unfavorable geology, unusually warm winter 2006/2007)

for this rock fall event and gave a first estimation on the displaced rock volume. In

the present paper we provide more detailed geomorphometric information.

9.3 Material and Methods

9.3.1 Aerial Surveys 2003, 2006 and 2009

In summer 2003 the temperature in Central Europe was extremely high (Beniston

and Diaz 2004). Due to the heat Austria’s glaciers were almost free of snow from

the previous winter by early summer (mid-August), thus favoring strong glacier ice

melt (Slupetzky and Wiesenegger 2005). An aerial survey of the study area was

carried out on 13 August.

Fig. 9.2 Set of four terrestrial photographs taken in northwesterly direction showing Pasterze

Glacier with its prominent Hufeisenbruch icefall. Date of photography: (a) 1863 (Photo by

Jägermayer G, © Albertina, Vienna, http://www.albertina.at/), (b) 8 August 2003 (Photo by

Lieb GK), (c) 21 September 2006 (Photo by Lieb GK) and (d) 8 October 2009 (Photo by

Hohenwarter G)
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Aerial survey 2003 Color-positive photographs were acquired in three adjacent

flight strips oriented parallel to the main axis of the glacier tongue of Pasterze

Glacier. The technical details are listed in Table 9.1. Because of the short focal

length of the wide-angle camera used the photographs show large geometric

distortions at steep mountain slopes, thus causing problems in the photogrammetric

evaluation. Furthermore, cloud cover and associated shadows are considerable

(around 20 %), creating additional problems in achieving complete spatial cover-

age. Irregular photo orientation is attributed to bumpy flight conditions. Additional

flight navigation data (e.g. from GPS) was not available. Marking of ground control

points (GCPs) for aerotriangulation (AT) was not considered. Despite these limi-

tations, all glacier areas can be delimited clearly.

Aerial survey 2006 Since appropriate GCPs for the AT of the 2003 data were

lacking and project funds did not allow the required GCPs to be measured in the

field, we decided to retrieve the relevant information from triangulated

(geo-referenced) image data. One data set dates from 2006 and the other one

from 2009 (Table 9.1). From a photogrammetric point of view the 2006 photo-

graphs (color-positive) are not ideal since the terrain above approx. 2,750 m a.s.l. is

covered by fresh snow, which partly hides the upper parts of the glaciers to be

mapped. Furthermore, high albedo of the snow-covered areas obstructs 3D surface

perception. Nevertheless, this data set (provided by the Federal Office of Metrology

and Surveying, BEV, Vienna) was taken to retrieve the GCPs for the AT of the

2003 data.

Aerial survey 2009 The time series of aerial photographs used in this study was

complemented by image data from 2009 (TIRIS 2014). The glaciers are shown in

good contrast. However, although the temporal snow line of 2009 was higher than

that of 2006, glaciological studies were complicated by snow in terrain depressions

at the glacier surface. The image data from both 2006 and 2009 were supported by

appropriate photogrammetric orientation files.

Table 9.1 Technical parameters of the aerial surveys 2003, 2006 and 2009

Aerial survey Acquisition date f [mm] Mean scale Mean GSD [cm] ns/np

2003 13 August 150 1:16,800 20 3/32

2006 22 September 300 1:16,700 25 4/36

2009 24 August 300 1:16,300 23 5/59

Mean elevation of the study area is 2,635 m a.s.l.

f mean focal length of camera, GSD ground sampling distance, ns number of strips, np number of

photos
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9.3.2 Photogrammetric Workflow

9.3.2.1 Aerotriangulation

In the present study we selected the Austrian Gauss-Krüger coordinate system (strip

M31) as a coordinate reference. As already indicated in the previous section, we

built on available photogrammetric projects carried out by federal (BEV) and

regional mapping (TIRIS) authorities. All photogrammetric work of the present

study was carried out using an ImageStation of Intergraph and Bentley’s CAD

MicroStation. We manually measured 364 distinct natural GCPs in the various

stereomodels of 2006 of which we finally used 221 in the AT of the 2003 photo

block. Due to the difficulties arising from the imaging geometry, i.e. foreshortening

and occlusions, cloud cover and shadows of the 2003 image data we had to measure

all tie points semi-automatically. This means that prospective points were selected

manually, followed by automatic point transfer using image matching. The quality

of the geo-referencing process was checked (1) absolutely by measuring cadastral

triangulation points provided by BEV (mainly mountain peaks), and (2) relatively

by superimposing contour lines derived from the 2006 and 2009 DEMs onto the

2003 stereomodels at a later stage of the photogrammetric workflow. Planimetric

accuracy of single point measurements is better than �20 cm. Height accuracy is in

the order of �25–30 cm. Areas with limited photo overlap may suffer occasionally

from small systematic model deformations which, however, were not quantified.

The accuracy of the 2009 stereo models was checked visually by superimposing

all available GCPs and official triangulation points, onto the respective

stereomodels. Control measurements confirmed a similar accuracy as for the

2003 result.

9.3.2.2 Digital Elevation Models

A primary source of glaciological studies are high-resolution multi-temporal DEMs

which can be efficiently provided either by airborne laser scanning (ALS) or by

digital photogrammetry (Baltsavias et al. 2001; Würländer et al. 2004; Abermann

et al. 2009, 2010). DEMs, along with digital orthophotos and glacier boundaries

form the basis of a glacier inventory system (Eder et al. 2000; Kääb 2005).

Data capture for surface reconstruction of the three glacial stages consisted of

two steps: (1) automatic computation of surface points with a grid spacing of 5 m

for the whole study area using ImageStation Automatic Elevations (ISAE) of

Intergraph applying image matching and (2) manual adaptation of erroneous results

located in areas with cloud cover, shadows, occlusions, missing texture and low

contrast, and filling up the voids by 3D mapping of additional surface points using

image data of all three epochs. Finally, the data captured was intermeshed to form a

triangulated irregular network (TIN) using the MGE Terrain Analyst of Intergraph.
Grid-based DEMs of the same size (12� 12 km, see Fig. 9.1) with a grid spacing of
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5 m were interpolated for each epoch in order to support further data manipulation

and analysis. Missing elevation data of areas not covered by the photo flights was

complemented by a DEM (10� 10 m grid spacing) provided by BEV.

9.3.2.3 Digital Orthophotos

High-resolution orthophotos with a spatial resolution of 0.5 m were generated using

ImageStation OrthoPro of Intergraph. These were used as a basis for deriving

datasets of lower resolution (1 m, 2 m, 5 m and 10 m) to facilitate image processing

(cp. Sect. 9.3.2.5) and cartographic work. The mosaicing process of stitching

together the overlapping orthophotos was time consuming for the 2003 data since

cloud cover, shadows, strong relief distortion and occlusions forced us to work with

small tiles and to check each tile separately.

9.3.2.4 Glacier Boundaries

Glacier boundaries of the three epochs were interactively mapped as 3D polylines

using the photogrammetric workstation. The glacier boundaries of the Austrian

glacier inventory of 1998 (Lambrecht and Kuhn 2007) were taken as a reference for

the consistent delineation of directly neighboring glaciers. In cases of continuous

snow cover at higher elevations (for 2006), snow accumulation in depressions at the

glacier limits (for 2009) and dense debris cover (for all epochs, Pasterze Glacier

tongue) the delimitation of the glacier boundaries was often only vague or some-

times even impossible. In areas with debris cover we were successful in precisely

mapping the glacier boundaries by superimposing the interpolated contour lines of

the DEM of a younger epoch with the stereo model (cp. Abermann et al. 2010). The

glacier boundaries of 2009 could thus not be checked using this 3D technique,

assuming overall glacier recession.

9.3.2.5 Glacier Flow Velocity

Glacier flow velocity is an important parameter describing the state of a glacier, and

it is also needed for numerical modeling in glaciological research (Oerlemans

2001). Surface flow velocity can be measured by various techniques (Kääb 2005;

Bollmann et al. 2012). In the present study we applied an image-based technique

based on optical flow estimation.

Kaufmann and Ladstädter (2003) describe a rigorous photogrammetric tech-

nique of how to retrieve a dense field of 3D displacement vectors in multi-temporal

stereomodels using image matching. The authors propose to use pre-rectified image

data, i.e. quasi-orthophotos, for image matching. However, quasi-orthophotos

obtained using accurate and high-resolution DEMs will become ‘true-orthophotos’.
Based on this presumption, the 3D problem can be reduced to a 2D problem. A wide
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variety of methods exists for finding corresponding points in two images

(Goshtasby 2012). Successful examples of mapping the kinematics of glaciers,

rock glaciers and other mass movements by remote sensing techniques are given,

for example, by Kääb (2005).

In the present study we focused on the kinematics of the tongue of Pasterze

Glacier. Feature tracking, i.e., finding corresponding points in the multi-temporal

dataset, was accomplished by means of automatic image matching maximizing the

normalized cross-correlation coefficient (NCC) at pre-defined grid points.

Sub-pixel accuracy was achieved by interpolation of a parabola at the position of

the peak-value of the correlation function. Back-matching, i.e. applying the image

matching algorithm in the reverse direction for consistency check, helped to sort out

most of the gross errors. Remaining outliers of the 2D displacement vectors were

identified visually and eliminated manually. The accuracy obtained was quantified

at stable regions, e.g. bedrock, where no surface movements can be expected.

Two morphologically interesting areas at Pasterze Glacier were investigated

(Figs. 9.3 and 9.4). The image matching technique applied will fail if (1) the

geometry of the two patches to be compared has changed excessively, (2) the

surface textures have decorrelated in time, or (3) sufficient surface texture is

completely lacking. The results of both test sites show that areas with bare ice are

prone to rapid decorrelation of surface texture, and thus image matching fails. Best

results are obtained on completely debris-covered areas and on bedrock. In order to

fully benefit from the high resolution of the original photographs additional

orthophotos with a spatial resolution of 0.25 m were computed for both test sites.

Lower test site (LTS) The window size for image matching was 41 pixel �
41 pixel. Flow velocities obtained are accurate to �0.17 m a�1 (2003–2006) and

�0.12 m a�1 (2006–2009).

Upper test site (UTS) Here the surface texture is mostly determined by

supraglacial debris and ogive-type structures. The flow velocities are much higher

than in the lower test site, resulting in faster surface texture decorrelation. This

problem was overcome by re-computing the orthophotos at a relatively large

GSD of 2 m, and increasing the window size for successful image matching to

101 pixel � 101 pixel. Subsequently, accuracies of flow velocities obtained are

lower than for the lower test site, i.e., �0.24 m a�1 in the best case for stable areas.

9.3.2.6 Glacier Surface Elevation Change

Glacier mass balance can be computed using the geodetic method or the glacio-

logical method. Both methods have advantages and disadvantages (Benn and Evans

2010; Fischer 2011; Zemp et al. 2013). The geodetic method is based on simple

glacier surface elevation change. The numerical transformation of volume change

to mass loss or gain requires spatial information on the density of the material

involved, i.e. ice, firn and snow. Most glacier studies assume a mean density of

900 kg m�3 for glacier ice (Huss 2013). Specific mass balances are often calculated

in mm water equivalent (w.e.).
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Surface elevation change can be easily computed by subtracting multi-temporal

DEMs. A prerequisite is the perfect geometric co-registration of the DEMs

involved. A computer program (Kaufmann and Pl€osch 2000) was used to exploit

the available data, i.e. DEMs and glacier masks, following glaciological standards

and needs. Outputs are hypsometric curves of the glacier (Fig. 9.5), detailed

information on glacier elevation/volume change for discrete altitude intervals

(Fig. 9.6), and other glaciological parameters.

9.3.2.7 Evolution of the Supraglacial Debris Cover and Meltwater

Channels

A supervised classification was performed within ArcGIS 10.1 in order to differ-

entiate between debris-covered glacier parts and bare-ice parts. This approach

involves manually selecting training areas for the categories to be mapped in

order to develop the spectral signatures of these classes (Kääb 2005). The aerial

photographs for 2003, 2006 and 2009 contain no thermal information but only the

three color bands RGB. Thermal and multispectral remote sensing information of

Fig. 9.3 Surface flow vector field at the lower test site (LTS) of the glacier tongue (see Fig. 9.1 for

location) for 2003–2006 indicating the complex movement pattern (combination of valley-center

and downvalley flow)
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this type, including infrared, is commonly used for mapping debris-covered glaciers

(e.g., Paul et al. 2004; Bolch et al. 2007; Karimi et al. 2012). In our classification

approach we: (a) defined five types of training samples with respective spectral

Fig. 9.4 Surface flow vector field at the upper test site (UTS) of the glacier tongue (see Fig. 9.1 for

location) for 2003–2006 indicating a dominantly downvalley flow pattern
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signatures at the glacier tongue (classes ‘debris-1’, ‘debris-2’, ‘dirty-ice-1’, ‘dirty-
ice-2’, and ‘clean-ice’), (b) ran the classification procedure applying the maximum

likelihood method, (c) reclassified the produced file by combining the two classes

‘debris-1’ and ‘debris-2’ to the class ‘debris-covered’ and the remaining three

Fig. 9.5 Area-altitude

distribution (hypsometric

curve) for the glacial stages

2003 and 2009 based on

50 m altitude intervals

Fig. 9.6 Mean annual

surface elevation change for

the time period 2003–2009

based on 50 m altitude

intervals
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classes to the class ‘bare ice’, and used (d) a low-pass filter (applying 3� 3 window)

to smooth the classification result. Errors in the supervised classification procedure

occurred due to identical spectral signatures for some sparsely debris-covered

glacier ice and illuminated debris-covered slopes near the glacier terminus. Fur-

thermore, glacier crevasses with shadows showed similar spectral signatures to

debris-covered areas. This led in some cases to wrong classifications. However, the

areal extent of these classification problems is minor as judged from direct visual

comparison of the orthophotos and the classification result. Therefore, and in order

to keep the classification procedure consistent, the supervised classification results

were not manually corrected. Additionally, the main supraglacial meltwater chan-

nel near the glacier terminus was manually mapped for the three stages. This

channel separates the continuously debris-covered part (southwestern part) from

the sparsely debris-covered and bare-ice parts during all three relevant glacier

stages.

9.4 Results

9.4.1 Glaciation Changes

Pasterze Glacier covered an area of 18.14 km2 in 2003, 17.65 km2 in 2006 and only

17.28 km2 in 2009. The accuracy of the areal extents given can be estimated at

�0.05–0.10 km2, which is due to the uncertain mapping of the glacier boundaries,

e.g. in areas with snow cover or shadow. Thus, the areal extent of the glacier was

reduced significantly by 4.8 % or 0.86 km2 within only 6 years. The areal distribu-

tion of the glacier surface with respect to altitude (at 50 m intervals) for 2003 and

2009 is indicated in Fig. 9.5. An asymmetric bimodal hypsometric distribution is

evident. As shown in this graph, no change has occurred for altitude intervals above

3,250 m ASL and for the interval 2,800–2,850 m ASL. Areal losses prevailed

between 2,150 and 2,800 m ASL, which is basically the entire glacier tongue below

the icefall. The pattern can be explained by the area-wide lowering of the entire

glacier tongue. The areal extent of the interval 2,200–2,250 m ASL was almost

identical in 2003 and 2009, although this altitude interval shifted up-valley. The

lowest two intervals (2,050–2,150 m ASL) increased from 0.51 km2 in 2003 to

0.60 km2 in 2009. Changes above the icefall were less distinct with small gains or

losses at the individual altitude intervals. This is also indicated by the total glaciated

area above 2,900 m a.s.l. which was almost identical in 2003 (10.7 km2) and 2009

(10.6 km2).

Changes in surface elevation during the six years of monitoring are indicated in

Figs. 9.6 and 9.7. Figure 9.6 depicts the mean annual values at different altitude

intervals and hence the gradient. It clearly indicates that there is no altitude interval

(in contrast to specific areas; see Fig. 9.7) with a positive surface elevation change.

Figure 9.7 shows the spatial distribution of the mean annual surface elevation
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Fig. 9.7 Mean annual surface elevation change: (a) for the entire glacier for 2003–2009, (b) and
(c) for the lower part of the glacier tongue for 2003–2006 and 2006–2009, respectively
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change. This figure reveals substantial elevation losses particularly at the glacier

tongue and even some elevation gains at the highest northeast-facing cirques.

During the period 2003–2009 the glacier lost about 144� 106 m3 of ice, firn and

snow (Table 9.2). The mean surface elevation change for the entire glacier during

this 6-year period was �1.31� 0.07 m a�1. For the glacier tongue, however, this

value is much higher (�4.32 m a�1) with a slightly higher mean annual value for

the second 3-year period.

9.4.2 Glacier Velocity

Figures 9.3 and 9.4 show the flow vector field for the lower (LTS) and upper test

sites (UTS) at the glacier tongue for the period 2003–2006. The accuracy of the

horizontal flow velocities obtained has already been described above and is in the

order of 0.1–0.3 m a�1. The results of the calculated surface flow velocities for both

3-year periods are summarized in Table 9.3. Additionally, the glacier movement

was visualized in an animated GIF (Kaufmann 2013). The vector fields measured

for the LTS are almost identical during both 3-year periods. The mean flow

velocity – derived from a 0.29 km2 large area at the glacier surface with valid

data for both periods – is 2.3 m a�1 in the first period and 2.2 m a�1 in the second.

The observed change in the overall velocity is, however, not significant. Of

particular interest in the LTS is the movement pattern, i.e. the direction of the

individual flow vectors. The ones calculated for the area close to the glacier margin

moved perpendicular to the glacier’s main axis, hence towards the valley center.

This is related to the fact that those point measurements are located on northeast-

facing and relatively steep slopes (20–30�). Further away from the glacier margin

(lower right part of Fig. 9.3) the flow direction changes gradually from northeast to

east and velocities increase correspondingly. Flow vectors at the upper part of the

LTS point first towards southeast following the main valley axis/main flow direc-

tion of the glacier. Further below, however, vectors change to east, i.e. towards the

valley center. This change is related to the change in glacier surface slope.

Table 9.2 Changes in volume and surface elevation between 2003 and 2009 for the entire glacier

and for the glacier tongue (as delineated in Fig. 9.8) for the two 3-year periods

Area Period

Volume change (ice/firn/snow)

[106 m3]

Mean surface elevation change

[m a�1]

Entire

glacier

2003–2009 �144.53 �1.31

Glacier

tongue

2003–2006 �56.46 �4.52

(Below

icefall)

2006–2009 �46.74 �4.07

2003–2009 �103.20 �4.32
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The UTS is located below the icefall resulting in higher flow velocities. The

mean velocity exceeded 20 m a�1 in the first period and was only about 14 m a�1 in

the second one, which is a statistically significant velocity change of 31 %. The

general flow direction, however, did not change during the two periods. The flow

vectors of the central part of the glacier are parallel to the main valley axis, which is

in contrast to the LTS.

9.4.2.1 Supraglacial Debris Cover

Supraglacial debris covered about 62.8 % of the glacier tongue in 2003, 73.3 % in

2006 and 72.1 % in 2009 (Table 9.4). Therefore, the density of the supraglacial

debris cover increased by 9.3 % during the 6 years of observation, whereas in the

same time the area of the glacier tongue was reduced by 14.5 %. The slight decrease

in debris density between 2006 and 2009 is related to the fact that previously

connected glacier parts near the terminus of the glacier either lost their connection

to the main glacier tongue or melted. Furthermore, one debris-covered ice stream

tributary lost its connection to the glacier tongue (Fig. 9.8).

The spatial distribution of the debris cover did not change significantly through-

out the observation period. A largely continuous debris cover at the right side of the

glacier tongue is in contrast to the left side, which is only partly covered by a

discontinuous debris cover. A closer look, however, reveals various changes. For

instance, the boundary between the continuous and discontinuous debris-covered

part was shifted towards the valley center, in particular close to the terminus. This is

illustrated by the displacement of the main supraglacial meltwater channel. The

strongly meandering channel shifted by about 30 m within the 6 years (Fig. 9.8d).

This change can be explained by the increase in the difference of the surface

elevation between the two parts as a result of differential ablation. The gradually

changing glacier surface topography led to a strong valley-center flow component

Table 9.3 Glacier velocities at two areas (LTS, UTS) of the glacier tongue for both time periods

Area Period Measurements [n]

Mean

[m a�1]

Minimum

[m a�1]

Maximum

[m a�1]

LTS (Fig. 9.3) 2003–2006 – 2.3 0.6 5.4

2006–2009 – 2.2 0.7 4.9

Difference in % �4.3

UTS (Fig. 9.4) 2003–2006 172 20.7 7.3 30.4

2006–2009 263 14.3 3.3 23.9

Difference in % �30.9

The locations of LTS and UTS are indicated in Fig. 9.1, values given refer to the areas outlined in

Figs. 9.3 and 9.4

LTS: GSD of 0.25 m, correlation window 41 pixels � 41 pixels

UTS: GSD of 2 m, correlation window 101 pixels � 101 pixels

n number of measurements
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(similar to the one shown in Fig. 9.3 at the glacier margin) of the continuously

debris-covered part.

Supraglacial debris cover influences the ablation rate in two different ways. A

thin layer (less than approx. 2 cm in thickness) lowers the albedo, influences the

Table 9.4 Extent of supraglacial debris cover of Pasterze Glacier at the glacier tongue in 2003,

2006 and 2006

Area

Debris-covered Bare ice Total area Relative to 2003

[km2] [%] [km2] [%] [km2] [%]

2003 2.81 62.8 1.66 37.2 4.47 100.0

2006 3.00 73.3 1.09 26.7 4.09 91.6

2009 2.75 72.1 1.07 27.9 3.82 85.5

Fig. 9.8 Evolution of supraglacial debris cover and the main supraglacial meltwater channel at

the glacier tongue between 2003 and 2009. Contour lines in (d) are based on the 2009DEM
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superficial thermal regime and increases ablation. In contrast, a thicker layer

reduces ablation by shielding the ice underneath the debris mantle (e.g. Østrem

1959; Mattson et al. 1993). We compared the differential ablation at the glacier

tongue below the icefall (Fig. 9.8 for extent). As shown in Table 9.5, the mean

surface lowering for the debris-covered area was about 4.0 m less than for the bare-

ice area in both periods. The annual difference in mean surface lowering amounts to

1.32 m a�1. Hence, the shielding effect of the debris cover was clearly dominant in

both periods.

9.4.3 Morphological Changes

We quantified two major glacier-related morphological changes in our study area.

First, we focused on areal extent of the rock windows in the massive icefall of

Pasterze Glacier. Second, we quantified the volume of the relocated rock mass

released in a large rock fall event in 2007.

Figure 9.9 depicts the evolution of several large rock windows in the icefall. In

this figure, areas 1 and 2 covered 0.072 km2 in 2003, 0.131 km2 in 2006 and

0.190 km2 in 2009. The rock outcrops in this area thus increased 2.6 times in the

6 years of observation. The ice-free areas at the left (area 4) and right (area 3)

margins of the glacier in the icefall also increased substantially. The deglaciation

caused a substantial reduction in ice transport through the icefall. By 2009 only two

minor ice streams at the southwest side of the icefall were still connected with the

glacier tongue. Both are insignificant for glacier ice transport and hence for the

nourishment of the glacier tongue. Only the main glacier ice stream transports

significant amounts of glacier ice to the glacier tongue.

The mass relocation of a major rock fall event in 2007 at Mittlerer Burgstall is

depicted in Fig. 9.10. We quantified the total area influenced by the rock fall as

89,300 m2 (detachment area 13,800 m2, deposition area 75,500 m2). A rock volume

of 428,000 m3 was detached by this event at the sharp and distinct mountain ridge.

The highest change in elevation in this area was�67 m and the mean was�31 m. In

contrast, the total volume of the deposited rock material was 523,000 m3, resulting

Table 9.5 Mean surface elevation changes below the icefall (for extent see Fig. 9.8) for debris-

covered and bare ice parts for the periods 2003–2006 and 2006–2009

Period Surface type during both stages

Area

[km2]

Mean surface elevation change

[m]

2003–

2006

Bare ice 0.89 16.1

Debris-covered 2.28 12.1

Difference 4.0 (24.9 %)

2006–

2009

Bare ice 0.66 14.3

Debris-covered 2.33 10.4

Difference 3.9 (27.1 %)
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in an estimated pore volume of 18 %. The mean increase in elevation in the

deposition area was +7 m and the maximum value (at the northeast side of the

former ridge) was +32 m.

9.5 Discussion

9.5.1 The Fading of a Glacier

At present Pasterze Glacier is far from equilibrium. As indicated by our analyses

there is basically no accumulation area left. The surface elevation change at

Pasterze Glacier (Fig. 9.6) below 2,500 m a.s.l. is strongly influenced by the

presence of supraglacial debris. The general increase in debris cover thickness

towards the glacier terminus (as shown by Kellerer-Pirklbauer 2008) offsets the

effect of increasing air temperature at lower elevations. This effect is not as strong

Fig. 9.9 Evolution of the rock windows (areas 1–4) in the Hufeisenbruch icefall between 2003

and 2009
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Fig. 9.10 Mass relocation caused by a massive rock fall event at Mittlerer Burgstall in 2007:

spatial extent of the areas of detachment and deposition, and surface elevation change in both areas
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as for heavily debris-covered glaciers where the net ablation at the glacier terminus

might even be zero (e.g. Khumbu Glacier, Nepal; Inoue 1977; Benn and Lehmkuhl

2000). As shown in an earlier study (Kellerer-Pirklbauer et al. 2008), the debris-

covered part of Pasterze Glacier exhibited almost identical net ablation rates over a

wide range of altitude intervals during the period 1981–2000. The present study

shows that the steadily growing supraglacial debris cover conserves the glacier ice

and significantly reduces the amount of ice mass loss by about 25 %.

Figure 9.7 reveals that small areas show an increase in surface elevation over the

period 2003–2009. This is related to the fact that there was almost no winter snow

left in 2003 and the firn line was substantially higher than in 2009. The positive

elevation changes observed between 2003 and 2009 at higher altitudes and in areas

less exposed to solar radiation are thus the result of both glacier-hostile conditions

in 2003 and glacier-friendly conditions in 2009. The massive ice loss during the

observation period 2003–2009 is also evident in other places in the European Alps.

Haeberli et al. (2013a) report that the mean specific mass balance of nine Alpine

glaciers (Gries, Silvretta, Vernagt, Hintereis, Kesselwand, Careser, Saint Sorlin,

Sarennes, Stubacher Sonnblick) was�1.2 m a�1 during the period 1999–2009. This

specific mass balance value is the highest decadal mean measured during the period

1949–2009. A similar accelerated trend in glacier mass loss since the turn of this

century has also been revealed on a global scale at 30 reference glaciers in nine

mountain ranges (Haeberli et al. 2013b).

Direct measurement data on the specific mass balance at Pasterze Glacier have

been available from the Central Institute for Meteorology and Geodynamics

(ZAMG 2013) since the glaciological year 2004–2005 (Table 9.6). The comparison

of mean surface elevation changes obtained using the photogrammetric method

(2003–2009) and direct measurements (2004–2009) reveals very similar results and

confirms the reliability of our method, notwithstanding the caveats mentioned in

Sect. 9.3.2.6. Submergence and emergence velocities of glacier ice cannot be

measured photogrammetrically. Recent measurements at the tongue of Pasterze

Glacier by ZAMG revealed notable emergence velocities only at ablation stakes

close to the icefall (W. Sch€oner; personal communication 2006). Thus, the

photogrammetrically derived volume change of the glacier in the period 2003–

2009 is presumably close to the real mass loss.

9.5.2 Towards a Big Dead Ice Body

The successful computation of displacement vectors depends on the stability of the

surface texture and the time elapsed between two glacial stages. Ice surfaces are

difficult to monitor over a longer (multi-annual) time span because of changing

surface texture and associated decorrelation of surface radiometry. On the contrary,

a too short observation period would not allow the detection of significant changes.

This is a substantial problem in monitoring the kinematics of glaciers (Kääb 2005).

Kaufmann et al. (2008) estimated the surface flow velocity at Pasterze Glacier by
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using differential SAR interferometry. Their study revealed that only ERS-1/2

Tandem Mission images with a time interval of 1 day can be successfully applied

for surface flow analyses of mid-latitude glaciers during the summer period. On a

large scale, Heid and Kääb (2012) studied regional signals of glacier flow changes

using Landsat data. These authors calculated the average rate of decline of glacier

flow velocity per decade for five regions with negative specific mass balances

(Pamir, Caucasus, Penny Ice Cap of Baffin Island, Alaska Range and Patagonia).

Their results show that velocity decreased in recent decades (mid-1980s up to 2011)

at an average rate per decade of 43 % in the Pamir, 25 % on Penny Ice Cap, 20 % in

Patagonia, 11 % in the Alaska Range and 8 % in the Caucasus.

We successfully quantified surface flow velocity at two Pasterze Glacier test

sites (LTS, UTS) with supraglacial debris despite the decorrelation problem

outlined above. LTS shows a distinct flow component from the valley side towards

the valley center. This movement pattern is related to the effect of differential

ablation. Recent changes in the glacier flow pattern are also revealed by morpho-

logical evidence at bedrock outcrops in the proglacial area showing two different

striation generations. The dominant striation direction detected is parallel to the

valley axis. These older striations are superimposed by younger striations pointing

towards the valley center (Kellerer-Pirklbauer 2009). UTS is located below the

icefall, which is well known for the fastest flow velocities at Pasterze Glacier

(Wakonigg and Lieb 1996; Kaufmann et al. 2008). Long-term glacier flow data

from the cross profile BSL (see Fig. 9.4) indicate that the mean decadal velocity at

this profile decreased from 46 m a�1 in 1981–1990 to 21 m a�1 in 2001–2010. Our

measurements confirm this recent decline of flow velocity in this fast moving area.

A further decline in flow velocity of the glacier tongue is very likely if we

consider the ongoing disintegration of the icefall. The pace in the separation of the

glacier tongue from the main glacier is high considering the rapidly increasing rock

outcrops in the icefall. It is very likely that the two remaining glacier-ice connec-

tions at the southwest side of the icefall will separate in the near future. The main

remaining icefall at the north side will last substantially longer. However, if glacier

recession continues at this pace, the tongue of Pasterze Glacier will – at least for a

brief period of time – form a regenerated glacier (Benn and Evans 2010) within the

next few decades. By then, the tongue of the remaining glacier will only be fed by

Table 9.6 Mean surface

elevation changes at Pasterze

Glacier during the period

2004–2009 based on direct

mass balance measurements

Period Mean surface elevation change [m a�1]

2004–2005 �0.990

2005–2006 �1.355

Mean 2004–2006 �1.173

2006–2007 �1.491

2007–2008 �1.563

2008–2009 �1.232

Mean 2006–2009 �1.429

Mean 2004–2009 �1.326

Data from ZAMG (2013)
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ice avalanches. A prominent example of a present regenerated glacier is

Morsarj€okull in south Iceland. Morsarj€okull lost its connection with Vatnaj€okull
in recent times (Barry and Gan 2011).

Once the tongue of Pasterze Glacier is separated from the upper part of the

glacier, ice-flow movement pointing down-valley will decrease eventually to zero.

This will presumably not be the case for the ice movement towards the valley center

assuming further topographical changes due to differential ablation. The areal

extent of the supraglacial debris cover and the debris thickness will further increase

if we project the evolution seen between 1964 and 2009 into the future. In 1964,

21.0 % of the glacier tongue was debris-covered (Kellerer-Pirklbauer et al. 2008)

whereas 45 years later this percentage had increased to 72.1 %.

9.6 Conclusions and Outlook

The high resolution photographs of 2003, 2006 and 2009 allowed the preparation of

base data, i.e. DEMs, orthophotos and glacier boundaries, needed for the antici-

pated glaciological and geomorphological studies. This base data helped us to

quantify important glacial and paraglacial processes associated with the recession

of Pasterze Glacier. We applied the geodetic method for glacier mass balance

measurements for the period 2003–2009. Our results correspond very well with

the annual mass balance measurements carried out by ZAMG (2013) using the

glaciological method, keeping in mind the limitations of both methods (Fischer

2011). Our study gives clear evidence that Pasterze Glacier is far from equilibrium.

Furthermore, we demonstrated that the icefall connecting the glacier tongue with

the main glacier is rapidly disintegrating. We thus assume that the remaining glacier

tongue will turn into a large dead ice body in the near future. However, the

supraglacial debris cover will most likely increase in extent and thickness, hence

reducing the ablation rate. The evaluation of further aerial surveys (e.g. 2012) is

planned in order to continue the high resolution glacier monitoring. We presented a

selection of possible evaluations of the base data. Exemplary fields of interest in

further studies could be: (a) in-depth analysis of surface flow pattern, (b) analysis of

ice collapse structures, and (c) mapping and quantifying paraglacial landforms and

processes in recently deglaciated areas.
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Paul F, Huggel C, Kääb A (2004) Combining satellite multispectral image data and a digital

elevation model for mapping debris-covered glaciers. Remote Sens Environ 89:510–518

9 Glaciological Studies at Pasterze Glacier (Austria) Based on Aerial Photographs 197

s2pirast@uwaterloo.ca

http://www.geoimaging.tugraz.at/viktor.kaufmann/Pasterze_2003-2006-2009_2m.gif
http://www.geoimaging.tugraz.at/viktor.kaufmann/Pasterze_2003-2006-2009_2m.gif


Sch€oner W, Auer I, B€ohm R (2000) Klimaänderung und Gletscherverhalten in den Hohen Tauern.

Salzburger Geogr Arb 36:97–113

Slupetzky H, Wiesenegger H (2005) Glazialhydrologische Aspekte des Jahres 2003 im “Hohe

Tauern Einzugsgebiet”der Salzach. Mitteilungsblatt Hydrographischen Dienstes Österr
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Chapter 10

Mapping Coastal Erosion Risk
in the Southern Red River Delta, Vietnam

Mizue Murooka, Yasuhiro Kuwahara, and Shigeko Haruyama

Abstract In recent years, the Red River Delta has suffered from coastal erosion

due mainly to human activities. To determine the characteristics of coastal erosion,

a coastal dynamic index was calculated by overlapping eight JERS-1 SAR

(Synthetic Aperture Rader) images from 1994 to 1998. After combining the fea-

tures of natural environment and land use, 74 meshes covering 500 m along the

coastline were classified by cluster analysis of UPGMA (unweighted pair-group

method using arithmetic averages) using the three major factors, i.e., costal dynam-

ics index, banks, and land elevation. A coastal erosion risk map was produced by

clustering 686 meshes, including the inland area. The coastline clusters and dis-

tance from the sea were used in the clustering. Finally, a vulnerability map of

coastal erosion considering land use was constructed. The present land use was

assessed by randomization of land use, and it became clear that the current land use

was vulnerable to coastal erosion. This study indicates that when other information

is not available, satellite data can be very useful for coastal erosion risk mapping.

Keywords Red River Delta • Coastal erosion • JERS-1/SAR • Risk mapping

10.1 Introduction

In recent years, coastal erosion has become a worldwide phenomenon. The cause of

coastal erosion includes natural factors and human activities, and the damage from

coastal erosion can be tremendous. In the Red River Delta, Vietnam, coastal erosion

has been a serious problem. In this area, cultivation has occurred without an appro-

priate land use planning (Asian Development Bank and Ministry of Agriculture and
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Rural Development 2000; Haruyama 2004). Rice is the main agricultural product of

the delta, and paddy fields and their concomitant villages extend to the shoreline.

Coastal erosion extends from the agricultural land or villages to the inland areas,

causing higher soil salinity, salty water wells, and crop damage.

In Vietnam, the data related to the natural hazards are not easily available. In a

previous study conducted by the authors (Murooka and Haruyama 2005), satellite

remote sensor data were used to assess coastal erosion risk in the Red River Delta.

In the current study, we will try to reconstruct the methodology to assess the coastal

erosion risk using satellite remote sensor data.

10.2 The Red River Delta

10.2.1 Geographical Settings

The Red River rises in China and flows southeast for about 1,300 km before

entering the Gulf of Tonkin. The extensive delta covers 17,000 km2. The Red

River Delta, a fluvial plain located in the crustal movement region, is in the northern

part of Vietnam.

Vietnam is the second largest rice exporting country in the world. The Red River

Delta has been cultivated for a very long period of time, and the population density is

the highest in Vietnam. Because of the excellent agricultural conditions, the Delta has

become the nation’s primary farming region. Agriculture land accounted for 37 % of

the entire Delta, forestry 25%, and homestead land 7 % in January 2012 (GSO 2014).

Deltas are generally formed by the soil deposits of streams. The Red River has

expanded because the people have created embankments along its course to protect

against flooding. The delta has expanded a maximum of 80–100 m per year at the

Red River mouth during the last 70 years (Nguyen 1992). The Red River Delta was

affected by the tides and waves when the delta expanded (Hori 2012). The study

area is a wave-dominated system and is composed of a fine-grained tidal flat and

marsh sediments (Mathers and Zalasiewicz 1999).

There are many sand ridges in the southern Red River Delta. Because the sand

ridges are dry and slightly higher than the surrounding ground, they are conducive

to human settlement. The sand ridges are smaller and well developed in the inland

area and larger in the coastal area. Most of the sand ridges are in the area between

the Ninh Co River and the Red River.

10.2.2 Climate

The Red River Delta is affected by tropical monsoons during the dry and cold

winters. In summer, it is hot and humid with heavy rains or typhoons. The region is

a part of K€oppen Cwa, warm, humid and subtropical with plentiful precipitation.
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The annual rainfall is 1,650 mm in Hanoi; around 70–80 % of the precipitation

occurs from May to October. From July to October, the coastal area of the Red

River Delta is affected by low pressure systems from the South China Sea. The low

pressure systems result in inclement weather ranging from tropical storms to

typhoons. The storm surges resulting from those typhoons or tropical depressions

cause severe coastal erosion and flood damage.

Typhoons often attack coastal regions. The typhoon season lasts from June to

September. The average number of typhoons which yearly hit the northern coastal

region in Vietnam is between 1 and 2. In the Red River Delta, typhoons cause

enormous damage to both the national economy and society. The maximum wind

speed exceeds a scale of 12. High winds generated by strong typhoons directly

approach the coastline of Hai Phong, Ninh Binh and Thanh Hoa (Cao et al. 2007).

10.2.3 Floods and Reservoirs

The Red River is characterized by its seasonal variation of water level. Floods occur

almost every year when typhoons come. When floods occur, the water level of the

river rises 188 cm per day. Because the Red River is a raised bed river, the river

water sometimes overflows its banks. The fluctuation band of the river’s water level
is 1,141 cm in a year. At the Son Tay, the flood records are as follows, 25,100 m3/s

in 1915, 33,500 m3/s in 1945, 28,300 m3/s in 1969, 37,400 m3/s in 1971 (Haruyama

2004). The flood of 1971 exhibited a discharge rate of 37,400 m3/s. Dangerous

water levels continued for 36 days. The flood disaster lasted for more than 1 month

in the Red River and the Day River Basins (Haruyama and Van 2002). Booij (2004)

described the flood situation of 26 provinces in the Red River Delta for the period

1990–2001. The flood in 1996 was extremely severe, and the flood damage was

enormous in Ninh Binh Province.

The Red River that flows through Hanoi, the capital city of Vietnam, is com-

prised of three major tributaries: the Da, Thao, and Lo rivers, which bring annual

floods threatening the capital and the delta. Upstream reservoirs, namely Hoa Binh,

Thac Ba, Tuyen Quang, and Son La, have a total storage capacity of 8.5 billion m3

for flood control (Dang et al. 2011).

The reservoir system in the Red River Basin plays a very important role in the

socio-economic development of Vietnam. The major reservoirs include:

1. Thac Ba reservoir (since 1964). It has the following features: high water level:

59 m; total storage: 3.6 billion m3; flood regulation storage: 0.45 billion m3; and

installed capacity: 120 MW.

2. Hoa Binh reservoir (since 1994): It is the biggest in Vietnam in 2007. Main

features: high water level: 120 m; total storage: 9.45 billion m3; flood regulation

storage: 5.6 billion m3, and installed capacity: 1,920 MW.
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3. Tuyen Quang reservoir (since 2007): Main features: high water level: 123 m;

total storage: 2.3 billion m3; flood regulation storage 1–1.5 billion m3, and

installed capacity: 234 MW.

4. Son La reservoir (since 2010): Main features: high water level: 217 m; total

storage: 9.26 billion m3; flood regulation storage 5.5 billion m3, and installed

capacity 2,400 MW (Nguyen et al. 2007).

The policies and laws to prevent the floods are still in the development stage in

Vietnam. The lack of comprehensive institutional framework has caused losses and

failures in water resources management practices in Vietnam (Nguyen et al. 2007).

10.2.4 Coastal Erosion in the Southern Red River Delta

The coastal erosion in the southern Red River Delta was estimated at 30–50 m per

year in 1905–1960, 20–35 m per year in 1960–1973, and 10 m per year in 1973–

1992 (Imamura and Dang 1997). The mouth of the Red River expanded until the

middle of the twentieth century by embankment and reclamation projects. Vinh

et al. (1996) clarified the coastline development from 1905 to 1992 in Nam Ha

province. Deposition occurred near the mouths of the Red River, the Ninh Co, and

the Day River. This resulted in shoreline developments in these areas of 2.5–6.5 km

in the seaward direction over the 87 year period. However, in Hai Hau district the

development was just the opposite. Over the last 87 years a strip some 16 km long

and about 2.5 km wide was lost to the sea. This is a time averaged shoreline retreat

of about 29 m per year. Duc et al. (2012) mentioned that the erosion coasts are

distributed either between the river mouths (Hai Hau) or near them (Giao Long,

Giao Phong, and Nghia Phuc). Erosion in Hai Hau is accelerated by sea level rise

and upstream dams. Sea dike stability is seriously threatened by erosion-induced

lowering of beach profiles, sea level rise, typhoons, and storm surges.

In the last 30 years, farmers in the Nam Dinh and Thanh Hoa provinces relocated

to Dac Lac province because the paddy fields had been washed away by coastal

erosion (Haruyama 1995, 2002). Based on the tidal activity data collected from Hon

Dau Observation Station in North Vietnam, it was determined that coastal erosion is

also affected by the recent sea level rise in the Gulf of Tonkin (Haruyama 2002).

Foreign non-governmental organizations (NGOs) headed by Sweden have

started to repair the sea-walls since 1990. At the same time, foreign assistance

groups planted mangrove trees with the aim of stopping spatial enlargement of

coastal erosion (Haruyama 2004). Coastal erosion in the southern Red River Delta

is mainly due to several major human activities including: the construction of the

Hoa Binh Dam beginning in 1994 in the upper part of the Red River. It is now the

largest dam in South East Asia. This dam has trapped sediments, thereby resulting

in decreased sedimentation in the lower part of the river; the destruction of the

natural sea-wall system by cutting the mangrove forests to make aquaculture farms;

a decrease in the amount of river sand because of dredging from the river bed for
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brick and building materials; ground subsidence caused by pumping up under-

ground water; and changing mass balance in the watershed area (Haruyama 2000,

2002). Therefore, the sand supply has been decreasing since the construction of the

tidal irrigation system in the coastal zone. This decrease in the amount of sand in the

Red River consequently has resulted in the coastline’s receding (Vu and Nguyen

1992; Haruyama et al. 2002).

The banks have been constructed near the sea shore with a standard height of

4 m. These banks are not strong enough and are sometimes washed away by

typhoons. The budget for constructing banks is insufficient, so the village people

make the banks the primitive way, by heaping up soil. Some NGO plant mangroves

in the eroded area to protect the shoreline, but mangroves are easily washed away

when they are little.

10.3 Research Methods

10.3.1 Altitude Map

SRTM (Shuttle Rader Topography Mission) provides the altitude data for this

study. C-band and X-band SAR (Synthetic Aperture Radar) were mounted on the

Space Shuttle for 11 days in February 2000. SRTM covers 80 % of the continent

except for polar areas. There are two kinds of SRTM data: SRTM-3 has 3 s (about

90 m) meshes covering the whole world except for the polar areas, and SRTM-1 has

1 s (about 30 m) meshes in the U.S. SRTM-3 was used in this study, the altitude

rounded to the nearest whole meter. To illustrate the altitude map, the software of

Kashmir 3D Ver. 9 on a PC was used.

10.3.2 Climate Analysis

Climate analysis is an important tool for assessing the damage caused by coastal

erosion. In this study, wind data was available. In the Van Ly Observatory Station,

wind speeds and directions are recorded four times a day. In this study, the highest

wind speed and its direction from 1991 to 2000 were used. The average numbers of

days with strongest wind speed were calculated. The directions and the average

wind speeds were calculated respectively.
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10.3.3 Coastal Dynamics Index (CDI)

To investigate the coastline change, JERS-1/SAR data were used. JERS-1 is the

satellite which was launched by NASDA (National Space Development Agency of

Japan) in 1992 and discontinued in 1998. JERS-1 loaded the SAR (Synthetic

Aperture Radar). The SAR sensor is an active microwave sensor. SAR emits

microwaves and receives the reflected waves from the earth. Therefore, SAR can

acquire images even at night or on rainy, cloudy, and smoky days. JERS-1/SAR

used the L-band which was long wave. L-band can observe the ground regardless of

forest cover because the wave passes through the trees and reflects from the land

surface. The digital value of the data is called the backscattering coefficient. When

the soil water is high, the pixel shows blackish and the water surface shows black.

Conversely, artificial things show whitish because the radio wave reflection is high;

and the backscattering coefficient is high.

The 1990s in the Red River Delta is an important era. Construction of Hoa Binh

Dam began, and the areas of the paddy fields rapidly expanded (GSO 2014) and

coastal erosion accelerated remarkably. In this study, eight sheets of satellite

images, which were taken from 1994 to 1998 were collected: September

30, 1994; February 9, 1995; September 17, 1995; January 27, 1996; January

13, 1997; October 4, 1997; February 13, 1998; September 21, 1998. JERS-1/SAR

provided by NASDA had been running from 1992 to 1998. However, the satellite

images in the first two years could not be used because of strong noise. So data after

1994 was used to calculate CDI in this analysis.

A total of 149 measuring points were tracked across the coastline with an

interval of 500 m. The measurement lines, which were perpendicular to the

coastline, were laid down on the each measuring point. The coastline change was

recorded based on the coastline on September 30, 1994. Next, the CDIs of seasonal

change were calculated by subtracting a CDI from the CDI of the next season.

PCI Geomatica Ver. 7 software in a PC was used to conduct the image analysis.

The nearest neighbor interpolation was used in all of the JERS-1/SAR Images, and

15 GCP points were secured in each satellite image based on the topographic map

with a 1:50,000 scale.

The RMS error between the topographic map and the satellite image was 1.2,

and the RMS error between each satellite image was under 0.5. Frost Filtering was

used to diminish the speckle noise in each satellite image (Frost et al. 1982).

10.3.4 Production of the Coastal Erosion Risk Map

10.3.4.1 Parameters for Assessing Coastal Erosion

CDIs are closely related to coastal erosion in the southern Red River Delta.

Therefore, a risk map of the coastal erosion based on CDIs was prepared.
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Considering the CDI measurement scale is 500 m, the map is divided into 500 m

meshes, covering all CDIs on the coastline. The average CDI is calculated to

represent the CDI value in each mesh. For example, if there is only 1 CDI in

1 mesh, this CDI value represents this mesh; if there are 2 CDIs in 1 mesh, then the

average of the CDIs represents the CDI value in this mesh.

The authors made the 500 m mesh map of embankment locality by using data

from the documents preserved in provincial government offices. In the field study,

the authors measured the height of the sea wall, along with the relative heights of

sand dunes or sand ridges and the swampy lowlands between the ridges using

HANDLEVEL K50-1560 (Nobel) among Hai Hau, Nghia Hung, Thanh Hoa areas,

etc. The authors used the longest embankment to represent each mesh. There are

some geomorphological features along the coast: the tidal plain, former river

courses, sand ridges, sand dunes, and offshore beaches. The authors also used

HANDLEVEL to measure the height of the coastline and the inland area of

banks. The heights of areas were taken into account also. However, only CDIs,

the heights of the banks, and heights of land can be taken into consideration since

all the other information was quite fragmentary and incomplete.

The risk map now can be built by integrating those three major factors: CDIs,

banks, and height of land. CDIs are subtracted from immediately succeeding CDIs

using data from eight sheets of JERS-1 image, that is, these CDIs directly measure

the coastline changes of the terms. To measure the risk of the banks, a risk ranking

from 0 to 2 is assigned to each bank by using the height of the banks. The standard

height of bank in this study area is 4 m. Risk level 0 is assigned to those existing

banks with the height more than 4 m; risk level 1 is assigned to those banks less than

4 m; risk level 2 is assigned to those areas without any banks. The risk measurement

regarding sea level can be classified into two categories: risk ranking 0 represents

the land level of the coastal area being higher than sea level; risk ranking 1 results if

the land level is lower than sea level. Based on the above nine items (seven sets of

CDI data, bank data, and heights of land data), 74 meshes in 500 m squares were

subjected to cluster analysis.

10.3.4.2 Numerical Estimation Using Hierarchical Cluster Analysis

In this study, cluster analysis was used to categorize the meshes. Cluster analysis

has been used by evolutionary biologists as a tool for phylogenetic relationship

studies since the 1960s. Hierarchical cluster analysis is one of the classical methods

in dynamic programming (DP) in multivariate analyses and often is used as a

heuristic approach.

The results of cluster analyses are normally expressed as the dendrograms.

Similarities and dissimilarities can be applied to the all calculable dataset. From

the perspective of pattern recognition, hierarchical cluster analysis is categorized as

the uncensored learning method. The objective of hierarchical cluster analyses is

the discovery of the cluster by classification of the ranks. The rank is absolutely

determined by the range of the similarities or the dissimilarities. Commonly used
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hierarchical cluster analyses techniques are; the single linkage clustering method,

complete linkage clustering method, Ward’s clustering method, WPGMA

(weighted pair-group method using arithmetic average) and UPGMA (unweighted

pair-group method using arithmetic average) (Sneath and Sokal 1973; Romesburg

1989).

The calculated dendrogram is assessed by the CPCC (cophenetic correlation

coefficient) (Sneath and Sokal 1973). CPCC is the coefficient of correlation

between the similarity matrix (or the dissimilarity matrix) and cluster topology,

arrived at by calculating the data. If CPCC is near 1, the topology is a highly

reproducible result. Because UPGMA is simple and useful and shows the higher

CPCC (Farris 1969), it is considered a highly reproducible cluster analysis.

In the numerical vulnerability estimation, the shoreline is divided into

108 meshes. These shoreline meshes are called an Operational Taxonomic Unit

(OTU) and the intermediate node is called a Hypothetical Taxonomic Unit (HTU).

Here, the Pearson’s product moment correlation coefficient is used as the similarity.

UPGMA algorithm is expressed as follows:

i, j, k, l, mk, ml, n and N are natural numbers and S is a real symmetric square

matrix of order N.

1. Substitute n for N and calculate a similarity matrix S.

2. Select a taxonomic unit (TU) pair, i and j, with a maximum similarity value

S(i, j).

3. Replace a TU pair to HTU k. Substitute N-1 for N and update the similarity

matrix S. When mk and ml are numbers of OTUs in cluster k and l, an update

formula is

S k; lð Þ ¼ 1

mkml

Xmk

i¼1

Xml

j¼1

S ki; l j
� �

;

ki 2 {i th unit of cluster k, 1� i�mk}, lj 2 {j th unit of cluster 1, 1� j�ml}.

4. If N is not 1, return to 2.

5. Stop.

If S is a dissimilarity matrix, select a TU pair with minimum dissimilarity at 2.

10.3.5 Land Use Vulnerability

10.3.5.1 Distance from the Sea

The inland areas also suffer damage from coastal erosion. Salt water from the sea

damages the crops and seawater intrudes into ground water, but the damage is less

than that in the coastal area. In this study, an extra factor, “distance from the sea,”

was included to assess the coastal erosion risks.
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The authors define a total of 686 meshes and use the same clustering calculation

as coastal 74 meshes. The coastal meshes are assigned to clusters which were

calculated in a previous paragraph. The inland meshes are identified as the same

group of the nearest coastline meshes. The meshes which are on the opposite side of

the Day River are identified as those whose CDIs are small. If a mesh is on the

coastline, the distance is 0 km from the sea; otherwise, the distance is calculated in

km by multiplying the number of meshes to the coastline by the length of the

diagonal line or side line.

10.3.5.2 Land Use

Current land use is important is assessing the coastal erosion risk due to human

factors as well as to natural factors. In this study, the authors used the land use data

by the Ministry of Agriculture and Rural Development in 1996. Five types of land

use are classified as follows: village, rice paddy, rush field, saltpan, and mangrove

forest. The village has been destroyed by coastal erosion; and houses, churches and

other buildings ceased to exist. The people living there had to move to another area.

Then, the importance of the villages is assigned as the highest, 4. The paddy fields

were also destroyed or contaminated by salty sea water. Because the produce of the

paddies is very valuable, damage to them entails serious economic loss. Therefore,

the importance of the paddy field is assigned as 3. The saltpan uses sea water, and

salt is not so expensive so the importance of a saltpan is assigned as 2. There are

rush forests in the deposition area because the rush is highly resistant to salt water;

and the produce of the rush forests is less valuable than that of the paddies. There

are mangrove forests in some areas, but the mangroves are not salable. The

importance of rush field and mangrove forest are assigned as 1, the lowest. The

land use mesh map is Fig. 10.8 below.

10.4 Results

10.4.1 Altitude Map

An altitude map of the southern Red River Delta was constructed (Fig. 10.1). The

delta is very flat and low with an altitude varying from 0–5 m. There are some

patchy areas of 0 m. The Red River and Day River are partly raised bed rivers.

Upstream of the Red River and Day River, the altitude of the rivers is higher than

that of the surrounding area.

There are some sand ridges which are perpendicular to the rivers. The sand

ridges show how the delta has been expanded. The Giao Thuy area has been formed

by the Red River and Hai Hau, The Nghia Hung and Kim Son areas have been

formed by the Day River and Ninh Co River. There are islands formed by

10 Mapping Coastal Erosion Risk in the Southern Red River Delta, Vietnam 207

s2pirast@uwaterloo.ca



sedimentation in the mouths of the rivers. These islands will become a peninsula

when they connect to the mainland.

10.4.2 Climate Analysis

Table 10.1 shows the result of calculating the wind data by Van Ly Obserbatory

Station, the average number of days by month and by directions.

FromMay to September, the typhoon season, the winds from E, ESE, SE, SSE, S

are strong. The wind directions in the typhoon season are from the sea to inland. Not

only is the coastal damage great, there is severe damage to the paddies from salty

sea water. Hainan Island of China protects the northern coast from the wind and

waves. The damage is less than in the southern part of the northern area of the

coastline of the Red River Delta,

From October to the following April, the winter season, the winds from NE,

ENE, E are strong. The wind in the winter damages the banks of the coastline and

washes away the planted mangroves. In all seasons, the wind is from NE–SE. The

wind heaves the waves up and they attack perpendicularly the banks of the

coastline. Also, paddies are damaged by the saline water blown from the sea.

Fig. 10.1 Altitude map made by SRTM (Shuttle Rader Topography Mission) (The numbers are

the measuring points of the Coastal Dynamics Index in Fig. 10.2)
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10.4.3 Coastal Dynamics Index (CDI)

Figure 10.2 shows the Coastal Dynamics Index (CDI) from 1995 to 1998; Fig. 10.2a

shows the accumulated CDI and the Fig. 10.2b shows the seasonal CDI. Fig-

ure 10.2a can be roughly divided into two parts, a positive section and a negative

section. Measuring points from the 20th to the 80th shows a negative sign, indicat-

ing an erosion zone. The location is from the northern Hai Hau to the mouth of the

Ninh Co River. Measuring points from the 85th to the 130th shows a positive sign,

representing a deposition zone. The location is from the mouth of the Ninh Co River

to the Day River. The maximum expansion captured through CDIs is more than

1 km per year in the western part of the Ninh Co River mouth. The minimum is –

500 m in northern Hai Hau to the mouth of the Ninh Co River.

The average CDI in the erosion section from 20th to 80th is – 50 m from 1994 to

1998. CDIs in the year 1998 indicate that more serious erosion occurred in this area.

Almost all CDIs in this erosion area exhibit the same tendencies every other year.

As for the seasonal CDI in Fig. 10.2b, coastal erosion occurs in the winter and

deposition occurs in the summer season. In summer, some big erosion occurs

locally. It is because of high precipitation in the summer season, sometimes with

typhoons, which brings sediment from upstream, that the deposition occurs in

Fig. 10.2 Coastal Dynamics Index (CDI) from 1995 to 1998 calculated by JERS-1/SAR. The

negative numeric means erosion and plus numeric means the deposition in metric units. The

vertical axis shows the measuring points which were shown in Fig. 10.1. (a) Shows the accumulate

CDI where 0 is the September 1994 coastal line; (b) shows the seasonal CDI where 0 is the

beginning coastal line of the season
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summer. The typhoons have destroyed the banks and much coastal erosion has

therefore occurred locally. In winter, because the precipitation is low, sedimenta-

tion is insufficient; and therefore coastal erosion occurs.

The tidal effect needs to be considered. However the time of the satellite images

could not be obtained. The tide amplitudes were 1.1–3 m in September 30, 1994;

1.3–2.3 m in February 9, 1995; 1.3–2.9 m in September 17, 1995; 1.8–2.1 m in

January 27, 1996; 0.8–3.2 m January 13, 1997; 2–2.5 m October 4, 1997; 1–2.9 m in

February 13, 1998; 1.7–2.7 m September 21, 1998. The tide amplitude was large

only on January 13, 1997. The other dates had narrow tide amplitudes. The

coastline changes because of the tide are narrow, while the coastline changes due

to erosion are larger than those resulting from the tidal change. Additionally, Thuy

et al. (2012) analyzed the coastline change in Hai Hau area by satellite data,

determining the times of high, middle and low tides. The results showed the

coastline is apparently less affected by the tide than by erosion and deposition.

10.4.4 Coastal Erosion Risk Map

By using the CDIs, banks, and, heights of land, the authors classified the 74 coastal

meshes. The coastline was divided into four large clusters (Fig. 10.3). The CPCC

(cophenetic correlation coefficient) was 0.941. The features of those four groups are

as follows: Group I – regardless of CDIs, most parts of the banks in each mesh are

not over 4 m; Group II – coastal erosion occurs, land level is below sea level; Group

III – coastal erosion or small deposition occurs, the land level is above sea level;

Group IV – large deposition occurs. Therefore, the construction of a coastal erosion

risk map was possible (Fig. 10.4).

10.4.5 Risk Map of Coastal Erosion

By using the CDIs, banks, and, heights of land, the authors classified the 74 coastal

meshes. The coastline was divided into four large clusters (Fig. 10.5). The CPCC

(cophenetic correlation coefficient) was 0.941. The features of those four groups are

as follows: Group I – regardless of CDIs, the greater part of the banks in each mesh

are not over 4 m; Group II – coastal erosion occurs; land level is below sea level;

Group III – coastal erosion or small deposition occurs; the land level is above sea

level; Group IV – large deposition occurs. Therefore, the construction of a coastal

erosion risk map was possible (Fig. 10.4)
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10.5 Land Use Vulnerability Map

10.5.1 Risk Ranks

With another factor, “distance from the sea,” added to the previous four groups, a

total of 686 meshes and 9 new clusters were classified (Fig. 10.5). The CPCC was

0.897. Since the inland area had a lower erosion risk than did the coastal area, the

risk ranking assigned to the new clusters were as follows (from the highest risk

Fig. 10.3 Dendrogram based on UPGMA cluster analysis, with Coastal Dynamics Index (CDI),
banks and height of land. The cophenetic correlation coefficient (CPCC) was 0.941. If the CPCC is

near 1, the topology is highly reproducible

212 M. Murooka et al.

s2pirast@uwaterloo.ca



ranking to the lowest): Risk 9 – the coastal area in Group I; Risk 8 – the coastal area

in Group II; Risk 7 – the coastal area in Group III; Risk 6 – the coastal area in Group

IV; Risk 5 – the inland area in Group I; Risk 4 – the inland area of Group II; Risk 3 –

the inland area of Group III; Risk 2 – the inland area of Group IV; Risk 1 – interior

of Risk 2–5 areas. The illustrated risk map is in the middle section of Fig. 10.8 The

risk map shows the coastal areas such as Giao Thuy, Hai Hau, and Hoang Hoa are

the most dangerous places – they have the highest probability of encountering a

land loss problem in the near future. The deposition areas consist of new and soft

soils and are therefore easily affected by coastal erosion. The risks of the deposition

areas are also higher than those of the inland areas.

Fig. 10.4 Risk map of the coastal erosion by calculating the cluster analysis of UPGMA with the

items of Coastal Dynamics Index (CDI), banks and height of land. In the calculation, actual CDI

numeric value was used
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10.5.2 Vulnerability Diagnosis: Spatial Randomization
for Current Land Use

Is current land use in the southern Red River Delta vulnerable? Because of the

importance of the problem, we introduce a vulnerability index (Murooka and

Haruyama 2005).

Where one study area is divided into n meshes, the vulnerability of i-th mesh, νi,
is a product of coastal erosion risk and land use importance,

vi ¼ cili;

ci: coastal erosion risk of i-th mesh, li: land use importance of i-th mesh.

νi is the original vulnerability index.

Where an area vulnerability is defined as a total sum of all vulnerabilities,

Varea ¼
Xn

i¼1
vi:

Varea is a unique measurement based on observation. Furthermore an average

mesh vulnerability is

Fig. 10.5 Dendrogram of risk ranks of 686 meshes based on UPGMA cluster analysis with the

group I–IV in Fig. 10.4 and the distance from the sea. The cophenetic correlation coefficient was

0.897. If the CPCC is near 1, the topology is highly reproducible

214 M. Murooka et al.

s2pirast@uwaterloo.ca



Vmesh ¼ 1

n
Varea:

Hence a Vmesh is not only a mean value of the area vulnerability but also an

expected value of a vulnerability distribution. If there are some areas with different

mesh sizes, we can compare the vulnerability of those areas using Vmesh,

where Varea is the inner product of two same rank vectors, coastal erosion risk

vector, C, and land use importance vector, L,

Varea ¼
Xn

i¼1
vi

¼ v1 þ v2 þ . . .þ vn,
¼ c1l1 þ c2l2 þ . . .þ cnln,
¼ C � L

where C is a parameter vector and L is a variable vector, Vmesh is the following

function;

f mesh L;Cð Þ ¼ Vmesh:

¼ 1

n
Varea

where fmesh (L; C)¼ 0, the trivial solution, L¼ 0, indicates an area unused by

humans. Because C and L are usually positive in coastal areas, there is no nontrivial

solution. The positive index value thereby means that there exists the possibility of

a mitigation solution, Lm 2 {L: 0< fmesh (L; C)�Vmesh}.

How do we use these indices as vulnerability diagnosis tools? A solution was

achieved by the arrangement of spatial randomization tests (Manly 1997). Spatial

randomization techniques are usually used to statistically test for geographical

structure in various problems, i.e., epidemiology, biogeography, etc.

In spatial randomization, an empirical distribution which is constructed by

random permutation is used to examine this hypothesis. Why did we use random

permutation? For example, in a 20 mesh case, the number of permutation series is

2,432,902,008,176,640,000. It is usually impossible to generate all permutation

series in this example, and the ordinary scale of the meshes is too large to generate

all permutation series. Therefore, we should construct an approximate permutation

distribution based on a set of permutation series randomly sampled without

replacement.

First, one area is divided into n meshes and each one is sequentially numbered

from first to n-th. Second, area vulnerability values are calculated from rearranged

mesh sequences by generated random permutation. Finally one permutation distri-

bution is constructed by a set of area vulnerabilities. Furthermore we calculate the

lower area of the area vulnerability values of the current land use on the permuta-

tion distribution as a probability, generalized vulnerability score (0 � Vgeneral �1).

Where number of meshes, N, is 4, all possible permutations are 24 in Fig. 10.6,

Varea¼ 30 and Vmesh¼ 7.50. Bold frames show results based on observed data.
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Figure 10.6-2 shows the importance of all possible land uses and Fig. 10.6-3 is all

possible vulnerability maps. Figure 10.6-4 is all Varea table and Fig. 10.6-5 is all

Vmesh table. Finally Vgeneral is
23
24
¼ 0:96. Figure 10.7 shows a histogram example

constructed by Fig. 10.6-4. In this example current land use is estimated to be the

most vulnerable, and Lm with Varea¼ 20 and Vmesh¼ 5.50 is the least vulnerable

land use.

Where Vgeneral indicates a high score, the current land use is vulnerable in a set of

all possible land use conditions in the area. On the other hand, a high score indicates

the possibility for a mitigation policy concerning land use, Lm.
The random permutation algorithm is as follows;

1. Set an observed coastal erosion risk set to parameter vector C.
2. Set an observed land use importance set to variable vector L
3. Calculate Vobseved. using fmesh (L; C).
4. Generate a new random permutation series, Lnew, without duplication.
5. Calculate Vmesh. using fmesh (Lnew; C) for every permutation.

6. Return to 4 until reptitions are of sufficient number, M.

7. Construct a distribution based on the Varea set.

8. Store m with the number of elements less than Vobserved in the Vmesh set.

9. Calculate a generalized vulnerability score Vgeneral ¼ m
M.

For N� 7, It is possible to easily construct a complete permutation distribution;

but for N� 8, random permutation distribution is most practical.

Fig. 10.6 Calculation process of average mesh vulnerability
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10.5.3 Vulnerability Map of the Coastal Erosion

Vulnerability was ranked by six levels as follows; (1) 0–4, (2) 5–9, (3) 10–14,

(4) 15–19, (5) 20–24, and (6) 25–27. The total number of meshes was 686. The

numbers and percentage of meshes of each vulnerability were as follows: vulner-

ability 1 had 332 meshes (48.4 %), 2 had 124 meshes (18.1 %), 3 had 88 meshes

(12.8 %), 4 had 59 meshes (8.6 %), 5 had 70 meshes (10.2 %), 6 had 13 meshes

(1.9 %). The average vulnerability was 2.2 and standard error was 0.46.

The land use vulnerability map indicated that the coastal erosion risk from the

aspect of land use was highest at the Van Ly area and the village in Hoang Hoa. The

coastal erosion risk of rice paddies was highest in the coastal area of Giao Thuy and

inland area of Van Ly.

There were rush fields in the inland area of Nghia Hung and Kim Son which was

the deposition area. These rush fields could be considered to be of low vulnerability

to the threat of coastal erosion (Fig. 10.8).

10.6 Conclusions

In this study, making a risk map for coastal erosion was accomplished through the

use of UPGMA cluster analysis of the fragmentary data in the Red River Delta,

Vietnam. Not only in Vietnam, but also in other developing countries, the necessary

data are almost always lacking. Under these circumstances, satellite remote sensor

data can be quite useful. Coastline changes can be assessed by using satellite remote

sensor data. This study could be employed to make a vulnerability map, including

land use, banks and salinity, by using the UPGMA cluster analysis. The Coastal

Fig. 10.7 Permutation distribution constructed by table in Fig. 10.6-5
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Dynamics Index (CDI) calculated from JERS-1/SAR images was created to con-

struct the coastal erosion risk map. The most important thing is that land use was

included in the risk assessment. Land use is a key matter to consider in mitigation.

In Vietnam, the land use planning resembles forecasting. The plan targets are

realistic and feasible, but it may not be favorable for water resources management

Fig. 10.8 Coastal erosion vulnerability mesh map, coastal erosion risk ranking map illustration of

the dendrogram of Fig. 10.5 and land use map
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(Asian Development Bank and Ministry of Agriculture and Rural Development

2000). However, a proper land use policy is absolutely necessary because it can

enable local areas to overcome natural hazards.

Based on the natural environmental characteristics of coastal erosion and the

affected areas, erosion potential can be assessed by using remote sensing data

analysis. This methodology can also apply to the other regions in Vietnam and

beyond. In high risk areas, suitable means, corresponding to the particular condi-

tions of the area, must be taken for disaster prevention.
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Chapter 11

Modelling Shallow Landslide Risk Using GIS
and a Distributed Hydro-geotechnical Model

Pingping Luo, Apip, Bin He, Kaoru Takara, Weili Duan, Maochuan Hu,

and Daniel Nover

Abstract GIS and distributed hydrological models are important tools for shallow

landslide prediction, particularly as such disasters are exacerbated by global change

driven changes in precipitation regimes. The main objective of this chapter is to

outline a detailed methodology for shallow landslide risk assessment using GIS and

a hydrological model. We have developed a method to assess shallow landslide risk

using GIS tools and a distributed hydrological model and further used this method

to analyze the probability of shallow landslides in a case study. The physically
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based distributed landslide model was developed by integrating a grid-based

distributed kinematic wave rainfall-runoff model combined with an infinite slope

stability module. Application of the model to assess shallow landslide risk using

rainfall data for Kyushu Island shows that the model can successfully predict the

effect of rainfall distribution and intensity on the driving variables that trigger

shallow landslides. The modeling system has broad applicability for shallow

landslide prediction and warning.

Keywords GIS • Distributed hydro-geotechnical model • Shallow landslide risk •

Probability • Kyushu Island

11.1 Introduction

As climate change intensifies during the twenty-first century, extreme events such

as typhoons, extreme rainfall, droughts, etc. are expected to become more common.

Recent decades have seen more frequent shallow landslides, driven by typhoons

and extreme rainfall events (Duan et al. 2014). Shallow landslide risk mapping is a

necessary tool for the risk management community. Recent developments in GIS

tools and hydrological/geotechnical modeling enable researchers and resource

managers to analyze land surfaces for shallow landslide potential.

As GIS tools have become more commonplace, they have been widely used in

hydrological modeling. The Soil and Water Assessment Tool (SWAT) combined

with ArcGIS (called ArcSWAT) is becoming a popular modeling tool applied for

studying water resources in the USA (CEAP 2008; Gassman et al. 2007), China

(Zhang et al. 2008), Japan (Luo et al. 2012), and West Africa (Schuol et al. 2008).

Hydrological models such as grid-Cell Distributed Rainfall Runoff Model Version

3 (CDRMV3) take input hydrological data including flow accumulation, flow

direction and so on from ArcGIS (Luo et al. 2014a). The Geospatial Hydrologic

Modeling Extension (HEC-GeoHMS) is a public-domain software package also

linked with ArcGIS. TOPMODEL, originally developed at the University of Leeds

(United Kingdom) in the mid-1970s has recently been coupled with the Geographic

Resources Analysis Support System (GRASS) GIS software. A GIS-based frame-

work for systematic landslide hazard analysis was developed and applied in Hong

Kong with geologic, climatic, historical landslide data and rainfall data (Chau

et al. 2004). Safety maps for slope stability in the northern part of the Rasuwa

district in Nepal were generated through an analysis of physical processes using

GIS tools (Acharya et al. 2006). Spatial analysis and prediction of landslide hazards

have also used GIS techniques in the Xiaojiang watershed in Southwest China (Lan

et al. 2004). Using GIS, the dynamic characteristics of shallow landslides can be

analyzed in response to rainfall events (Lan et al. 2005). A grid-based GIS frame-

work is required for susceptibility and hazard assessment of shallow landslides

(Godt et al. 2008). The proliferation of GIS tools and extensions has vastly

expanded the potential for hydrological modeling and shallow landslide analysis.
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Shallow landslide studies generally require a distributed hydrological model

coupled with a slope stability model. For example, a topography-based hydrolog-

ical model linked with a slope stability model was applied to predict the location of

shallow landslides in a mountain catchment in the Dolomites, Italy (Borga

et al. 1998). SHETRAN is a physically based distributed basin hydrology and

sediment transport model system coupled with a geotechnical stability model to

assess the impact of forest cover on shallow landslides (Bathurst et al. 2010). The

TIN (triangulated irregular network) based Real-Time Integrated Basin Simulator

(tRIBS) implemented with the Stability module and Movement module are also

tools used to simulate spatio-temporal hydrologic processes (infiltration, evapo-

transpiration, groundwater dynamics and soil moisture conditions) affecting shal-

low landslides (Arnone et al. 2011). Distributed hydrologic rainfall-runoff models

linked with geotechnical models have also been developed and applied for shallow

landslide prediction using satellite-derived estimated rainfall in the upper Citarum

catchment, Indonesia (Apip et al. 2010). Previous studies show numerous instances

where hydrological rainfall-runoff models coupled with geotechnical models are

developed and applied in large-scale areas for assessing the triggering conditions of

shallow landslides. However, the detail assessment of shallow landslide risk in a

large scale by using the improved hydro-geotechnical model has not been done yet.

This chapter presents a GIS framework and a distributed hydrological-

geotechnical model that together identify the location and likelihood of shallow

landslide on Kyushu Island, Japan. Additionally, spatial shallow landslide hazard

maps are presented using results from modeling simulations and ArcGIS. The

results of this study provide guidelines for spatial shallow landslide risk analysis.

This chapter is organized in the following sections: Section 11.2 “Methodology”;

Section 11.3 “Application Study in Kyushu Island”; Section 11.4 “Analysis

Results”; Section 11.5 “Discussion”; Section 11.6 “Conclusion”.

11.2 Methodology

This section describes the methodology through which GIS and hydro-geotechnical

modeling systems can be used to analyze shallow landslide risk. GIS is used to

prepare input data and display outputs for the hydro-geotechnical modeling system.

A detailed introduction to hydrological and slope stability models is also given in

this section. The methodology is applied in the context of a large island, Kyushu,

Japan, and results are presented in Sect. 11.3.

11.2.1 GIS Process and Framework of the Modeling System

There are three main parts to the GIS process including Automated Meteorological

Data Acquisition System (AmeDAS) rainfall data, hydrological and soil types and
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land use GIS processing (Fig. 11.1a–c). ArcGIS 10 (ESRI Company) has been used

to deal with the GIS processing in this study.

AmeDAS rainfall data was obtained from the Japan Meteorology Agency

(JMA). We selected 120 AmeDAS observed rainfall stations and made a location

list of the selected AmeDAS stations including station ID, latitude and longitude as

an excel file or a comma-separated values (CSV) file. The location list made in the

previous step is imported from “File” ! “Add Data” ! “Add XY Data” in the

ArcGIS 10 Tools bar. The spatial distribution of selected AmeDAS rainfall stations

is displayed in ArcGIS 10. To get the rainfall zone for modeling input data, the

inverse distance weighted (IDW) interpolation was selected from “Arc Toolbox”!
“Spatial Analyst Tools” ! “Interpolation”. The interpolation raster file of rainfall

zone is converted into ASCII file.

The hydrology tools from “Spatial Analyst Tools” in ArcGIS were used to make

the hydrological dataset in Fig. 11.1b. Based on the original DEM from the Ministry

of Land, Infrastructure, Transport and Tourism (MLIT), Japan, the coordinate

system has been changed from Japanese Geodetic Datum 2000 (JGD 2000) to

World Geodetic System 1984 (WGS 1984). The hydrology tools are used to fill

all depressions or sinks in the original DEM where there is no flow from pixel to

pixel within a hydrologic unit. Flow accumulation is analyzed using ArcGIS and

the filled DEM. Flow accumulation was calculated from the flow direction. Finally,

we convert the raster files of filled DEM, flow accumulation and flow direction to

ASCII files as the input file for the hydro-geotechnical model.

In order to prepare the input file for the model, the land use and soil type shape

files are converted into raster files as shown in Fig. 11.1c. The grid-cells size of land

Fig. 11.1 Process of the preparing the input data using ArcGIS
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use and soil type raster files is different from the DEM. Therefore, the raster files of

land use and soil type have been resampled into the same grid-cell size raster file

with the DEM. The resample raster files are converted into ASCII files.

We present a framework for shallow landslide modeling characterized by rap-

idly moving flows of mixed soil and rock. These shallow landslides often occur

along saturated hill slopes under heavy or extreme rainfall. The purpose of this

Modeling System is mapping areas of potential slope instability over river

catchments.

The framework of the modeling system (Fig. 11.2) is aimed to identify where

shallow landslides have occurred in the past, and “where” shallow landslides with

high potential risk may occur in the future at a large scale. The detailed description

of the process is given below.

1. The geospatial data and AmeDAS rainfall data are collected for this study. The

geospatial data includes hydrological geo-data, soil types, land use, observed

data (i.e. rainfall data, discharge data, landslides location data). The hydrological

geo-data including flow direction and flow accumulation are made by ArcGIS

10 from the DEM. The rainfall in Kyushu Island is interpolated using ArcGIS

10 on the basis of 120 AmeDAS rainfall stations.

2. Geospatial data is input into the distributed infinite slope stability model

intended to derive a time-invariant spatial distribution map of the areas suscep-

tible to slope instability, where the catchment area is classified into stability

classes according to critical relative soil saturation. The effect of quasi-static

land surface variables such as geometric characteristics of the slope,

Fig. 11.2 Framework of shallow landslide risk/hazard mapping system
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geotechnical properties, and strength parameters of the soil on slope instability is

described in the time-invariant spatial distribution map.

3. The process-based distributed hydrological model which is described in the next

section is calculated using the observed AmeDAS rainfall data and Geospatial

data from step 1.

4. Evaluation of the hydrological model performance through calibration of the

hydrological model response was carried out using observed stream flow

discharge.

5. The slope stability evaluation was analysed by comparing the spatial pattern

of landslides inventory data with the pattern of simulated time-invariant slope

stability classes.

6. Based on the evaluated time-invariant slope stability distribution map, the long-

term spatial dynamic and time-varying of potential slope instability map can be

drawn. The hydrological model predicts the dynamic of soil saturation in each

grid element, which is then used to update the state of relative soil saturation and

to assess local slope instability for whole areas defined as potentially stable/

unstable.

7. Shallow landslide probability of occurrence is simulated from the Spatial

Dynamic and Time-varying of Potential Slope Instability Map.

8. Finally, the shallow landslides hazard map can be created with the simulation of

shallow landslide occurrences probability.

11.2.2 Physical Based Hydrological Model

A physically based hydrological model coupled with a slope stability model was

developed to assess shallow landslide risk analysis over large areas. The distributed

hydrological model is the grid-Cell Distributed Rainfall Runoff Model Version

3 (CDRMV3) which was developed at the Innovative Disaster Prevention Tech-

nology and Policy Research Laboratory, DPRI, Kyoto University. The CDRMV3

model solves the Kinematic wave equation using the Lax-Wendroff scheme at

every node of each cell (Kojima et al. 2003). An automatic calibration program

using the Monte Carlo method was added to the evaluation of model performance

and uncertainty analysis of the CDRMV3 (Sayama et al. 2003; Apip et al. 2010).

Using a steady state assumption, a lumped sediment-runoff model was developed

and applied by Apip et al. (2012) based on the CDRMV3 model structure.

The catchment topography is taken from the digital elevation model (DEM)

which is divided into square grid-cells. A square area with four node points is called

a grid-cell. The analyzed catchment is calculated as a network of grid-cells. The

flow of each grid-cell receives the flows from upper grid-cells and direct rainfall.

Connected grid-cells receive flow based on the drainage path defined by selecting

the steepest direction from eight-directions. Discharge and water depth flow to the

next grid-cell according to the predefined eight-directional flow map and routine

order determined in accordance with DEM and river channel network data. Flow is
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routed from hill slopes to the river channel and ultimately to the outlet. The surface

and subsurface hydrological processes of CDRMV3 are provided in each grid cell

based on the kinematic wave method. The hydrological processes of this model

have been divided into three lateral flow mechanisms including (1) subsurface flow

through the unsaturated layer, (2) subsurface flow through the saturated layer and

(3) surface flow on the soil layer (Luo et al. 2012). At each grid-cell, when the water

depth is lower than the equivalent water depth for unsaturated flow (0 � h � dm),

flow is simulated by Darcy’s law with an unsaturated hydraulic conductivity km.

The model includes a stage-discharge, q-h relationship for both surface and sub-

surface runoff processes (Eq. 11.1, Fig. 11.3) (Luo et al. 2014a):

q ¼
vm dm

h
dm

� �ϕ
, 0 � h � dm

vm dm þ va h� dmð Þ, dm < h � da

vm dm þ va h� dmð Þ þ
ffiffi
i

p

n
h� dað Þm, da<h

8>>><
>>>:

ð11:1Þ

vm ¼ kmi, va ¼ kai, km ¼ ka
ϕ

dm ¼ Dρm, da ¼ Dρa

where q (mms-1) is the discharge per unit width, h (mm) is the water depth, i is the
slope gradient, km (mms-1) is the saturated hydraulic conductivity of the capillary

soil layer, ka (mms-1) is the hydraulic conductivity of the non-capillary soil layer

(saturated), dm (mm) is the depth of the capillary soil layer (unsaturated), da (mm) is

the depth of the capillary and non-capillary soil layer, vm and va are the flow

velocities of unsaturated and saturated subsurface flows respectively, ϕ is a

non-dimensional parameter for unsaturated flow, ρa is the effective porosity

of the soil layer (D), ρm is the effective porosity of the unsaturated layer, and

n (m-1/3 s) is the Manning’s roughness coefficient based on the land cover classes.

Fig. 11.3 Soil model structure and stage-discharge relationship of each particular grid-cell
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Initial conditions at each grid-cell are assumed to be in steady-state. Given the

observed discharge at the catchment outlet, the discharge from every grid-cell is

assigned in proportion to each of the grid-cells upstream to it, and the assigned

discharge in each grid-cell is converted to the value of the water depth according to

the stage-discharge relationship (Eq. 11.1).

11.2.3 Slope Stability Model

Based on the concept of the infinite slope model, the slope stability model is

developed by using a factor of safety (FS) with considering a failure surface.

There are five important points which has been concluded in the slope stability

model, such as (i) failure is the result of translation sliding, (ii) the failure plane and

water table are parallel to the ground surface, (iii) failure occurs as a single layer,

(iv) the failure plane is of infinite length, and (v) the impacts of adjacent factors are

not taken into account (Apip et al. 2010). In the hill slopes, the safety factor is

generally calculated as the ratio of the available resisting force (shear strength) to

the driving force (shear stress). Instability occurs due to the shear strength of a soil

layer becomes smaller than the shear stress acting on the soil. In this study, the

Mohr-Coulomb failure criterion has been used for the governing equation of the

safety factor (Apip et al. 2010).

In Fig. 11.4, it presents the detail structure of the forces acting on a point along a

slope with potential for failure. The resisting force of a soil layer is the shear

strength (s) as a combination of forces, including the normal stress (σ), pore
pressure within the soil material (p), cohesion factors (c), and the effective angle

of internal friction (β). The difference between normal stress and pore pressure is

the effective normal stress. Shear strength based on the Mohr-Coulomb law is

presented as follows:

s ¼ cþ σ � pð Þ tan β ð11:2Þ

Normal stress is the vertical component of gravity that resists down-slope

movement as follows:

σ ¼ δs g h cos θ; ð11:3Þ

where δs is the wet soil density (kg/m3), g is the gravitational acceleration (¼
9.81 m/s2), h is the vertical soil depth perpendicular to the slope (ψ), and θ is the

slope angle (deg). Soil moisture increases the unit weight of soil material and

therefore increases both the resisting and driving forces. Soil moisture creates

pore pressure, which reduces the effective normal stress and shear strength. Pore

pressure in the slope differs among sites and also has large temporal variation. It is

difficult to estimate these values and to include them in this model of a large

catchment. Therefore, we simplified the condition of pore pressure in the slope by
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assuming that the pore pressure in the slope is always under the static state

condition. Pore water pressure:

p ¼ δw g hw cos θ; ð11:4Þ

where δw is the density of water (¼1,000 kg/m3) and hw is the height of the

water depth perpendicular to the slope (m). This assumption ascribes greater

pressure in the rising process of the subsurface water and smaller pressure in the

descending process of the subsurface water.

The shear stress as driving force, defined by the down-slope parallel component

of gravity, can be expressed as follows:

τ ¼ δs g h sin θ: ð11:5Þ

By substituting the formula for shear strength and shear stress, the factor of

safety without considering root cohesion and vegetative surcharge equals

FS ¼ c∗ þ cos θ 1� r p

� �
tan β

sin θ
;

c∗ ¼ c

δs g h

ru ¼ hw δw
h δs

8><
>: ð11:6Þ

Fig. 11.4 Forces structure of the slope stability model
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The dimensionless form of Eq. (11.6) has been widely used to analyze the

stability of shallow soil using digital terrain models (Borga et al. 2002; D’Odorico
and Fagherazzi 2003).

In Eq. (11.6) most of the variables could be set up as spatially distributed, but it is

assumed that only hw is time-varying. Water depth, hw, is determined by the flux of

subsurface water flow computed by the hydrological model (see Eq. 11.1). Here the

ratio (ψ ¼ hw/h) shows that the relative saturated depth is time-dependent (range

numerically between 0.0 and 1.0). Through an inversion of the standard factor of

safety (Eq. 11.6), a fixed time-invariant critical relative soil saturation (mc) (Burton

and Bathurst 1998) triggering slope instability (i.e., relative soil saturation that

yields FS ¼ 1.0) for each grid element can be approximated as

mc ¼ hw
h

� �c

¼ δs
δw

1� tan θ

tan β

� �
þ c

h δw g cos θ tan β
ð11:7Þ

The probability of shallow landslide occurrence is calculated by Eq. (11.7) in

this study.

P %ð Þ ¼ 1

n

Xn
k¼1

1

t

Xj

f¼1

FS f

 !
� 100 %

 !
k

ð11:8Þ

P is the probability of shallow landslide occurrence; n is the total year of each

period; t is the total time (hours) in a year (365� 24); j is the total time in a year

with the safety factor of slope, FS < 1.0.

A detailed description of the hydrological-geotechnical model used in this study

can be found in Apip et al. (2010). We carried out an hourly simulation for 8 years

(2000–2008). For each grid we account for the total time in each month where the

FS is less than 1.0 (called X). The probability (P) is the ratio between X and total

time in a month (called Y). P is multiplied by 100 %. Based on monthly probability

information for the period 2000–2008, we made mean monthly shallow landslide

probability risk maps and its mean annual probability risk map.

11.3 Application Study in Kyushu Island

11.3.1 Study Site

Kyushu Island, the third largest island of Japan is connected with the mainland and

close to Shikoku Island. The Kyushu Mountains are aligned in a north-south

direction in the center of Kyushu Island. Kyushu Island has four large calderas

called Aso, Aira, Ata, and Kikai calderas. The spatial distribution of total yearly

rainfall in Kyushu Island is quite high compared to other regions in Japan. The
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Digital Elevation Model and the 120 selected AmeDAS rainfall stations are

presented in Fig. 11.5a).

11.3.2 Data

We collected the Digital Elevation Model (DEM) (Fig. 11.5), land use, soil type,

observed AmeDAS rainfall, observed discharge and observed landslides distribu-

tion map. The original DEM and 100 m mesh land use data were obtained from the

Ministry of Land, Infrastructure, Transport and Tourism (MLIT), Japan. The

observed rainfall data from 2000 to 2008 of 120 selected AmeDAS rainfall stations

is from the Japan Meteorology Agency (JMA). The observed landslide location

map was downloaded from the website of Landslides Distribution Maps database

published by the National Research Institute for Earth Science and Disaster Pre-

vention (NIED).

Fig. 11.5 Location of AmeDAS rainfall stations and digital elevation model at Kyushu Island
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11.4 Results and Discussion

11.4.1 Hydrological Model Performance

Hydrologic model performance was evaluated by modelling hydrological response

at the Senoshita and Arase Stations of the Chikugo River (Fig. 11.6). The elevation

of Chikugo River basin ranges from �3 m to 1,724 m with a main stream channel

143 m long with 70 % forest coverage. Calibration results at Arase Station (Fig.

Fig. 11.6 Location of Chikugo river with the observed discharge stations, river channel and DEM
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11.7a) show that simulated discharge matches observed discharge very well with a

Nash-Sutcliffe (NS) coefficient of 0.93. Simulated peak discharge is similar to

observed peak discharge. The overall trend in simulated discharge also closely

Fig. 11.7 Hydrological performance of hourly discharge at (a) Arase Station and (b) Senoshita
Station
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matches observed discharge. Simulated discharge at Senoshita Station is very

similar to observed discharge with a Nash-Sutcliffe (NS) coefficient of 0.86 (Fig.

11.7b). However, simulation results overestimate observed discharge. Simulated

discharge from the 22nd hour to the 36th hour and from the 57th hour to 82nd hour

underestimate observed discharge. The calibrated parameters are shown in Table

11.1.

11.4.2 Performance of the Slope Stability Model

The potential for shallow landslides was defined only for stable/unstable grids,

where the critical relative soil saturated depth values ranged between 0.0 and 1.0.

Comparison of observed landslides with the slope stability model predictions pro-

vides an assessment of geotechnical parameters calibration. The comparison was

obtained by mapping predicted critical relative saturated depth on a map of

observed landslide locations and comparing the proportion of catchment area

placed in the various critical relative saturated depth ranges (the zone of potential

instability) with the corresponding fraction of the observed landslide grids. The soil

type data is taken into account for calculating the shallow landslides in this study.

The hydro-geotechnical model for shallow landslide prediction was simply cali-

brated by comparing the spatial pattern of shallow landslides between these two

maps. This model is not intended to simulate the size of the landslide and its eroded

soil distribution.

Figure 11.8 shows the critical relative saturation level map. Red color with a

value equal or less than 0 represents the area of highest landslide potential. The area

with the critical relative saturation level of 0.8 is the most stable area where shallow

landslides are rare. The area around the Aso Mountains presents high potential for

shallow landslide occurrence. The central area of Kyushu Island shows high

potential for shallow landslide occurrence. Elevation maps indicate that the

Aso Mountain area has steep slopes. The main reason of the high potential

Table 11.1 Hydrological model calibrated parameter value of each sub-basin

Model parameter Description Arase outlet

Senoshita

outlet

n of forest (m�1/3 s) Manning’s roughness coefficient 0.79197 0.43245

n of cropland
(m�1/3 s)

Manning’s roughness coefficient 0.26058 0.39511

n of paddy (m�1/3 s) Manning’s roughness coefficient 0.26458 0.21702

n of urban (m�1/3 s) Manning’s roughness coefficient 0.18070 0.15405

n of river (m�1/3 s) Manning’s roughness coefficient 0.00957 0.00714

D (mm) Total soil depth 1602.65 2878.41

ka (mm s�1) Hydraulic conductivity of saturated soil

layer

0.00152 0.00159

β Exponent constant of unsaturated flow 6.61 5.40
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occurrences level in the central area of Kyushu Island may be due to the extreme

rainfall events and the steep slope. The highest potential area of the shallow

landslide occurrences is quite fixed with the observed landslide locations map

(Fig. 11.9). However, this observed location map includes all the types of

landslides.

Fig. 11.8 Spatial critical relative saturation level map (Luo et al. 2014b)
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11.4.3 Analysis Result of Mean Shallow Landslide Risk

Based on the simulation result from the hydro-geotechnical model, the monthly

shallow landslide risk has been calculated as a percentage. The different risk levels

have been divided into five levels which are 0–10 %, 10–30 %, 30–85 %, 85–98 %,

98–100 % levels (Table 11.2). Stable conditions are reflected by a score of 0–10 %.

The detailed description of the other five risk levels is shown in Table 11.2.

Figure 11.10 shows the mean shallow landslide risk, which is calculated based on

the monthly shallow landslide information and presents a spatial distribution of the

shallow landslide risk. Figure 11.10 shows that landslide risk is principally located

Fig. 11.9 Observed landslide Locations map (the green point is the detail locations of landslides)
(NIED 2013)
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in the area of Aso Mountain and the central part of Kyushu Island. Aso Mountain is

an active volcano with steep slopes. Volcano activity may be considered one of the

major reasons for frequent shallow landslides in this area. The high potential risk in

central Kyushu Island may be related to the steep slope of the mountain area and the

extreme rainfall events such as typhoons which often pass through central Kyushu

Island.

11.5 Discussion

The mean monthly shallow landslide risk map can be used to identify where the

most dangerous area of shallow landslides is and inform local residents of areas to

avoid during the extreme rainfall events. The hydrogeotechnical model is a grid-

cell distributed model which has two main sub models; namely hydrological sub

model and infinite slope instability model. The hydrological sub model considers

Table 11.2 Shallow

landslide potential risk levels
Percentage (%) Risk levels

0–10 Stable

10–30 Low potential risk

30–85 Middle potential risk

85–98 High potential risk

98–100 Highest potential risk

Fig. 11.10 Mean risk of the shallow landslides (2000–2008): (a) Mean risk of whole Kyushu

Island, (b) Mean risk of the center part in Kyushu Island
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two soil layers namely capillary and non-capillary layers. The water movement in

the soil layers and land surface (overland flow) is accounted for numerically using a

kinematic wave approach. This model is very good for use in the hill slope and

humid areas like Japan. This study reflects advances on previous studies which for

the most part use a simple hydrological model and assume a steady state condition

in simulating hydrological responses and shallow landslide risk.

The limitation of this study is lack of a detailed deposition map for shallow

landslides. Using only the deposition map for all landslide types makes it difficult to

identify shallow landslides, the most common form of landslide in Japan. Our

hydro-geotechnical model was not constructed for this purpose. The resolution of

DEM is sufficient for shallow landslide risk analysis on a large scale, because we

are not trying to identify the detail basin scale shallow landslide events. In future

100 m mesh land use data will be used as input data. Land use type is also an

important driver of shallow landslide risk.

11.6 Conclusion

We use GIS tools and hydrological modeling linked with a slope stability model to

estimate shallow landslide risk levels. A detailed introduction on the framework of

the GIS process and hydrological modeling for large-scale shallow landslide risk

analysis is presented. Model performance was evaluated with a NSE of 0.93 at the

Arase station and 0.86 at the Senoshita Stations of Chikugo River compared with

the observed discharge. We calculated the shallow landslide risk map in Kyushu

Island, and divided the risk into five levels for better understanding. The central part

of Kyushu Island presented the highest risk levels. In order to capture the intricacy

of many related hydro-geotechnical processes combined hydro-geotechnical

modeling for analysis of large-scale shallow landslide risk. This combined model-

ing system can be applied in the other large scale study areas for shallow landslide

risk simulation. The results of this study can provide scientific information for

future shallow landslide management to reduce economic loss and contribute to

developing sustainable and survivable societies.
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Chapter 12

An Integrated Model for Assessing Carbon
Dioxide Emissions Considering Climate
Change Mitigation and Flood Risk
Adaptation Interaction

Kumiko Nakamichi, Yoshiki Yamagata, and Hajime Seya

Abstract Planning for climate change mitigation/adaptation for enhancing urban

resilience against natural disaster risks is an important issue in Japan. For such

planning to be effective, studies suggest that it is important to consider the inter-

action (co-benefits and trade-offs) between adaptation and mitigation measures. For

example, climate change mitigation and adaptation measures could be compatible if

our government got people to move from flood prone areas with considering urban

structure (e.g., compact city). In order to simulate the effectiveness of such inter-

actions, we propose an integrated assessment model for carbon dioxide (CO2)

emissions under several urban land-use scenarios considering (i) urban form (dis-

persion/compact city) (ii) urban resilience (adaptation to flood risks) and (iii)

diffusion of electric vehicles (EVs) and photovoltaic (PV) panels at a local town

level in Tokyo. The developed model can be used to evaluate the co-benefits of both

mitigation and adaptation measures from the viewpoint of CO2 emissions. Indirect

emissions based on households’ expenditure are also estimated in addition to direct
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emissions. The obtained results suggest that climate change mitigation and adap-

tation can generate a synergistic effect from the viewpoint of CO2 emissions.

Keywords Climate change mitigation and adaptation • Direct and indirect CO2

emissions • Land-use scenario • Electric vehicles • Photovoltaic panels

12.1 Introduction

12.1.1 Climate Change Mitigation and Adaptation Options

Scientific forecasts predict that climate change will raise the risk of climate

disasters in the future. The 4th Assessment Report of Intergovernmental Panel on

Climate Change (IPCC 2007) emphasizes the importance of both climate change

mitigation and adaptation strategies in order to deal with the challenges of climate

change. Climate change mitigation options include not only a direct reduction of

greenhouse gases (GHGs) but also an enhancement of the carbon sinks of GHGs.

Climate change adaptation options involve adjustments in natural or human sys-

tems in order to minimize or prevent the harmful impacts produced by climate

change. Figure 12.1, adapted from Penney (2008), illustrates the overlap between

climate change mitigation and adaptation in the urban context.

The 5th Assessment Report (AR5) of IPCC (2014) stated that many global risks of

climate change are concentrated in urban areas. Climate change will be gradual, but

extreme weather events will increase in intensity. Vulnerability created by floods is

Fig. 12.1 Climate change mitigation and adaptation options in the urban context
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especially important to consider for megacities in which many assets are located. So,

we need to address climate change mitigation and adaptation at the same time. The

AR5 (IPCC 2014) also points out that significant co-benefits, synergies, and trade-offs

exist between mitigation and adaptation and among different adaptation responses.

Increasing efforts to mitigate and adapt to climate change imply an increasing

complexity of interactions, particularly at the intersections among water, energy,

land use, and biodiversity, but tools to understand and manage these interactions

remain limited. Under the present circumstances, there are not enough prospects for

efficient GHGmitigation measures on the global scale. We must adapt to the impacts

of climate change in such a casewhere globalmean temperatures could rise about 4 �C
in the present century compared with past preindustrial averages.

Current conventional urban policy has difficulty in coping with complex disas-

ters (e.g. extreme weather events such as local heavy rainfall, sea level rise and

tsunami caused by typhoons and so on). After the Great East Japan Earthquake, the

concept of urban resilience has been discussed more widely in Japan. Resilient

cities cannot be realized without considering energy and natural disaster risks. In

case of sea-level change, the eco-system is also affected, and managed retreat can

be effective as one way of climate change adaptation (Gilman et al. 2008). The risk

characteristics of the frequency and intensity of flood disasters and the vulnerability

of social systems including land-use change need to be analyzed. Although almost

all local governments are pursuing measures for climate change mitigation, they

have not focused on climate change adaptation as a priority policy yet. There is a

need to review the interaction between climate change mitigation and adaptation

measures, especially the co-benefits and trade-offs.

12.1.2 Land Use Approach for Climate Change Mitigation/
Adaptation

In the field of urban planning, climate change adaptation is already addressed in

some projects such as the Auckland Sustainability Framework and Suburban

Neighborhood Adaptation to Changing Climate (SNACC). In this chapter, we

focus on the adaptation to flood risk, especially considering land-use change. It is

effective to reduce the damage by land-use regulations which distinguish between

areas with disaster prevention measures and areas with little infrastructure and

buildings. For example, land use is regulated depending on the degree of inundation

height. Such regulation is introduced in Germany, Nicaragua, Ecuador and Czech.

In Nagoya, Japan, buildings are controlled in the flood-hazard areas. However, the

combination of other land-use regulations such as compact city is not considered.

OECD (2012) defined the key characteristics of a compact city as (i) dense and

proximate development patterns, (ii) urban areas linked by transport systems and

(iii) accessibility to local services and jobs. It can contribute to achieving urban

sustainability including environmental, social and economic benefits as well as a

reduction of CO2 emissions from automobiles due to shorter intra-urban distances
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and a shift to public transportation. As flood disaster prevention, it would be easiest

and most effective if people could retreat from flood-hazard areas. In addition, if

retreated people moved to the city center and located around train stations, GHG

emissions could also be reduced. In this case, climate change mitigation and

adaptation measures are compatible.

In fact, the automobile fuel consumption under land-use scenarios considering

flood disaster prevention and compact city design in local cities has been quantita-

tively evaluated (Taniguchi et al. 2005). Nagao et al. (2012) considered safety

against disasters as one of the quality of life (QOL) indexes, and selected retreat and

cohesion areas in a local city. However, the Tokyo Metropolitan Area, which is still

by far the largest megacity in the world, is extremely vulnerable against climate

risks, especially flood risk, because a large part of the assets is concentrating near

the bay area. On the other hand, researchers are projecting the increase of flood risks

in the Tokyo Metropolitan Area, due to climate change as well as tsunami from

future big earthquakes. We need to consider appropriate land uses that are more

resilient against climate risks in megacities (Yamagata et al. 2013).

As for the carbon dioxide (CO2) emission reduction potentials for the land-use

scenarios, especially compact city, many studies have indicated that cities with low

residential density rely on automobile transportation. Therefore the reduction of CO2

emissions caused by transportation use would be attained by changing the urban

layout to a more compact one, which would lead to the increase of the use of public

transportation and the reduction of trip length by car (e.g. Newman and Kenworthy

1999; Hayashi et al. 1995; Jenks et al. 1996; Naess 1996; Roo and Miller 2000;

Williams et al. 2000; Taniguchi et al. 2005, 2008; Nakamichi et al. 2007).

Also, it is necessary to estimate indirect emissions as well as direct emissions to

clarify the liability of daily energy consumption-based CO2 emissions. Recently,

many studies have started considering also the indirect emissions (Abe et al. 2002;

Nakamura and Otoma 2004; Yamashita et al. 2007; Dhakal 2009; Kennedy

et al. 2010; Xi et al. 2011; Shigeto et al. 2012). Hence, in this paper, we also estimated

the indirect emissions by allocating the emissions to the regions where the energy was

consumed, using the data on the expenditure for households’ daily living items.

12.1.3 Technological Approach for Climate Change
Mitigation/Adaptation

In addition to the above mentioned mitigation measures with compact city scenar-

ios, we also need to consider those with renewable energy use. Since the 2011 Great

East Japan Earthquake, the Japanese Government has gradually changed its energy

policies toward distributed renewable energy generation. As a part of such efforts,

the Japanese Diet has approved the “Act on the Purchase of Renewable Energy

Sourced Electricity by Electric Utilities (Act)”, which is a feed-in tariff regime for

renewable energy, effective from 1 July 2012. Under the Act, electric utility
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operators are obligated to purchase electricity generated from renewable energy

including solar photovoltaic (PV) power from suppliers for fixed feed-in tariff

prices. The prices are higher than normal contractual prices and are applicable for

a fixed duration of 10 years in case of residential PV power.

This regime is widely expected to spur the introduction of PV panels and electric

vehicles (EVs). If EVs were introduced in sets with PVs, they would be useful for

zero-emission power generation. They would also serve as a power storage facility

in the form of mobile batteries in the case of a blackout since they are disconnected

by the loss of AC power (Yamagata and Seya 2013). It means that the introduction

of PVs and EVs can contribute not only to climate change mitigation but also to

resilience from the energy-use perspective if they will be used as an off-grid power

source.

In the Yamagata and Seya (2013) scenarios, it was expected that EVs and PV

panels will be widely diffused in 2050. This paper considered the large-scale

introduction of EVs and PV panels on the roofs of detached houses as a mitigation

measure. Taniguchi and Ochiai (2011) evaluated the suitability of smart grids with

an emphasis on the characteristics of each block and the behavior of residents and

households on a residential block scale, on the premise of existing technological

level. Taniguchi and Ochiai (2012) analyzed the influence of future technological

innovation on the suitability of smart grids on a block scale. Yokoi et al. (2010)

estimated the CO2 reduction potential of smart grids considering plans of block

renewal on a regional scale. It is important to evaluate the CO2 reduction potential

combining both the large-scale introduction of smart grids and land-use change,

namely considering not only climate change mitigation but also adaptation.

12.1.4 Our Approach for Integrated CO2 Emission
Assessment Model

In this chapter, we introduce our integrated model for the assessment of indirect and

direct CO2 emissions and some results in terms of the interaction between climate

change mitigation and flood risk adaptation. The objective of this study is to

develop an integrated evaluation system for direct/indirect CO2 emissions under

several urban land-use scenarios (Yamagata and Seya 2013; Yamagata et al. 2013)

which consider (i) land-use change (a compact city and retreat from flood-hazard

areas) and (ii) introduction of EVs and PVs by using GIS, in order to assess the

co-benefits or trade-offs of mitigation and adaptation. This study integrates an

estimation model for direct/indirect CO2 emissions with spatially explicit land-

use scenarios at a local town level. In this study, the Tokyo Metropolitan Area,

which is still by far the largest megacity in the world, was selected as a case study

for the application of the developed evaluation system.
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12.2 Data and Methodologies

12.2.1 Estimation Model for Direct/Indirect CO2 Emissions

12.2.1.1 Definition of Direct and Indirect CO2 Emissions

CO2 emissions fall into two types, direct emissions and indirect emissions. Easier to

measure are the direct emissions that we are responsible for. These include the

amount of gas and kerosene we use in our houses and the amount of petrol or diesel

we burn in our cars. Getting the CO2 figures right for gas, petrol and diesel is quite

straightforward, because a standard amount is released when each fuel is burnt. CO2

in the electricity production process is emitted at power plants. Thus, it is defined as

the direct emissions of the industrial sector. In contrast, the indirect emissions for

households are defined as the CO2 emissions allocated to the regions where the

energy is consumed according to the expenditure of money on the items for

households’daily life. In this study, the boundary of CO2 emissions was extended

to fuel production for household fuel use, agriculture for food production, and other

production for consumption items including energy use for both production and

transportation processes. The electricity, gas and kerosene used in houses were

allocated as direct emissions of households. The petrol or diesel consumption was

allocated to car registration place as direct emissions. It is useful to make a clear

distinction among the CO2 emissions caused by household consumption and to

formulate an effective policy for the reduction of the total GHG emissions.

We defined the direct and indirect CO2 emissions as below.

1. Direct emissions: CO2 emissions from different CO2 emitting regions of each

sector,

2. Indirect emissions: CO2 emissions from the regions where the commodities are

consumed according to expenditure of money on the items for households’
daily life.

12.2.1.2 Data

With regard to the emission intensity (emission factor) data, we employed Embod-

ied Energy and Emission Intensity Data (3EID). These data contain embodied

environmental burden intensity data calculated using Japanese input-output tables.

The Japanese input-output tables consist of approximately 400 commodity sectors.

They represent the economic relationships among these sectors based on annual

transactions. 3EID includes data on direct and indirect energy consumption or CO2

emissions (i.e. environmental burden) from unit production activity (equivalent to

1 million yen). In this study, we employed the CO2 emission intensity data

estimated from consumer prices excluding imports. The emission intensity by

prefecture and household type was calculated by Tanaka et al. (2008)’s method

mentioned above.
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For calculating the annual expenditure on each item, we employed the House-

hold Expenditure Survey (HES). This is a survey conducted to investigate the actual

state of household incomes and expenditures in terms of expenditure and consump-

tion. We used the data collected in 2005 as the base year. This survey is performed

every month for 981 consumption items for 8,000 households in 168 villages, towns

and cities all over Japan by the Statistics Bureau, Ministry of Internal Affairs and

Communications. The results of the survey are announced monthly and yearly for

cities, regions, types of households (i.e. total number of households, households of

more than two, single person households). In order to estimate CO2 emissions from

household consumption within a zone, we correlated the items of HES to 3EID. For

a detailed specification, see Table 12.1.

Table 12.1 Emission groups

of items
Emission group Number of items

1. Food

Cereals 6

Fish and shellfish 5

Meat 6

Dairy products and eggs 3

Vegetables and seaweeds 9

Fruits 1

Oils, fats and seasonings 2

Cakes and candies 1

Cooked food 13

Beverages 3

Alcoholic drinks 4

Eating out 12

Providing meals 1

2. Housing 2

3. Fuel, light and water charges 6

Electricity

City gas

LP gas

Kerosene

Water and sewerage charges

Others

4. Furniture and household utensils 31

5. Clothes and footwear 8

6. Medical care 8

7. Transportation and communication

Public transportation 10

Private transportation 13

(Gasoline)

Communication 6

8. Education 12

9. Reading and recreation 47

10. Others 27
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12.2.1.3 Estimation of Direct/Indirect CO2 Emissions

For the evaluation of land-use scenarios, we estimated the direct and indirect

emissions on the neighborhood scale. Because urban improvement projects are

implemented on such micro zone scales, the evaluation of the effect on CO2

emissions should be localized. In order to accurately estimate the lifecycle CO2

(LC-CO2) related to household consumption, the emission intensity of each con-

sumer goods (expenditure item), such as gasoline, food, etc. must be estimated. The

categories of the items used in this study are shown in Table 12.1. Because emission

intensity differs by region and by consumer (household) type, it is important to

consider its heterogeneity. We employed the algorithm proposed by Tanaka

et al. (2008), who had employed statistical methods (Bayesian estimation method

and Genetic Algorithm) for estimating the emission intensity of each expenditure

item by prefecture by seven household types (Table 12.2). The annual CO2 emis-

sions (kg-CO2/year) in each zone (micro district on the neighborhood scale) i was
calculated in the following manner:

CEi ¼
X

j

Hi j

X

k

Ei jk icik þ dcikð Þ
" #

ð12:1Þ

where,

CEi: annual CO2 emissions in each zone i (kg-CO2/year)

Hij: the number of household type j in zone i
Eijk: annual expenditure on item k by household type j in zone i (yen/household/

year)

icik: emission intensity of indirect CO2 emissions for item k (kg-CO2/yen)

dcik: emission intensity of direct CO2 emissions for item k (Gas, kerosene and

gasoline) (kg-CO2/yen)

The estimated CO2 emissions of each household were allocated on the basis of

the number of households in each of the seven household types in each micro zone.

The number of households was taken from the 2005 census. Table 12.3 shows the

estimated average CO2 emissions per household of Yokohama City in 2005 as an

example.

Table 12.2 Seven household

types
Household type

a. One-person households (65 years of age or over)

b. One-person households (under 65 years of age)

c. Married couple only (either of them 65 years of age or over)

d. Married couple only (both under 65 years of age)

e. Married couple with child(ren)

f. Single parent and child(ren)

g. Other types
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12.2.2 Spatially Explicit Land Use Model

So far, many integrated land-use and transportation models have been applied to

real urban policy planning and the creation of land-use change scenarios. The

present study employed a multi-market static economic equilibrium model based

on urban economic theory (e.g., Ueda et al. 2013). In this study, we developed a

spatially explicit land-use model which was created based on micro district level

zones.

The structure of our model is given in Fig. 12.2. The major assumptions of this

model are as follows: (1) There exists a spatial economy whose coverage is divided

into zones i. (2) The total number of each household type j, say Hj in the metro-

politan area is given (closed city). (3) The society is composed of three types of

agents: households, developers, and absentee landlords. The behavior of each agent

is formulated on the basis of microeconomic principles, that is, utility maximization

by households and profit maximization by developers and absentee landlords.

(4) Households belonging to the same type j have identical preferences. The

households choose their locations in accordance with maximized utility.

(5) There is one residential land market and residential (building) floor market in

each zone. These markets reach equilibrium simultaneously. The model can output

Table 12.3 Average CO2 emissions per household (Yokohama)

Emission group

Indirect CO2 emissions

(kgCO2/year)

Direct CO2 emissions

(kgCO2/year)

1. Food 1,530 0

2. Housing 154 0

3. Fuel, light and water

charges

3,719 1,304

Electricity (2,242) (0)

City gas (866) (795)

LP gas (420) (383)

Kerosene (136) (126)

Water and sewerage charges (55) (0)

Others (0) (0)

4. Furniture and household

utensils

187 0

5. Clothes and footwear 349 0

6. Medical care 256 0

7. Transportation and

communication

1,459 484

(Gasoline) (559) (484)

8. Education 136 0

9. Reading and recreation 655 0

10. Others 290 0

Total 8,735 1,788
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a set of variables which describe a real urban economy such as distribution of

locators (households), distribution of land rent and building floor rent, land and

building floor area, etc. The detailed mathematical description of our model and the

input data is given in Yamagata and Seya (2013) and Yamagata et al. (2013). The

ratio of detached houses was estimated using the projected population density using

the relationship shown in Fig. 12.3.

12.2.3 Integrated CO2 Emission Evaluation System

The structure of our integrated CO2 emission evaluation system is seen in Fig. 12.4.

We can use HES data not only for the estimation of CO2 emissions but also for the

estimation of energy demand. Energy demand change can be projected even if EVs

and PVs will be introduced. The installable area of roofs depends on the supply-

demand balance of buildings which is provided by the land-use model. The details

are given in Nakamichi et al. (2013b).

As to EVs, the CO2 emission rate could be estimated as shown in Table 12.4. In

order to consider the change of percentage of the electricity supply source (from

nuclear to thermal) after the Great East Japan Earthquake, we calculated the CO2

emission factor from April 2011 to March 2012 to be 0.50 (kgCO2/kWh) using the

reports of the federation of electric power companies of Japan.

As to PVs, we assumed that PVs were installed on the roofs of all detached

houses in the study area. Following Yokoi et al. (2010), the hourly average of unit

electric supply by PVs (kWh/h) can be estimated as

Fig. 12.2 Structure of our spatially explicit land-use model
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Fig. 12.3 Relationship between the ratio of detached houses and population density

Fig. 12.4 Structure of integrated evaluation system for direct/indirect CO2 emissions under land-

use scenarios considering climate mitigation and flood risk adaptation
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PVi ¼ I � τ � LPVi � η pc� Kpt � T ð12:2Þ

where I denotes the total (solar) irradiance (kWh/m2/h); τ: array conversion effi-

ciency (¼0.1); LPV: installation area (m2); ηηpc: running efficiency of power

conditioner (¼0.95); Kpt: temperature correction coefficient (¼0.9221 for May to

October, ¼1 for the other months); T: performance ratio (¼0.89). I was taken from

METPV-2 database. LPV is defined as

LPVi ¼ Li � ξ� ι� 1= cosψ ð12:3Þ

where ξ denotes the building-to-land ratio; ι: possible area of installation on the roof
(¼0.3); ψ: optimal angle of inclination (¼30�). Li was projected using our land-use
model.

The introduction of EVs has the potential to reduce both direct and indirect

emissions by gasoline use. Instead, indirect emissions for electricity use would

increase for the battery charge of EVs. As to the introduction of PVs, the indirect

emissions could be reduced because people would save electricity which was

supplied by the electric power company.

The outline of scenarios which could be assessed by our integrated CO2 emis-

sions evaluation system is described in Fig. 12.5. This evaluation system can be

used as a decision support system for evaluation of CO2 emissions under land-use

scenarios considering climate mitigation and flood risk adaptation.

12.3 The Case Study

12.3.1 Scenario Building for the Tokyo Metropolitan Area
in 2050

The base year for the projection was 2005, while 2050 was set as the target year by

taking into account the reliability of projection results. The study area is shown in

Table 12.4 CO2 emission

rate of EVs
Transportation method CO2 emissions (gCO2/km)

General gasoline car 136.0 a

EV (Lief) 62.1 b

EV (i-MiEV) 55.1 c

aCalculated from Fuel consumption: 17.0 km/L (MLIT 2012)
bCalculated from AC power consumption rate: 124 Wh/km

(Nissan 2012)
cCalculated from AC power consumption rate: 110 Wh/km

(Mitsubishi 2012) (JC08 mode)

All calculations are based on uniquely estimated CO2 emission

factors after the Great East Japan Earthquake (2011):

0.50 kgCO2/kWh
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Fig. 12.6. We assumed that the number of households in each household type in

2050 would change and the ratios to the numbers in 2005 would be as follows: type

1: 2.07, 2: 1.07, 3: 1.39, 4: 0.66, 5: 0.69, 6: 1.32, 7: 0.85 This was estimated by the

log-linear extrapolation of the estimates for 2030 by the National Institute of

Population and Society Research, Japan.

Fig. 12.5 Scenario outline

Fig. 12.6 Study area (Tokyo Metropolitan Area)
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Our future urban scenario is described in Table 12.5. We set four land-use

scenarios and five scenarios of PVs and EVs introduction. We combined each other.

12.3.1.1 Land Use Scenarios

We created four land-use scenarios: climate change mitigation (compact city),

adaptation (flood risk prevention), mitigation + adaptation and a dispersion city

Table 12.5 Scenarios for the Tokyo Metropolitan Area in 2050

Technological

mitigation

Without introduction of PVs and

EVs

With introduction of PVs and EVs

(Technological mitigation

measures, resilient from energy

use perspective)Land use

Climate change mit-

igation (Mit.): com-

pact city

Shrinking urbanized areas in
suburbs

In addition to the left column,

Available area of the residential

land will be ½ (if distance to sta-

tion is >500 m)

Cars will be replaced by EVs

Subsidy to living in the central
district

Gasoline consumption will be zero

but the electricity consumption for

charging EVs will increase

100,000 yen/year (if distance to

station is <250 m)

PV panels will be installed on the
roofs of all the detached houses

Modal share will be changed Generated electricity from PVs

will be subtracted from the elec-

tricity consumption of households

Car trips around the train stations

will be reduced by 50 %

(if distance to station is <250 m)

Cars will be replaced by EVs

PV panels will be installed on the
roofs of all the detached houses

Climate change

adaptation (Ad.):

flood risk prevention

Retreat from the flood-hazard
areas

Available area of the residential

land will be ½ (if the liquefaction

risk index is 2 (middle) or

3 (high))

Climate change
mitigation and
adaptation (Mit. +
Ad.)

Retreat from the flood-hazard
areas

Shrinking urbanized areas in
suburbs

Subsidy to living in the central
district

Modal share will be changed

Dispersion (BAU) Business as usual

The suburban development will

continue
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(BAU), to show the possible range of future land-use changes based on Yamagata

and Seya (2013) and Yamagata et al. (2013).

• Business-as-usual (BAU)

We assumed that the suburban development will continue to compare with other

scenarios.

• Climate change mitigation scenario (Mit.)

Regulations of land use will be introduced based on the concept of compact city.

The compact city is known as one of the climate change mitigation measures.

People will retreat from the suburbs and live in the city center and around train

stations.

• Climate change adaptation scenario (Ad.)

As a way of flood disaster prevention, we assumed that people retreat from flood-

hazard areas. The liquefaction risk index was used as a proxy index of flood and

tsunami risk because both indexes are high near bay areas and rivers. The

liquefaction risk index is calculated based on the methodology of Wakamatsu

et al. (2005). The index runs from 0 (no risk) to 3 (high risk) as seen in Fig. 12.7.

We defined 2 (middle risk) and 3 (high risk) as flood-hazard areas.

• Climate change mitigation and adaptation scenario (Mit. + Ad.)

We set a combination scenario that satisfies the conditions of both climate

change mitigation and adaptation scenario. People will retreat from suburban

and flood-hazard areas and will live in the city center and around train stations.

Fig. 12.7 Calculation results of the liquefaction risk index
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12.3.1.2 Scenarios of Pvs and Evs Introduction

As mitigation measures, we considered not only land-use change like a compact

city but also the large-scale introduction of EVs and PVs. In each land-use scenario,

we set a different rate of diffusion for EVs and PVs (Table 12.6).

12.3.2 Results and Discussion

The spatial distributions of population under each land-use scenario are shown in

Fig. 12.8. Figure 12.9 shows the distribution of CO2 emissions in the Tokyo

Metropolitan Area under different scenarios. The total CO2 emissions from house-

holds could be reduced as seen in Fig. 12.10.

Even without technological mitigation measures (introduction of PVs and EVs),

the estimated CO2 emissions are likely to decrease by 3.2 % depending on the

population decline in the Tokyo Metropolitan Area in 2050. The reduction rate of

scenario Mit.+Ad.1 (5.0 %) is higher than that of scenario Ad.1 (4.8 %) implying

that CO2 emissions can be reduced if compact city is realized. Taniguchi

et al. (2005) estimated the reduction rate of transportation energy for a local city

to be about 3 % under the compact city scenario and 6 % under the scenario

considering both compact city and flood disaster prevention. The depopulation of

the whole city was not considered in their study. Nakai and Morimoto (2008)

calculated the change of both automobile energy consumption in the transportation

sector and electric power consumption in the residential sector in cases when a

compact city policy was implemented for the central city of a local area. In their

study, the reduction rates were 2.5–4.2 % in the transportation sector and 1.5–4.0 %

in the residential sector. The target year was 2020 and the depopulation of the whole

city was included in these scenarios. Such energy consumption has a direct corre-

lation with CO2 emissions. Because these cities are automobile dependent cities,

the reduction rate in the transportation sector generally becomes higher than in the

cities in the metropolitan area. Nakamichi et al. (2013a) assumed a more compact

city scenario in Yokohama city included in the Tokyo Metropolitan Area, and

estimated the CO2 emissions (direct and indirect emissions) from all sectors. The

reduction rate was 5.4 % under the compact city scenario. The assumptions, the

target year and target area were not the same among these scenarios. However, they

Table 12.6 Scenarios of PV

and EV introduction
Scenarios of PV and EV

introduction

Diffusion rate of

EVs (%)

Diffusion rate of

PVs (%)

1 0 0

2-i 100 100

2-ii 50 50

2-iii 100 50

2-iv 100 30
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Fig. 12.8 Change rate of population distribution

Fig. 12.9 Spatial distribution of direct and indirect CO2 emissions of households under each

scenario in the Tokyo Metropolitan Area
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showed that the reduction rates were only several percentages or more. Compared

with these studies, the estimated reduction rate of the present study is not so low.

Under the scenarios with technological mitigation measures (BAU2, Mit.2,

Ad.2, Mit.+Ad.2), the introduction of EVs has the potential to reduce both direct

and indirect emissions from gasoline use (Emission group: 7. Transportation and

communication). Instead, indirect emissions in Emission group 3 (Fuel, light and

water charges) would increase due to the battery charge of EVs. As to the intro-

duction of PVs, some or all of the electric power demand of each household could

be covered by PV power generation. The indirect emissions in Emission group

3 could be reduced because people would save electricity supplied by the electric

power company.

With technological mitigation measures, the CO2 reduction rate of scenario

Mit.2 (16.9–31.0 %) is higher than that of scenario BAU2 (16.5–30.7 %) while,

on the other hand, the CO2 reduction rate of scenario Ad.2 (16.1–28.4 %) is lower

than that of scenario BAU2. The order of reduction rates of CO2 emissions is Mit.2-

i>BAU2-i>Ad.2-i, Mit.2-ii>BAU2-ii>Ad.2-ii, Mit.2-iii>BAU2-iii>Ad.2-iii,

Mit.2-iv>BAU2-iv>Ad.2-iv. Even under the Mit.+Ad.2 scenarios, the CO2 emis-

sions are much more than in the BAU2 scenarios. The reduction rate of CO2 (16.1–

28.5 %) is lower by 2.0 % compared with scenario Mit.2 only. This is due to the fact

that depending on the decrease in the number of people living in flood-hazardous

areas, there would be fewer detached houses, thus fewer PV panels that could be

installed. It is important to formulate compatible ways between climate mitigation

and adaptation. However, we can achieve more CO2 reduction through parallel

efforts in climate mitigation and adaptation measures because the reduction rate by

technological mitigation measures is very high. Simultaneous discussions on both

mitigation and adaptation are necessary.

Fig. 12.10 CO2 emissions of all the households under different scenarios
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12.4 Conclusions

This study developed an integrated evaluation system for CO2 emissions under

(i) land-use scenarios considering both climate change mitigation and adaptation

and (ii) technological mitigation scenarios considering the introduction of PVs and

EVs. The land-use scenarios built by using a spatially explicit land-use model

which had been based on real estate data, were applied for the case study of this

evaluation system. Our CO2 emission estimation model could estimate not only

direct emissions but also indirect emissions based on household expenditure. As a

case study, we showed the future spatial distribution of CO2 emissions by using this

integrated evaluation system.

This evaluation system could be used as a decision support system for the

evaluation of CO2 emissions under land-use scenarios considering climate mitiga-

tion and flood risk adaptation for resilient cities. Urban and regional planners might

implement economically-based planning of urban improvement projects, spatial

distribution of population density, public transportation projects and energy saving

of households. They could also select retreat and cohesion areas considering

compact city design and disaster prevention on the neighborhood scale. A different

diffusion rate of PVs and EVs in each zone could be set as scenarios. Policy-makers

could compare each effect on CO2 emission reduction.

The results of this case study suggest that climate change mitigation and

adaptation can generate both a synergistic and trade-off effect from the viewpoint

of CO2 emissions. We have to find a strategy for compatibility between mitigation

and adaptation using an evaluation system like the one in this study.

The results suggest that the compactness of land use and the introduction of PV

panels installed on detached houses are not compatible from the viewpoint of CO2

emission reduction because more compactness means fewer detached houses. In the

future, we should consider scenarios assuming the installation of PV panels on the

top of apartment/office buildings in the city center or around stations, and

the introduction of mega solar power plants in suburban areas where people

retreated. We postpone these considerations to future research. It is necessary to

consider the interchange of surplus electricity generated by PVs. The electric power

interchange among household types with different living hours should also be

considered, as pointed out by Taniguchi and Ochiai (2012). In this study, the

indirect emissions were estimated per year. The variations in time for both PV

supply and household demand must be considered as pointed out by Esteban

et al. (2012). The emissions were related to energy and gasoline change by

scenarios. Emissions from other sources should be considered from the viewpoint

of Life Cycle Assessment. Also, the cost for realizing land-use scenarios such as

people’s move should be calculated and compared with the cost of infrastructure for

flood disaster prevention such as levee and padding based on cost-benefit analysis.

The dispersed city has the potential of making services inefficient in the city and of

increasing the cost for infrastructure. Because the compact city may be economical

and efficient in consideration of CO2 emissions by logistics, further studies are
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needed from this viewpoint, too. Furthermore, the scenarios should be evaluated in

terms of QOL such as accessibility and amenity. In order to realize a climate change

adaptation scenario, risk communication tools like those suggested by Burch

et al. (2010) and resilience against multiple disasters including earthquake and

tsunami are also important.
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Chapter 13

Support Vector Machines for Land Cover
Mapping from Remote Sensor Imagery

Dee Shi and Xiaojun Yang

Abstract Land cover mapping is an important activity leading to the generation of

various thematic products essential for numerous environmental monitoring and

resources management applications at local, regional, and global levels. Over the

years, various pattern recognition techniques have been developed to automate this

process from remote sensor imagery. Support vector machines (SVM) as a group of

relatively novel statistical learning algorithms have demonstrated their robustness

in classifying homogeneous and heterogeneous land cover types. In this chapter, we

review the status and potential challenges in the SVM implementation for land

cover classification. The chapter is organized into two major parts. The first part

reviews the research status of using SVM for land cover classification, focusing on

some comparative studies that demonstrated the algorithm effectiveness over other

conventional classifiers. We identify several areas for additional work, which are

mostly related to appropriate treatments of some parametric and non-parametric

factors in order to achieve improved mapping accuracies particularly for working

over heterogeneous landscapes. Then, we implement the support vector machine

technique to map various land cover types from a satellite image covering an urban

area, and demonstrate the robustness of this pattern recognition technique for

mapping heterogeneous landscapes.

Keywords Land cover • Image classification • Support vector machines •

Heterogeneous landscapes • Thematic accuracy assessment

13.1 Introduction

Land cover is the pattern of ecological resources and human activities dominating

different areas of Earth’s surface (Turner and Meyer 1994). It is a critical type of

data source essential for many environmental monitoring and natural resources

management applications at local, regional, and global scales (Foley et al. 2005;
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Alberti 2008). Land cover patterns are observable and therefore can be mapped by

ground surveys or remote sensing. While ground surveys are largely limited by

logistical constraints, remote sensing makes direct observations across large areas

of the land surface, thus allowing land cover patterns to be mapped in a timely and

cost-effective mode. Both visual interpretation and computer-based digital classi-

fication can be used to extract information on land cover from a variety of remotely

sensed data varying in spatial, spectral, radiometric, and temporal resolutions.

Digital pattern classification is generally preferred over visual interpretation for

mapping land cover in large areas (Jensen 2005).

While conventional pattern classifiers (e.g., maximum likelihood) have been

widely used, they generally work well with medium-resolution images and in

relatively homogeneous areas rather than highly heterogeneous areas (Yang

2002). Over the years, substantial research efforts have been directed to improve

the performance of land cover mapping in heterogeneous areas (e.g. Hoffer 1978;

Richards et al. 1982; Skidmore et al. 1997; Duda et al. 2001; Yang and Lo 2002;

Schmidt et al. 2004; Del Frate et al. 2007; Foody 2008; Heikkinen et al. 2010; Zhou

and Yang 2011; Liu and Yang 2013).

This study targets support vector machines (SVM), a group of relatively novel

machine learning algorithms based on statistical learning theory that have not been

extensively exploited in the remote sensing community. They are found to

outperform most of the conventional classifiers (Huang et al. 2002; Keuchel

et al. 2003; Kavzoglu and Colkesen 2009; Su and Huang 2009). Moreover, SVM

were found to even outperform some novel pattern recognition methods, such as

neural networks (Huang et al. 2002; Foody and Mathur 2004a, b). Nevertheless,

there are some parametric and non-parametric factors that can affect the perfor-

mance of SVM, and there is a need to investigate them so that SVM could be used

with improved performance (Yang 2011).

In this chapter, we examine the utilities of support vector machines (SVM) as a

pattern recognition technique for landscape mapping particular for heterogeneous

areas. It is organized into two major parts, beginning with a brief introduction of

some basic knowledge on SVM and a review on the research status and possible

challenges of using SVM for land cover mapping. The review focuses on some

comparative studies that demonstrated the effectiveness of SVM over other con-

ventional classifiers. Based on the review, we further discuss several areas that need

additional research in order to improve SVM classification accuracies and reduce

computational burdens, which are mostly related to appropriate treatments of some

parametric and non-parametric factors. The second part of the paper discusses our

implementation of SVM to map various land cover types from a remote sensor

image covering an urban area, demonstrating the robustness of this type of pattern

recognition technique for mapping heterogeneous landscapes.
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13.2 Support Vector Machines

13.2.1 Basics

The basic idea behind the support vector machines (SVM) is to construct separating

hyperplanes between classes in feature space through the use of support vectors

which are lying at the edges of class domains; SVM seek the optimal hyperplane

that can separate classes from each other with the maximum margin (Vapnik 1995).

SVM were originally designed as a binary linear classifier, which assumes two

linearly separable classes to be partitioned. In most cases, the best separable

hyperplane may not be located exactly between two classes. To account for this,

an error item is introduced to manipulate the tradeoff between maximizing the

separation margin and minimizing the count of training samples that locates on the

wrong side. SVM are further extended to deal with non-linear classification by

using a non-linear kernel function to replace the inner product of optimal hyper-

plane. Several commonly used kernel functions include linear kernel, polynomial

kernel, radial basis function (RBF), and sigmoid kernel (Haykin 1999). Each of

these kernel functions is constructed with multiple parameters, and the parameter

settings can influence the performance of a specific support vector machine (Yang

2011).

Moreover, SVM have been used for multi-class mapping through reducing the

multi-class problem into a set of binary problems so that the basic SVM principles

can be still applied. Two commonly used strategies for this purpose include one-

against-one and one-against-all (Foody and Mathur 2004b; Kavzoglu and Colkesen

2009). The former is generally preferred because of its less computational intensity

and comparable accuracy to the later. The one-against-all method can result in

unclassified instances (Huang et al. 2002; Hsu and Lin 2002; Pal and Mather 2005;

Mountrakis et al. 2011), which is not suitable for land cover mapping.

13.2.2 SVM for Land Cover Classification

The performance of SVM has been examined through some comparative studies

with other pattern classifiers for various land cover types (e.g., Huang et al. 2002;

Foody and Mathur 2006; Keramitsoglou et al. 2006; Su and Huang 2009). Huang

et al. (2002) found that SVM substantially outperformed maximum likelihood

(MLC) or decision tree (DC) in terms of classification accuracy and even surpassed

multilayer perceptron neural networks (MLP). Su and Huang (2009) implemented

SVM and MLC on a Multi-angle Imaging SpectroRadiometer (MISR) image to

differentiate eight semi-arid vegetation types, and found that SVM significantly

outperformed MLC. Keramitsoglou et al. (2006) mapped various vegetation types

using IKONOS data, and compared the performance of SVM with radial basis

(RBF) neural networks. They found that SVM had strengths in terms of
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classification accuracy and training time. Foody and Mathur (2006) also found that

SVM can produce a more accurate classification of cultivated landscape types.

Dixon and Candade (2008) compared SVM, MLC, and backpropagation neural

networks (NN) for classifying a Landsat scene, and found that SVM and NN

performed identically in the classification accuracy but SVM was more efficient

in the training phase. They also noted that SVM can be quite attractive when

working with high-dimensional data. This seems to be in line with an earlier

work conducted by Huang et al. (2002) who found that SVM performed better for

an image with seven bands than with three bands. The effectiveness of SVM for

working with high-dimensional data classification was also confirmed by several

other studies (e.g., Bazi and Melgani 2006; Camps-Valls et al. 2007), indicating

that they could provide a solution to dealing with the problem of “curse-of-

dimensionality” (Hughes 1968). Although SVM have demonstrated strengths

when comparing with other classifiers, their performance can vary across different

land cover types (Foody and Mathur 2004a, b; Keramitsoglou et al. 2006; Su and

Huang 2009).

The performance of SVM can be affected by both parametric and

non-parametric factors (Foody and Mathur 2006; Yang 2011). Existing studies on

SVM classification have largely concentrated on either improving classification

accuracy on specific land cover types or reducing computational burdens, both of

which can be manipulated at the SVM configuration stage and at the training stage.

The inner-product kernel between the support vectors in feature space and in input

space largely determines the separability of optimal separable hyperplane (Haykin

1999). While introducing non-linear kernel functions could help deal with complex,

non-linear classification, it can also lead to the difficulty in choosing the most

appropriate kernel type and in the subsequent kernel parameterization (Huang

et al. 2002; Kavzoglu and Colkesen 2009; Yang 2011). Yang (2011) conducted

an empirical study assessing the performance of several most commonly used

kernel types, along with their internal parameterization, and found that the kernel

type and error penalty can substantially affect image classification accuracy. Some

customized kernels, particularly those incorporating both spatial and spectral infor-

mation, were found to be quite promising when comparing with spectral-based

kernel types (Camps-Valls et al. 2006, 2007; Plaza et al. 2009).

Since the SVM is a supervised classifier by nature, both the size and quality of

training sample can affect the classification accuracy (Foody and Mathur 2006). For

land cover mapping from remote sensor imagery, training samples should consist of

relatively pure pixels, and should be identified from homogeneous areas in large

fields, which can be applicable for a variety of classifiers (Foody and Arora 1997).

SVM performance can be sensitive to the noise in training samples due to the use of

support vectors at the edges of class domains in feature space (Rodriguez-Galiano

et al. 2012). A minimum of 10–30 pixels per class per waveband should be used to

meet the assumption of normal distribution and be representative of the subclass

(Foody and Mathur 2004a, b, 2006). Like other non-parametric classifiers, there is

no need to maintain normal distributions in training samples for a SVM classifica-

tion. Since only the support vectors are actually needed in constructing separate
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hyperplanes for SVM, it may be highly possible to reduce training sample size to a

small number of the most informative samples that are used to fit the decision

hyperplanes. Several studies have been conducted to identify these critical samples.

For example, Foody and Marthur (2004a, b, 2006) incorporated ancillary informa-

tion of soil types and geographical boundary pixels of mixed spectral characteristics

of two crop types in the selection of useful training samples, which dramatically

reduced training samples before being applied to classification. They also examined

the usefulness of applying other ancillary information (e.g., landform, moisture, and

spatial texture) in targeting support vectors. Various techniques have been identi-

fied to automatically reduce the training sample size and hence help reduce the

computational burden for SVM. For example, clustering-based algorithms are

applied in training pattern selection to remove samples locating at the high density

regions or to detect support vectors at the clustering centers (Demir and Ertürk

2009; Su 2009). With these support vectors obtained from clustering preprocessing,

the computational load has been substantially reduced, while the classification

accuracy was much higher than using the full training samples.

13.3 Implementation of SVM for Land Cover Mapping

In order to demonstrate the effectiveness of SVM for heterogeneous land cover

mapping, we implemented SVM to map land cover types in an urban area. In this

section, we will discuss the specific procedures, including the study site and data

acquisition, classification scheme design, SVM configuration, and classification

and accuracy assessment (Fig. 13.1).

13.3.1 Study Site and Data Acquisition

The study site covers the entire Gwinnett County, a suburban county located at

northeastern Atlanta metropolitan area, Georgia, USA (Fig. 13.2). The county has

an area of about 1,122 km2 and its population was 805,321 according to the 2010

census survey. The majority of topography is relatively flat and has primarily a

humid subtropical climate. Gwinnett has been one of America’s fastest-growing

counties and the second most populated county in Georgia. Its landscape is char-

acterized by a mosaic of complex land use and land cover types, and therefore

Gwinnett is an ideal site to examine the effectiveness of SVM for heterogeneous

landscape mapping.

A cloud-free Landsat-5 Thematic Mapper (TM) image dated on 19 May 2007

was acquired from USGS EROS Data Center, and a subset of this scene covering

the entire Gwinnett County was actually used in our study (Fig. 13.3). The image

has been geometrically corrected at the EROS data center, and no further

preprocessing was conducted. The spatial resolution of this image is 30 m for all
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six non-thermal infrared bands, and 120 m for the thermal band. It was projected

into the Universal Transverse Mercator Zone 16N with NAD 83 as the horizontal

datum. Only six non-thermal infrared bands were used for land cover classification.

13.3.2 Classification Scheme and Training Samples

We designed a land use/cover classification scheme based on the Anderson scheme

(Anderson et al. 1976) and our field surveys across the Atlanta metropolitan area.

The study area covers a mosaic of different land use cover types, and our classifi-

cation system includes ten major categories: high-density urban, low-density urban,

barren or fallow land, pasture and cropland, grassland, shrub and scrub, evergreen

forest, deciduous forest, mixed forest, and water (Table 13.1 and Fig. 13.4).

Fig. 13.1 Flowchart of the working procedural route used in this study
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After the classification scheme was adopted, we carefully selected training

samples for each of the ten major categories by using several reference sources

such as the high-resolution images from Google Earth and the 2006 National Land

Cover Data (NLCD). Note that each information class listed in Table 13.1 may

include multiple spectral classes. For the information classes with multiple spectral

classes, we collected at least one training set with 25–35 pixels for each spectral

class. Specifically, eight information classes, namely, high-density urban,

low-density urban, barren or fallow land, pasture and cropland, grassland, ever-

green forest, mixed forest, and water, are comprised of training data from multiple

spectral classes. For the high density urban class, training samples were collected

for three spectral classes with one for large roofs and the other two for parking lots

Fig. 13.2 Location of the study site. It covers the entire Gwinnet County in the State of

Georgia, USA
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with various pavement materials. For grassland, training samples were collected for

two spectral classes with one for golf course with a bright color and the other for

urban green spaces with low woody cover. Two spectral classes were defined

for evergreen forest with one for highland evergreen forest and the other for

wetland evergreen forest. For mixed forest, training samples were collected for

two spectral classes that vary due to soil types. We calculated the spectral separa-

bility for each pair of the spectral classes, and finally selected 20 classes for use in

the training phase of the SVM classification that will be discussed later.

13.3.3 SVM Configuration and Classification

As discussed before, SVM parameter settings can affect the classification perfor-

mance (Huang et al. 2002; Kavzoglu and Colkesen 2009). Among them, the kernel

type, error penalty, and Gamma term are the three most critical parameters (Yang

2011). We configured a support vector machine with radial basis function as the

kernel type, a moderate error penalty value (C¼ 100), and a Gamma term equaling

Fig. 13.3 The Landsat Thematic Mapper (TM) image used in this study. It was clipped to match

the geographic coverage of Gwinnett County, Georgia. Note that the image is displayed in false

color composite
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to 0.143 (Yang 2011). We used this SVM configuration to classify the Gwinnett

subset of the 7-band TM image with the training samples described above. For

comparison purpose, we also used the same training samples to classify the same

image by using the maximum likelihood classifier (MLC) that has been widely

used. After the implementation of SVM and MLC, we combined the 20 spectral

classes into 10 information classes prior to the thematic accuracy assessment

(Fig. 13.5).

Table 13.1 Land cover classification system, training sample size and reference data size

Class name Description

Training

sample size

(# pixels)

Reference

sample size

(# pixels)

High-den-

sity urban

More than two-thirds impervious surfaces,

mainly commercial, industrial, institutional

facilities with large roofs, and public retail

buildings, large transportation facilities

60 52

Low-den-

sity urban

Residential areas with impervious surfaces

account for lower than two-thirds of total

cover, including residential developments,

smaller urban service buildings, such as

detached stores and restaurants, state highways

54 84

Barren or

fallow land

Urban areas with low percentages of

constructed materials, vegetation, and low

level of impervious surfaces, including bare

soil lands, small amount fallow lands, exposed

rock, mines and quarries

71 48

Grassland Herbaceous cover, trees and shrub less than

10 %. Parks, lawns and golf courses

55 86

Pasture

and

cropland

Grazing area, field crops, horticulture, and

vegetable

41 52

Shrub and

scrub

Residential and agricultural shrub, scrub,

orchards, groves, and transitional vegetation

areas

27 47

Evergreen

forest

Trees remain green throughout the year, wet-

land evergreen forests included, mainly cedar

and pine trees

47 55

Deciduous

forest

Trees lose their leaves when the dry or cold

season, wetland deciduous forests included,

mainly oak, maple, elm, and hickory

31 50

Mixed

forest

Either evergreen or deciduous trees also mixed

with shrub and scrub less than 10 %

49 114

Water Rivers, streams, lakes, reservoirs 125 54

13 Support Vector Machines for Land Cover Mapping from Remote Sensor Imagery 273

s2pirast@uwaterloo.ca



13.3.4 Accuracy Assessment

The accuracy assessment was conducted by using visual comparison and the error

matrix approach. The visual comparison is qualitative by nature, while the error

matrix approach is a quantitative method that compares the classification map with

the ground reference information (Congalton 1991). A total of 498 reference

Fig. 13.4 Major land cover types shown in the very high resolution image (Source: Google Earth)

and the corresponding Landsat Thematic Mapper (TM) image used in this study. For each image

pair, the left is a very high resolution image displayed in natural color composite and the right is a
TM image subset in false color composite
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samples were generated through the stratified random sampling method

(Table 13.2). The identity of each sample was determined by the combined use of

high spatial resolution data from Google Earth, USGS 2006 National Land Cover

Data, and our field survey data. Kappa coefficients were calculated to quantify the

overall and categorical accuracies (Congalton 1991).

13.3.5 Results and Analyses

The classification maps from SVM and MLC are displayed in Fig. 13.5. Both maps

were geographically linked with the original remote sensor image, and specific land

cover categories were further checked. In general, both maps show an overall

correct land cover classification but misclassified areas or pixels can be clearly

observed. While the two maps do not show much different large landscape patches,

the one from SVM shows many scattered, isolated patches being correctly classi-

fied. In terms of specific classes, grassland and low density urban are classified

differently, as shown on the two maps. Some grassland patches on the map from

SVM were misclassified as low density urban class on the other map. And some

mixed forest patches were classified as low density area, and some small patches of

evergreen forests and shrubs were classified as mixed forest. Thus, if the spectral

characteristics of a class are similar to other classes or if a class is dominated by

mixed pixels, SVM clearly performed better than MLC.

Fig. 13.5 Land cover maps produced by using support vector machines (SVM) (Left) and

maximum likelihood classifier (Right)
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To further assess the performance of SVM when separating spectrally complex

landscape categories, several sites were selected for a closer look. Figure 13.6

illustrates the original TM image, high resolution image from Google Earth, the

two classified maps from SVM and MLC, for each of the three sites. For the two

spectrally complex categories, namely, low density urban and mixed forest, MLC

tended to include more neighboring pixels into these classes. MLC also

misclassified some evergreen forest patches into water, barren land patches into

high density urban, and grassland patches into low density urban and cropland.

Contrastingly, SVM seemed to have done a better job in mapping spatially scattered

patches. And SVM had correctly classified the residential patches on all the three

sites and the pasture patches on Site 2.

For quantitative accuracy assessment, Kappa coefficient and conditional Kappa

coefficients were calculated and summarized in Table 13.2. If judging by the

overall Kappa coefficient, SVM significantly outperformed MLC. As for specific

classes, SVM significantly surpassed MLC in terms of classification accuracy for

most classes, except evergreen forest and water. And the largest improvements

were with the categories of high density urban, low density urban, pasture, and

mixed forest, of which the second and last classes are most spectrally complex.

SVM also showed a moderate improvement for grassland. However, SVM and

MLC had almost identical classification accuracies for several relatively homoge-

nous classes, such as evergreen forest and water.

Table 13.2 Summary of the thematic accuracy assessment for the two land cover maps produced

by support vector machines (SVM) and maximum likelihood classifier (MLC), respectively

Class name

Conditional kappa coefficient (K)

100�(KSVM-

KMLC)/KMLC

Support vector

machines (SVM)

Maximum likelihood

classifier (MLC)

High density

urban

0.80 0.57 40 %

Low density

urban

0.69 0.39 77 %

Barren/fallow

land

0.71 0.80 �11 %

Grassland 0.70 0.55 27 %

Pasture 0.81 0.56 45 %

Shrub/scrub 0.76 0.69 10 %

Evergreen forest 0.94 0.94 0 %

Deciduous forest 0.95 0.88 8 %

Mixed forest 0.77 0.55 40 %

Water 1.00 1.00 0 %

Overall kappa

coefficient

0.80 0.58 38 %
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13.4 Conclusion

In this chapter, we have reviewed the research status of using support vector

machines (SVM) for land cover mapping with special attention on heterogeneous

landscape types. Then, we have implemented this technique to map various land

cover types in an urban area from a satellite remote sensor image. Our studies

further confirm that SVM can significantly outperform the maximum likelihood

classifier (MLC), the most widely used pattern recognition method in the remote

sensing community. We found that SVM can significantly improve mapping

accuracy, particularly for spectrally and spatially complex land cover categories.
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Fig. 13.6 Visual comparison of the land cover classification by support vector machines (SVM)

and maximum likelihood classifier (MLC) at the three selected sites. Note that a1, a2, and a3 are

natural color composites of very high resolution satellite images from Google Earth; b1, b2, and b3

are false color composites of the Landsat TM image used in this study; c1, c2, and c3 are subsets of

the land cover classification by SVM; and d1, d2, and d3 are subsets of the classification by MLC.

See Fig. 13.5 for specific legends for the land cover maps
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Chapter 14

Digital Processing of SAR Data and Image
Analysis Techniques

Saied Pirasteh, Hojjat O. Safari, and Somayeh Mollaee

Abstract Digital SAR processing is referred to the correlation process and

computer vision approaches to utilize the outcome of the image to identify an

object from the image. Thereby, the SAR signal from the image can be examined to

extract the optimum Doppler returns. These are necessary for the successful

reconstruction of the return signals into an acceptable image format. In addition

to SAR signal processing of data, a number of computations may carry out from a

digital SAR processor. Digital SAR processors allow the user to specify additional

processing options which may include slant-range to ground-range conversion,

range dependent gain correction, the number of independent looks in the azimuth

dimension, or pixel spacing. These can also apply for the post-image generation

phase. The general theory behind these methods is presented in this chapter. Then it

follows the introduction and various digital radar image techniques that may use by

an image analyst utilizing a digital image analysis system and suitable computer

software packages.

14.1 Introduction

The applications of RADAR technology products particularly derived from space

earth observation satellite and remote sensing integrated with GIS technology to

various areas of earth sciences, geology, natural resources, agriculture, forest, oil

spills pollution, geohazards, mapping, management, planning, early warning sys-

tem and development has been highly rewarding. The use of RADAR remote

sensing has opened the door for immense opportunities in large-scale investigation,
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updating of existing maps, projects planning and decision-making. This phenome-

nal growth in the field of RADAR remote sensing is due to the successful launching

of series of satellites.

The digital SAR processing is referred to the correlation process thereby the

SAR signal use to extract the optimum Doppler returns. Digital SAR processors

allow the user to specify additional processing options which may include slant-

range to ground-range conversion, range dependent gain correction, the number of

independent looks in the azimuth dimension, or pixel spacing. These can also be

applied in the post-image generation phase. The general theory behind these

techniques is presented in this chapter, followed by an introduction of various

digital enhancement techniques that may be applied by an image analyst using a

digital image analysis system and suitable computer software packages.

14.1.1 Why Do We Use Radar Remote Sensing?

Nowadays, everyone is trying to work effectively on remote sensing and under-

standing of various applications of this technology. This is because, we can reduce

the time and cost in a project. In addition, for the places that are inaccessible remote

sensing can be implemented effectively to detect an object we are looking for.

Imaging radars are among the latest additions to a variety of remote sensing

instrument available for analyzing Earth resources and for monitoring the environ-

ment. So far, the results obtained from many application oriented Research and

Development (R&D) studies and from the operational use of airborne imaging

radars are encouraging. But knowledge regarding the full extent of their capabilities

and applications of radar remote sensing are still relatively limited compared to the

experience with established techniques such as aerial photography and optical

remote sensing techniques from space, e.g. LANDSAT TM, SPOT (Drury 1987;

Ulaby 1989; Ali and Pirasteh 2004; Avery and Berlin 1992; Bürgmann et al. 2000;

CCRS 2004, 2006; Pirasteh et al. 2009). So, why do we use radar?

The answer to this question is threefold. A very valid reason for using radar,

from an operational point of view, is its all-weather imaging capability, since
microwaves can penetrate cloud and any weather condition. Radars operating at

wavelengths greater than 2 cm are not significantly affected by cloud cover,

whereas rain does become a considerable factor for systems imaging at wave-

lengths below 4 cm. Furthermore, imaging radar operates independently of sun

illumination, since it provides its own scene illumination as an active remote

sensing system. The radar images have more potential to extract the information

in haze climate conditions. This makes the advantages of using radar images

(Goldstein 1997).

Microwaves also have the ability to penetrate a surface layer, for example, a

vegetation canopy, more deeply than optical wavelengths can. However, there are a

number of limiting factors (Goldstein 1997) to consider, since the extent of pene-

tration is determined by the moisture content and the density of the vegetation on

one hand, and by the wavelength of the radar and its viewing geometry on the other.
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The penetration capability of longer radar wavelengths is much better than that of

shorter wavelengths and thus potentially provides information on the vegetation

volume. But shorter wavelengths provide more information about the top of the

vegetation canopy. In the absence of any vegetation cover, microwaves can also

penetrate soil, particularly when the soil is dry. The penetration is very much a

function of wavelength. Longer wavelengths penetrate dry soil significantly, i.e. in

magnitudes of centimeter, decimeter and even meter: the degree of penetration for

shorter wavelengths is comparatively low, i.e. in the millimeter range, but never-

theless larger than the penetration of optical sensors.

The third reason for using radar systems from the fact that the information

extracted from RADAR images is unique in its own right. The information content

of radar imagery differs from the information content of optical imagery and may

therefore be complementary. Consider the example of a vegetation canopy: the

content of imagery taken in the visible or infrared regions of the spectrum is largely

determined by the molecular resonance in the surface layer. However, the content

of a radar image of the same object would be determined by the geometric

properties, or structure and the moisture content of the surface as well as the volume

of the vegetation canopy. The combined analysis of both data sets renders more

useful information and results than the interpretation of one data set alone.

The following imaging characteristics set microwave remote sensing systems,

particularly synthetic aperture radars (SARs), apart from the familiar sensor sys-

tems such as multispectral scanners:

– Radar is sensitive to surface roughness, moisture, electrical properties and

motion within the illuminated scene;

– Radar instruments can be designed to record phase and polarization character-

istics of the reflected microwave energy;

– Radar imagery shows relief displacement such as layover as a result of the slant

range viewing geometry;

– SAR imagery displays speckle, or image ‘noise’ because of the coherent nature
of the system.

These are important characteristics that will provide the radar with a different

frame of reference for analyzing remote sensing data. A person familiar with aerial

photography or multispectral image interpretation may find it relatively easy to

identify objects on radar imagery by virtue of their size and shape alone, for

example agricultural field patterns. However, the analysis of radar image tone

and texture of these fields requires an understanding of the backscattering proper-

ties, of radar image formation and of the processing techniques available for

radar data.

In addition, the recent technology of RADAR is Interferometric synthetic aper-
ture radar (InSAR) remote sensing data. InSAR remote sensing data (Fig. 14.1) can

be used in various applications of environment and earth sciences including natural

hazards. For example: the Bam earthquake in Iran (Saraf et al. 2008; Fielding

et al. 2009) occurred in December 26, 2003 with 6.6 magnitude has been studied

(Amani et al. 2013) using InSAR data (Fig. 14.2).
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14.2 Multiple-Look Processing

The appearance of speckle in a SAR scene, or multiplicative image noise, as

described before, can be reduced using a technique known as multi-look processing.

The concept of multi-look processing is SAR is a relatively simple one, whereby the

along-track beam, Doppler bandwidth (Ren et al. 2002) is filtered into a number of

Fig. 14.1 Bam area’s topo-InSAR images and DEM (After Tarikhi 2011)

Fig. 14.2 InSAR products of Izmit area in western Turkey
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sub-beams. Each of these sub-beams, or sub-bands, provides an independent ‘look’
at the illuminated scene. This results in an enlarged resolution cell length and a

number of independent images. The distribution of speckle levels within each

‘look’ will also be independent of each other. If the ‘looks’ are summed, resulting

image intensity will have reduced speckle components. In the case where N

independent images have been formed and systematically averaged the speckle

variance is reduced by a factor of N.

The maximum number of “looks”, i.e. non-overlapped sub-apertures, over the

full azimuth beam width is seldom processed. There are two reasons: to minimize

signal ambiguities, and to maintain a reasonable image resolution. The Latter point

is of some consequence. The trade-off in Multi-look processing is that the available

resolution of the image is also degraded by a factor of N, because in order to

generate independent ‘looks’, different portions of the original signal must be used.

Consider this example: the azimuth bandwidth of the SEASAT SAR data is

sufficient to allow for a maximum azimuth resolution of approximately 6.5 m, if

the signal is processed to full coherence; multi-look processing, and speckle

reduction as a result, achieved 25 m image resolution by taking four independent

“looks”.

The number of ‘looks’ one may desire depends very much on the SAR applica-

tion field in mind and may vary accordingly. Those applications concerned with

fine detailed structure or small area targets may place greater emphasis on high

spatial resolution; other applications which require good radiometric resolution

may choose a larger number of ‘looks’ when specifying SAR processing options.

It is necessary to specify both the spatial resolution and associated number of look-

requirements.

14.3 Radiometric Correction of Digital SAR Data

The radiometric fidelity of SAR imagery is affected by intensity variations resulting

from surface scattering geometry and antenna pattern variations (Sabins 1987). The

surface scattering geometry causes radiometric distortions, because at increasing

incidence angle down-range less power is received. This causes less intense signal

returns and less image brightness. Reference is made to the ‘radar equation’
(Eq. 14.1), which states that the power received is inversely proportional to the

fourth power of the range. This relationship is known as the R4 power loss. The

antenna pattern causes radiometric distortion in the range dimension, because an

antenna transmits more power from the centre of the antenna than from its edges.

This results in more intense radar returns in the mid-range of the image swath

relative to the near- and far-range edges where illumination is less intense.

Simple empirical techniques for correcting radiometric distortions in a SAR

image (Richards and Jia 1999) may include the following steps. At various range

locations, areas with the same surface state are identified. An average intensity

value of the pixels is computed for each area and plotted versus range. Then a
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smooth curve is fitted through these points. A multiplicative correction factor (Ci) is

then obtained for each range sample by dividing the maximum value on this curve

by the value at a given range sample:

Ci ¼ Smax=Si for I ¼ 1 . . . ::N ð14:1Þ

Where Si, is the value on the smooth curve at a specific range sample i and Smax is

the maximum value encountered. Thus, a corrected data value V, for this range

sample may be obtained by

V
0
i ¼ CiVi with Vi being the uncorrected data value ð14:2Þ

Sophisticated SAR systems use a Sensitivity Time Control (STC) function to

accommodate large variations of range focused radar returns over a uniform

surface. If the antenna pattern and the terrain type are well known, a STC function

can be applied to incoming signals. The STC function has the effect that systematic

variations in the processed image intensity (Pirasteh et al. 2010) in range is at a

minimum. The new CCRS C- and X-band SARs, for example, offer five choices of

STC functions: ‘test’, ‘land’, ‘smooth water’, ‘rough water’ and ‘ice’. The ‘test’--
mode corresponds to an STC setting of 1, i.e. no modification of the range focused

return signal. For the other modes nominal reflectance laws are modeled for each

respective surface type. These models are then applied, together with the appropri-

ate antenna pattern model, platform altitude and swath mode, to correct for sys-

tematic radiometric variations.

14.4 Geometric Correction of Digital SAR Imagery

In order to obtain a high degree of accuracy in the position of surface features in a

SAR image, geometric correction algorithms are required to compensate for geo-

metric distortions through image processing. Geometric distortions may be intro-

duced internally by the SAR system itself. They are related to the inherent slant-

range viewing geometry. External factors responsible for geometric distortions

include changes in platform velocity, earth rotation, in the case of spaceborne

SAR, and the map projection of the output imagery.

14.4.1 Internal Geometric Distortions

Recall that the natural coordinate system of the side-looking imaging radar is the

slant-range plane along which the distance of an object relative to the SAR is

defined. However, for image interpretation and reasons of geometric fidelity it is

more desirable to measure the distance of objects from the ground- or nadir track of
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the radar. The ground-range presentation has the advantage of being less distorted.

The process to achieve this geometric correction is called slant-range to ground-

range conversion. The relationship between slant-range and ground-range on a flat,

horizontal surface is that of a simple but non-linear trigonometric function;

Rg ¼ Rs= sin θi ð14:3Þ

Where θi is the incidence angle, Rs the slant-range, and Rg is the ground-range. The

slant-range, which is always smaller than the ground-range, is highly dependent on

the viewing geometry. Changes in incidence angle result in differential scale

changes across the image swath. The relationship between the change in slant-

range to ground-range is

DRg ¼ DRs= sin θi ð14:4Þ

and differs at near-range and far-range. The scale of the slant-range presentation of

an image is therefore not constant across the image swath. It results in maximum

distortions when approaching the nadir, where the incidence angle equals zero,

producing minimal scale change in slant-range and comparatively large discrep-

ancy in ground-range. Because of the continuous change in range scale, there is

only one range point where the slant-range scale is equal to a given map or ground-

range scale; in the near-range the map scale would be smaller, and at far-range the

map scale would be larger.

Assuming flat, horizontal terrain, this distortion may be removed by re-sampling

the SAR data in the range dimension to ground-range using

Rg ¼ Rs
2 � h2 ð14:5Þ

where h represents the platform altitude. For high platform altitudes, i.e. spaceborne

SARs, the curvature of the Earth surface must also be considered and factored into

the equation.

14.4.2 External Geometric Distortions

External geometric distortions in SAR imagery are primarily induced by changes in

terrain or target elevation and by changes in platform altitude, velocity and the

effect of earth rotation. It has been demonstrated that any changes in elevation from

a reference surface results in distortions known as foreshortening and, in extreme

cases, layover. Although the internal system related distortions can be predicted by

correcting the slant-range image plane to a ground-range image plane, the removal

of external distortions due to elevation differences requires additional information.

Two sources for this information are conceivable: topographic information

(Pirasteh and Ali 2005) in form of digital elevation models (DEMs) (Mussakowski
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et al. 1989; Wall et al. 1991), or from a second imaging angle, as available in radar

stereo data or interferometry. Since radar stereo or interferometry data are not

readily available in most cases, DEM information becomes an essential element

for the determination of local distortions in radar imagery.

In general, two methods have been proposed for image rectification of terrain

distortions. One relies mainly upon DEM information and has been used in con-

junction with airborne and spaceborne SAR data. The other utilizes the platform

trajectory information with a limited amount of DEM data and has been applied to

correct spaceborne SAR data. The first method depends on the relative registration

of a SAR image to a simulated image generated from the DEM. This technique

employs a ‘rubber-sheeting’ process, after scan- and skew-distortions of the earth’s
surface have been eliminated. A series of common reference points on both the

actual and the simulated image are required in order to estimate the polynomial

coefficients of the warping function. This function is then used to transform the

radar image coordinates into the simulated image coordinates. Once the SAR scene

is co-registered a re-sampling routine may be applied to provide a rectified format.

The accuracy of this format is a function of the density of the selected reference

points, or ground control points (GCPs). This method is often applied for small

SAR sub-scenes.

The second method does not require the generation of a simulated radar image

from a DEM, nor does it rely on a dense grid of GCPs to characterize the image-to-

map distortions. Instead, an algorithm is employed which models the inherent

geometric distortions based on the radar ephemeral data, such as platform altitude,

the signal Doppler parameters, and the local terrain elevation. Using this algorithm

an automated registration transformation may be performed. Only very few GCPs

are required to remove residual translational errors between the predicted location

and the actual geodetic location of a target area on a topographic map. In the case of

severe terrain distortion, as in SAR images of mountain areas, DEMs are used in

conjunction with the imaging geometry to generate a transformation ‘map’. This
‘map’ removes the local distortions, or foreshortening, when the slant-range pixels

of an image are spatially mapped into their respective geo-coded pixel location.

Using raw satellite SAR data it may generate an output product with an absolute

location uncertainty of less than 50 m.

14.5 Enhancement of Digital SAR Data

Apart from radiometric and geometric corrections, a number of digital image

processing techniques (Figs. 14.3, 14.4, and 14.5) may be applied to enhance the

image content of a SAR scene. These enhancement techniques are useful, because

they may provide a more suitable image product for subsequent manual interpre-

tation (Trevett 1986). They can also be applied before or after performing digital

classification. Enhancement techniques include filtering for (additional) speckle

reduction, edge enhancement and contrast stretching. In addition the value of a SAR
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dataset can also be increased by co-registering the data with other remote sensing or

GIS data available.

14.5.1 Speckle Reduction

The problem of speckle in SAR imagery has been addressed in previous chapter,

and the multi-look concept to improve speckle reduction in the signal processing

domain has been introduced in previous section in the image analysis domain,

further speckle reduction may be achieved by using smoothing algorithms, or

filters. Among the variety of filters available, four examples are introduced in the

following discussion.

Average filtering is a very simple way of reducing the appearance of speckle. A

window of x-number of rows and y-number of columns within the image matrix is

selected. It is usually 3 by 3 or 5 by 5 pixels in size. The intensity of the centre pixel

of the defined window is then replaced by the average value of all pixels around

it. By sliding this filter window along the rows and columns of the image matrix, a

Fig. 14.3 Enhancement equalization
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smoothing effect is achieved, because the intensity of the pixels within the window

is now replaced by an average value.

Median filtering results in a similar effect. The filtering process works in the

same way as average filtering. The difference lies in the fact that the centre pixel of

the filtering window is replaced by the median or middle value of the surrounding

pixels. The disadvantage of the average and median filters is their insensitivity to

edges and their tendency to smooth out areas of interest. In order to avoid these

shortcomings, other filters, such as the variance filter or the convex hull filter, may

be applied.

The variance filter uses a process from which the intensity value of the centre

pixel of the filter window is replaced by the statistical standard deviation of the

surrounding pixel values. Variance filtering is therefore more sensitive to abrupt

changes in image intensity values. It achieves a smoothing effect while still

preserving most of the sharp changes.

The convex hull filter is a geometric filter. It evaluates the intensities of neigh-

boring pixels within a filtering window in a three-dimensional space. The result of

the smoothing operation is reduced small-scale intensity variation as it occurs in

speckle, and it preserved intensity variation of large-scale image features.

Fig. 14.4 Enhancement Lee
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14.5.2 Edge Enhancement

The brightness variations that define the edges and the text texture of objects in a

SAR scene are an important element in image interpretation. Objects of interest

may include those with a strong linear component, for instance geological fractures,

ocean wave fronts, or the edges of pack ice. An increase in local contrast may be

achieved by suppressing gradual brightness variations, which tend to obscure the

object of interest. Edges and linear features are composed of rapid brightness

variations, or high spatial frequencies, of a set of dark pixels next to a set of bright

pixels in an image. There a number of edge enhance algorithm which have been

designed to highlight these features. The examples presented below include the

high pass filter, the K-averaging filter and Fast Fourier Transform (FFT). The

variance and convex hull filters may be used for this purpose as well, but they are

better suited for reducing the appearance of speckle.

In the high pass, or Laplacian filtering process the low frequency component of

an image, as averaged over the filter window, is subtracted from the original image.

In order to avoid the occurrence of negative pixel values, a constant is added to the

intensity value of each pixel. An important consideration in the choice of the

filtering window is not only the size of the window, but also its shape. Square

Fig. 14.5 Synthetic color image
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windows tend to enhance edges in all directions. A particular directional trend or

orientation of edges and linear features may also be enhanced by using a rectangular

filtering window.

In the K-averaging filter process (Ghandeharian et al. 2009), the filtering win-

dow is divided into sub-windows, thus creating a two-dimensional filter. A com-

parison of the average values and the standard deviation of the various

sub-windows determine where in the window rapid brightness variations,

e.g. ‘edges’, occur. This feature is then enhanced by averaging only those

sub-windows along the features where rapid brightness variations were detected.

Linear features can also be analyzed through the fast Fourier transformed (FFT)

of an image. The FFT can be used as an edge enhancement tool by smoothing the

transformed image by means of an average filter, and then removing the very low

and very high frequency components of the image by intensity level slicing. After

the FFT, averaging and level slicing procedure the image is inverse Fourier

transformed back into a residual image of the original scene.

14.5.3 Contrast Stretching

Synthetic aperture radar data potentially have a very wide dynamic range,

encompassing intensity levels from 0 to more than 107. Once processed and output

on a CCT, the signal intensity is compressed to intensity levels which in the case of

8-bit data range from zero, for dark signatures, to 255, for very bright signatures.

Yet, the full recording range of 256 intensity levels is rarely utilized. On average,

SAR scene intensity occupies only half the digital levels available. This results in a

greatly reduced image contrast, which may potentially cover the remaining inten-

sity levels. The intention is to make optimal use of the limited dynamic range of the

digital tape and avoid saturation of the intensity values.

Therefore, the idea behind contract stretching is to redistribute the pixel values

utilizing the full brightness range of the digital tape. A number of algorithms have

been developed to enhance digital imagery in this fashion. Contrast stretching can

also be applied to match image intensities to the characteristics of display and

recording devices. The data manipulation process usually consists of two steps;

First, the distribution, or histogram, of the pixel intensities in a given scene within

the potential range, e.g. zero to 255, is evaluated. Then, the pixels are redistributed

within the range of 0–255. Criteria for the redistribution can be selected by the

image analyst and may include linear contrast stretch and non-linear contrast

stretch. It is important to note that digital contrast enhancement should only be

performed after other processing procedures have been completed, since contrast

stretching results in some manipulation of the original pixel values.

The simplest form of contrast enhancement is called linear contrast stretching. It

is based on the following procedure: Once the histogram of scene intensity values is

generated, a digital number (DN) in the low range of this histogram is assigned to

very dark, e.g. zero. Likewise, a high DN value in the upper range is assigned to
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very bright, e.g. 255. In the example, digital number values of 49 and 106 are

assigned to 0 and 255, respectively. In the following contrast stretch the remainders

of the pixel values are distributed linearly between the assigned extreme values of

zero and 255. This results in an improved contrast ratio of most brightness values in

the original image. However, it should be noted that linear contrast stretch may also

result in a loss of contrast at the extreme DN values. This implies saturation, or

‘clipping’ of very low and very high DN values.

Another form of contrast enhancement is the non-linear contrast stretch,

whereby the intensity values of the original histogram are subject to a uniformly

distribution stretch, i.e. the original histogram is being redistributed to produce a

uniform population density of pixels along the DN axis. This enhancement is most

effective in providing better contrast for the most populated range of intensity

values in the original scene. The drawback of the uniform distribution stretch is

its compression of intensity values in the lower and upper ranges of the original

histogram, similar to the one encountered in the linear contrast stretch procedure.

However, a contrast stretch of the lower or upper ranges is required, and a

non-linear Gaussian stretch may be applied in order to accommodate this. The

Gaussian stretch fits the original components of the histogram to a normal distri-

bution curve with zero and 255 as its lower and upper limit, respectively. The trade-

off is a relative loss of contrast in the moderate intensity range.

14.6 Simulation of SAR Imagery

Many aspects in the design of a SAR system have very large cost impacts.

Therefore, it is very important to fully understand the implications of specific

design and system parameters on the resultant imagery prior to the implementation

of a SAR. The question of how, for instance, a spaceborne SAR design can meet the

requirements of the user must be addressed. Some parameters can be modeled by

system engineers. However, the impact of other parameters, such as wavelength

and incidence angle, on the reflectivity of targets needs to be explored and evalu-

ated for a particular application by means of image simulation.

By examining simulated imagery with known characteristics the system

designer and the user of SAR data alike obtain valuable information that helps to

optimize the system design. Furthermore, systematic image simulation can also

assist in the development of useful interpretation methodologies for spaceborne

SARs appropriate filtering techniques (Sabins 1987) for image enhancement, the

definition of SAR data compression and sampling techniques (Gibbins and Slaney

1991), as well as in the development of image and map registration techniques.

Consider this example from an applications point of view. By simulating a

spaceborne SAR with a 100 m 6-look resolution from a high resolution airborne

SAR image of sea ice in the Beaufort Sea some important image characteristics

could be derived. The simulations suggested that small hazards for shipping in these

ice infested waters, for example multiyear ice floes, pressure ridges and icebergs
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less than 100 m in size, were partly lost in the speckle pattern; otherwise, the scale

and the resolution of the simulated imagery proved to be very valuable for large

area strategic ice forecasting and operational planning.

The generation and evaluation of realistic image examples from hypothetical

spaceborne SAR systems is of interest to those nations, which plan to implement

such systems. In Canada, a methodology (Singhroy and Saint-Jean 1999) has been

developed under contract by Intera Technologies Limited to simulate SAR imagery

(CSA 2007; D’Iorio et al. 1997). The main purpose of the SARSIM software package

is to simulate spaceborne SAR data of the ERS-1 and RADARSAT type, as they

have been available since 1990s. The package provides a set of filters that resample

fine resolution airborne SAR data, or those from synthetic test sites, and simulate

the parameters of the spaceborne SAR under consideration. This can be accom-

plished by generating an idealized yet realistic source target reflectively map and

by generating speckle, thermal system noise and other system perturbations.

Reflectivity map, speckle and thermal noise data are then combined to create the

simulation. Speckle is simulated by generating a two-dimensional array of noise

values. The user can specify the position, shape and weight for each sub-aperture

(‘look’). The usefulness of the resulting image can be determined from the means of

standard digital image analysis techniques. Moreover, new image analysis, interpre-

tation and classification techniques can be refined and tested using simulated imagery.

14.7 Visual Interpretation of SAR Imagery

The most common approach to visual SAR image interpretation is that of a

modified air photo analysis procedure. The majority of airborne radar surveys

conducted during the 1970s and early 1980s relied heavily on visual interpretation

methods. Image analysts were familiar with both air photo and radar techniques.

Major natural resource surveys, such as RADAM BRAZIL (Marcelo et al. 2011) or

the Nigerian NIRAD Project, contributed to the development of manual analysis

techniques. Likewise, airborne radar imagery of ice infected coastal waters of

northern and eastern Canada have been interpreted manually by skilled ice

observers for many years.

Visual image analysis procedures examine various important image elements,

including tone, texture, size, shape and association. These image elements are

equally applicable for the interpretation of SAR imagery. But in modifying the

principles of visual air photo analysis for use in radar image interpretation, one

should keep in mind that radar is a range measuring device. The analyst has to

consider the radar parameters and the ground parameters when interpreting a radar

image, since variations in the average backscatter cross-section (σo) result in

different image characteristics, first and foremost. One must be familiar with

interaction mechanism(s) of radar system parameters and ground parameters and

what effect changes in these parameters might have on σo. still, the analyst is left

with two basic questions; first, are the parameters that the analysis of ground
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features is concerned with of significance to the radar backscatter? Secondly, which

ground parameter(s) determine(s) a ‘boundary’ or tonal change?

14.7.1 Tone

The visual interpretation of a radar image attempts to infer significant features in an

area from observed tonal variation. Unlike aerial photography, where changes in

tone are related to the reflection characteristics of an illuminated surface averaged

over a relatively broad spectrum, radar image tone is the result of reflection at only

one wavelength. The tonal expression in a SAR scene is generally a function of the

strength of the radar backscatter form a corresponding ground area. The variations

in the average backscatter cross-section σo for a given target has a profound

influence on radar image tone, and therefore on the interpretability. σo is a function
of many parameters:

σo ¼ f к, τ, P, θ, ε, Γ1, Γ2, νð Þ ð14:6Þ

where the radar system parameters are given by:

к ¼ wavelength of the radar;

τ ¼ depression angle;

P ¼ polarization of the radar beam (both transmit and receive);

and where the ground parameters given by:

θ ¼ aspect angle (local incidence);

ε ¼ complex dielectric constant;

Γ1 ¼ micro-scale surface roughness of the air – solid boundary relative to the radar

wavelength;

Γ2 ¼ subsurface of a discontinuity layer;

v ¼ complex volume scattering coefficient

To determine which parameter(s) cause(s) a particular change in grey tone

(Fig. 14.6) requires ancillary information with regard to the terrain and surface

properties; this may require the collection of ground data and/or the use of multi-

parameter radar data, data from other sensors, or a combination of the above. The

obvious approach is to select the controllable radar system parameters and strive to

optimize the information that might be obtained from the terrain parameters. This

selection requires knowledge of the backscatter mechanisms and the study of

theoretical models and experimental data on the part of the interpreter.

The grey tone on the image is a relative index rather than an absolute one,

because the exposure level of a particular SAR scene is controlled by a number of

factors. These include, for example the gain setting of the radar system, chemical

film processing of optically correlated data, or numerical corrections applied during

digital processing. Imagery can therefore be as light or as dark as desired. For this
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and other reasons, visual interpretation of (uncalibrated) radar imagery can only

make a qualitative assessment of discrete tonal elements by detecting, identifying

and recognizing light or dark levels of grey tones. Image tone, or density, may be

described in a qualitative manner by means of grey tone scales, similar to those used

for air photo interpretation. These can be combined with texture scales. An effec-

tive procedure may consist of three steps. First, the range of grey tones for a

particular surface category must be assessed. Secondly, a number of individual

features are identified by means of field check or other sources of information, using

these features as a reference for the tonal classification; other features of the same

category can then be interpreted.

14.7.2 Texture

Texture is of similar importance for the identification, mapping and classification

process, particularly for geologic and vegetation mapping. Texture is defined as the

spatial pattern or frequency of tonal variation within a particular area. It is produced

by an assembly of features too small to be identified individually. Like contrast in

grey tones, contrast in image texture, or speckle for that matter, allow for the

Fig. 14.6 Changes in tone
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identification and delineation of homogeneous areas with particular surface

properties.

The texture of a SAR scene may be classified as being smooth, fine, linear,

gravity, speckled, flecked or checkered. Various degrees of coarseness can be

applied in the different categories. Factors influencing the appearance of texture

on a radar image include the dynamic range of the SAR system, processing and the

amount of enlargement of the photographic product. These affect the coarseness of

texture and must be considered in the interpretation. The texture on radar imagery is

not as easily affected by the “gain setting” of the SAR system as tone and, therefore,

remains relatively constant from one image to another.

Three components of texture, i.e. micro-texture, meso-texture and macro-

texture, can be identified. Micro-scale texture, or speckle, is an inherent character-

istics of SAR imagery, because of the sampling statistics of the fading signal,

resolution, and independent sampling, i.e. single or multi-look processing. Even

though a surface may be very smooth, it will still display a very fine, random texture

at the micro-scale level. Meso-scale texture is produced by spatial in homogene-

ities, usually on the order of several resolution cells. It tends to be spatially and not

randomly organized and relates, for example, to the distribution of vegetation

associations; however, individual elements within a plant community may not be

identified. Macro-scale texture allows the identification and delineation of unit

areas that are located within boundaries of relative homogeneity. These may consist

of an assembly of well-resolved terrain elements, but with different backscattering

levels. In very general terms, macro-sacle texture can also be conceived as a

pattern, if it refers to an orderly spatial arrangement of features on an image.

Patterns can be assessed and described using such categories as orientation, spac-

ing, density or uniformity.

14.7.3 Size and Shape

The size of features in a radar image is essentially a function of the radar system

parameters, the scaling ratio of the imagery and the amount of magnification. High

resolution SAR imagery can be enlarged as much as ten times without suffering an

appreciable loss of detail. Radar imagery are generally smaller in scale than aerial

photographs. Therefore, the images of particular features are smaller than their

equivalents on air photos obtained from similar platforms altitudes. However, SAR

does have an advantage in that its resolution is independent of range, which makes

its rendition of small sized features in far range superior to aerial photography.

Shape is defined as the spatial form of an object or area with respect to a

relatively constant contour, or background. Regular geometric shapes, and the

regular spatial arrangement of certain patterns for that matter, are valuable clues

for distinguishing natural and cultural features. Even though natural features tend to

have irregular outlines, many can be identified by their size and shape alone, for

instance volcanic cones, glacial features or alluvial fans. The shape of natural
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features and manmade objects is closely related to the oblique viewing geometry of

the radar. the shape of radar shadows gives an indication of the terrain type,

whereby the length of the shadow may provide an estimate of terrain height.

Likewise, the shape of radar shadowing may be used to infer the spatial form, as

in the shadow projection of the crest line of a mountain range.

14.7.4 Association

Many features or objects are so closely interrelated that one tends to indicate, or

confirm, the other. An interpreter of a radar image can often derive additional

information about a feature of interest by examining associated elements. Elements

usually associated with it may provide valuable clues for the presence of this feature

even if it is obscured. Take the example of a ship at sea. Imaging radar may detect

the characteristic V-shape of the ship’s bow wake, but the signature of the ship itself

may be difficult to detect. Therefore, the term association refers to a situation where

a feature is not recorded or only poorly displayed on the radar image, but where

some of its attributes are recorded to allow the detection of the latent features.

References

Ali SA, Pirasteh S (2004) Geological application of Landsat Etm for mapping structural geology

and interpretation: aided by remote sensing and GIS. Int J Remote Sens 25(21):4715–4727

Amani A, Mansor S, Biswajeet P, Lawal B, Pirasteh S (2013) Coupling effect of ozone column and

atmospheric infrared sounder data reveal evidence of earthquake precursor phenomena of Bam

earthquake. Iran Arab J Geosci. doi:10.1007/s12517-013-0877-6

Avery TE, Berlin GL (1992) Fundamentals of remote sensing and air photo interpretation, 5th edn.

Macmillan Publishing Company, New York, p 472

Bu¨rgmann R, Rosen PA, Fielding EJ (2000) Synthetic aperture radar interferometry to measure

earth’s surface topography and its deformation. Annu Rev Earth Planet Sci 28:169–209

Canada Center for Remote Sensing (CCRS) (2006) Fundamentals of remote sensing: teacher

notes, p. 258

Canada Centre for Remote Sensing (CCRS) (2004) Radar remote sensing training package

(GlobeSAR-2), educational resources for radar remote sensing, p. 955

Canadian Space Agency (CSA) (2007) Radarsat 2: a new satellite, a new vision, catalogue, p. 13

D’Iorio MA, Budkewitsch P, Mahmood NN (1997) Practical considerations for geological inves-

tigations using RADARSAT-1 stereo image pairs in tropical environments, geomatics in the

era of RADARSAT, proceedings, Ottawa, Canada, 27–30 May 1997, Paper #233, pp: 9

Drury SA (1987) Radar remote sensing. In: Image interpretation in geology, London, Allen Unwin

Pub., 165–174 (3rd Edition)

Fawwaz T. Ulaby (1989) Handbook of radar scattering statistics for terrain (Artech house remote

sensing library), Artech House (March 1, 1989), Library of Congress Cataloging, USA

Fielding EJ, Lundgren PR, Bürgmann R, Funning GJ (2009) Shallow fault-zone dilatancy recov-

ery after the 2003 Bam earthquake in Iran, Nature, 458:64–68. doi:10.1038/nature07817

Ghandeharian B, Yazdi Hadi S, Homayouni F (2009) Modified adaptive center eighted median

filter for uppressing impulsive noise in images. Int J Res Rev Appl Sci 1(3):218–227

298 S. Pirasteh et al.

s2pirast@uwaterloo.ca

http://dx.doi.org/10.1007/s12517-013-0877-6
http://www.amazon.com/Handbook-Scattering-Statistics-Terrain-Sensing/dp/0890063362/ref=la_B001ITRPCS_1_2/178-5770471-3631457?s=books&ie=UTF8&qid=1386706621&sr=1-2
http://www.amazon.com/Handbook-Scattering-Statistics-Terrain-Sensing/dp/0890063362/ref=la_B001ITRPCS_1_2/178-5770471-3631457?s=books&ie=UTF8&qid=1386706621&sr=1-2
http://dx.doi.org/10.1038/nature07817


Gibbins WA, Slaney VR (1991) Preliminary geologic interpretation of SAR data, yellowknife-

hearne lake area, N.W.T. Antarct Inst N Am 44:81–93

Goldstein RH (1997) Atmospheric limitations to repeat-track radar interferometry. Geophys Res

Lett 22:2517–2520

Marcelo Muniz Benedetti, Nilton Curi, Gerd Sparovek (2011) Updated Brazilian’s Georeferenced
Soil Database – An Improvement for International Scientific Information Exchanging, Princi-

ples, Application and Assessment in Soil Science, pp 310–322. http://www.intechopen.com/

books/principles-application-and-assessment-in-soilscience/updated-brazilian-

sgeoreferenced-soil-database-an-improvement-for-international-scientific-informat

Mussakowski R, Trowell NF, Sage RP, Heather KB (1989) Digital integration of remote sensing

and geoscience data for the Goudreau-Lochalsh study area, Michipicoten greenstone belt,

Wawa, Ontario, Proceedings Seventh Thematic Conference on Remote Sensing for Explora-

tion Geology, Calgary, Alberta, Canada, 2–6 October 1989, pp 1051–1065

Pirasteh S, Woodbridge K, Rizvi SM (2009) Geo-information technology (GiT) and tectonic

signatures: the River Karun & Dez, Zagros Orogen in south-west Iran. Int J Remote Sens

30(1–2):389–404

Pirasteh S, Rizvi SMA, Ayazi MH, Mahmoodzadeh A (2010) Using microwave remote sensing

for flood study in Bhuj Taluk, Kuchch district Gujarat, India. Int Geoinformatics Res Dev J

1(1):13–24

Ren H, Brecke KM, Ding Z, Yonghua Z, Stuart Nelson J, Chen Z (2002) Imaging and quantifying

transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical

coherence tomography. Opt Lett 27(6):409–411

Richards JA, Jia X (1999) Remote sensing digital image analysis – an introduction, 3rd edn.

Springer, Berlin, p 356

Sabins FF (1987) Radar images, In: Remote sensing – principles and interpretation. 2nd ed.,

New York, W.H. Truman & Co., pp 177–234

Pirasteh S, Ali SA (2005) Lithostratigraphic study from Dezful to Brojerd-Dorood areas SW Iran

using digital topography, remote sensing and GIS. Indian Pet Geol J 13(1):1–13

Saraf AK, Rawat V, Banerjee P, Choudhury S, Panda SK, Sudipta D, Das JD (2008) Satellite

detection of earthquake thermal infrared precursors in Iran. Nat Hazards 47:119–135

Singhroy V, Saint-Jean R (1999) Effects of relief on the selection of RADARSAT-1 incidence

angle for geological applications. Can J Remote Sens 25(3):211–217

Tarikhi P (2011) Early warning and earthquake monitoring using new earth observation radar

techniques, the APSCO’s third international symposium on earthquake monitoring and early

warning by using space technology that was jointly organized by the Asia-Pacific Space

Cooperation Organization (APSCO) and the Ministry of Industry and Information Technology

of China (MIIT), held on 13–15 September 2011 in Beijing, China

Trevett JW (1986) Geological interpretation, In: Imaging radar for resources surveys. Chapman

and Hall, New York, pp 139–160

Wall SD, Farr TG, Muller JP, Lewis P, Leberl FW (1991) Measurement of surface

microtopography. Photogramm Eng Remote Sens 57(8):1075–1078

14 Digital Processing of SAR Data and Image Analysis Techniques 299

s2pirast@uwaterloo.ca

http://www.intechopen.com/books/principles-application-and-assessment-in-soilscience/updated-brazilian-sgeoreferenced-soil-database-an-improvement-for-international-scientific-informat
http://www.intechopen.com/books/principles-application-and-assessment-in-soilscience/updated-brazilian-sgeoreferenced-soil-database-an-improvement-for-international-scientific-informat
http://www.intechopen.com/books/principles-application-and-assessment-in-soilscience/updated-brazilian-sgeoreferenced-soil-database-an-improvement-for-international-scientific-informat
http://parviztarikhi.wordpress.com/features-2/early-warning-and-earth-quake-monitoring-using-new-earth-observation-radar-techniques/#_blank
http://parviztarikhi.wordpress.com/features-2/early-warning-and-earth-quake-monitoring-using-new-earth-observation-radar-techniques/#_blank
http://www.apsco.int/#_blank
http://www.miit.gov.cn/#_blank


Chapter 15

Development of a New Wetness Index Based
on RADARSAT-1 ScanSAR Data

Quazi K. Hassan and Charles P.-A. Bourque

Abstract A new wetness index (WI) was developed based on the temporal patterns

in radar brightness (β0) in a timeseries of RADARSAT-1 ScanSAR images col-

lected over the July–September period of 2005. The WI proposed here provided an

indirect measure of soil water content (SWC), as β0 was documented to vary with

land-surface water content. Hydrological factors affecting SWC, such as soil

texture, topography, evapotranspiration, etc., were not considered in the current

determination of WI. WI-values generated with the proposed method were subse-

quently compared against field measurements of SWC collected from three separate

areas, including densely- and sparsely-forested and non-forested areas (i.e., bare

fields), all located in southcentral New Brunswick (NB), Canada. The comparison

revealed adequate agreement between WI and SWC for all three areas, including

dense forests, yielding coefficients of determination (r2’s) of 74–99 %. Reasonable

agreement for dense forests (r2¼ 74 %) indicated the potential of the method in

determining SWC under heavily-vegetated conditions. This correlation would arise

because of the equilibrium established between foliage water content (picked up by

the radar signal) and SWC under normal, non-stressed conditions. A second

evaluation of the method was conducted by comparing WI-values with spatial

calculations of SWC obtained with the Soil Water Assessment Tool (SWAT) for

bare-field conditions common to the potato-growing area of northwestern

NB. Again, suitable agreement was obtained, yielding r2-values ranging from

65 % to 81 %. However, further research is needed to evaluate the usefulness of

the method for other forested and non-forested regions of the world. In principle,

because the method relies mostly on β0, it is highly likely the method can be used to

assess SWC in many different types of natural environments.
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Keywords Foliage and soil water equilibrium • Radar brightness • Soil water

content • SWAT model • Synthetic aperture radar • Vegetation cover

15.1 Introduction

Soil water content (SWC) is a measure of the total amount of water, including water

vapour, contained within a column of soil above the saturated zone above the

groundwater table. The variable is one of the most critical regarding: (i) the

duration and intensity of droughts; (ii) the production of crops; and (iii) the amount

of soil erosion and runoff. The most standard protocol in estimating SWC is based

on the “gravimetric” or “volumetric” method (Hassan et al. 2007). Both methods

estimate SWC accurately, but only provide point measurements given the extent of

work required to process a single field sample. Consequently, soil sampling fails to

provide the spatial information needed for land-management applications. Remote

sensing platforms, however, can provide greater detail of SWC at high spatial

resolution, but small enough for implementation at the land-management unit

(Hassan et al. 2007).

Radar remote sensing is an effective way of mapping SWC under adverse

weather conditions, including under cloudy conditions. Since 1991, a number of

microwave sensors have been launched (e.g., ERS, JERS, RADARSAT, and

ENVISAT), creating opportunity to study and map SWC at a multitude of spatio-

temporal resolutions. Radar-based methods of estimating SWC have been broadly

classed into five main algorithm-types based on: i.e., (i) semi-empirical Synthetic

Aperture Radar (SAR) formulations, (ii) multi-temporal SAR for SWC change

detection, (iii) SAR data fusion of images from both passive and active microwave

sensors, (iv) SAR-data fusion of images from microwave and optical sensors, and

(v) SAR and microwave scattering properties (Moran et al. 2004). The method is

based on processing multiple radar images from identical passes (i.e., same polar-

ization and incident angles), but for different times. Due to the simplicity and ease

with which the “multi-temporal SAR for SWC change detection” method can

remove artifacts created by uneven terrain and changes in vegetation cover, enor-

mous opportunity exists with using the method in an operational setting. Table 15.1

summarizes various “multi-temporal SAR for SWC change detection”-based
methods developed over the past few years.

Here, we propose to (i) develop a new wetness index (WI) based on a chrono-

logical series of RADARSAT-1 ScanSAR images of the same area taken at

different times over the July–September period of 2005, and (ii) evaluate its

potential to estimate SWC in areas of diverse vegetation cover, including dense

forests in humid, forest-dominated landscapes of southcentral New Brunswick

(NB), Canada, and the potato-growing area of northwestern NB. In the latter

evaluation, we use SWC calculated with the Soil Water Assessment Tool

(SWAT) as field-measurements of SWC were not available to us.
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15.2 Study Area and Data

The study area extends over 70 % of the Province of New Brunswick (NB) in

eastern Canada, from NB’s southern coast along the Bay of Fundy to northcentral

NB (Fig. 15.1). The area is characterized by its temperate evergreen-deciduous mix,

Table 15.1 “Multi-temporal SAR for SWC change detection” approaches used in the past

Source Approacha

Shoshany

et al. (2000)

Introduced multi-temporal backscatter ratios, such as the simple ratio

(SR) and normalized radar backscatter soil moisture index (NBMI); used

ERS SAR images over humid to semi-arid regions of Israel. Obtained

strong relations for both ratios (r2>85 %). However, the NBMI produced

a stronger relationship with SWC in the 20–40 % range.

Wagner and Scipal

(2000)

Determined a relative measure of SWC from dry, wet, and instantaneous

values of radar backscattering coefficient, σ0; used ERS Scatterometer

images over western Africa. Demonstrated promising qualitative results

with soil water index (SWI) over wet-dry climatic zones.

Wickel et al. (2001) Established relations between σ0 with SWC; used RADARSAT SAR

images over the Southern Great Plains 1997 Hydrology Experiment Sites

in Oklahama, USA. Observed strong correlation for wheat stubble fields

(r2¼ 89 %) and no correlation for pasture fields. Demonstrated potential

of using ScanSARmodes of RADARSAT for multi-temporal estimates of

SWC (e.g., Boisvert et al. 1996).

Lu and Meyer

(2002)

Used a correlation image computed from radar-image pairs for explaining

observed changes in SAR intensity; used ERS SAR over southeast New

Mexico, USA. Correlated SWC increments (within the 5–20 % range)

with increments in SAR intensity.

Thoma et al. (2006) Employed four approaches; i.e., empirical, physical, semi-empirical, and

image difference-based (i.e., delta index; DI) approaches; used ERS SAR

and RADARSAT SAR images over Southern Arizona, USA. DI produced

strong correlations with SWC (r2¼91 %) and provided overall better

results in comparison to the other methods considered.

Pathe et al. (2009) Calculated a relative SWC as a function of dry, wet, and instantaneous

σ0 from ENVISAT ASAR acquired over Oklahoma, USA. ASAR-derived

SWC were compared against ground-based measurements of SWC and

found that in 75 % of the cases, the standard deviation fell within 13–27 %

of field-based SWC.

Baghdadi

et al. (2011)

Used a change-detection technique between data acquired during rainy

and dry seasons (considered as the reference images) to retrieve SWC.

Derived SWC-values were approximately 2.3 % (RMSE) from ground-

based measurements.

Qin-Xue and You

(2013)

Applied approaches similar to those of Wagner and Scipal (2000) and

Pathe et al. (2009) to calculate relative SWC using ENVISAT ASAR-data

over Hubei Province, China. Demonstrated reasonable correlation for

cotton fields (r2¼78 %).
aSR-ratio of σ0 from two different dates; NBMI-a function of instantaneous σ0 and σ0 for dry soil;
SWI-a function of actual SWC, wilting point and field capacity; DI-a function of instantaneous

σ0 (i.e., wet condition) and σ0 for the same soil under dry conditions; ASAR-advanced Synthetic

Aperture Radar
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transitional forest cover. The region experiences a cool-moist climate with mean

annual temperature and precipitation ranges of 3.5–6.5 �C and 900–1500 mm,

respectively. A generalized description of forest cover and geomorphology of NB

can be found in Hassan et al. (2006).

The images used to generate WI include three descending RADARSAT-1

ScanSAR Narrow A (SNA) images, at a pixel spacing (resolution) of 25-m taken

at incident angles of 20–40� in the C-band (i.e., 5.3 GHz). The images were

acquired at approximately 6:00 a.m. local daylight time on 15 July, 08 August,

and 01 September, 2005.

Field SWC conditions were measured at 10-cm depths at three representative

areas having different vegetation cover. The areas include (i) two sites in dense

forests (i.e., 100 % forested with a basal area in the range of 26–30 m2 ha�1; Xing

Fig. 15.1 New Brunswick study sites where observed and modeled volumetric soil water content

were derived; sites are depicted as an overlay to the RADARSAT-1 ScanSAR image acquired on

01 September, 2005
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et al. 2005) in westcentral and southwest NB; i.e., Nashwaak Lake (NWL, 46� 280

2000 N, 67� 060 0000 W) and Charlie Lake sites (CL, 45� 530 0500 N, 67� 210 2500 W;

Fig. 15.1), (ii) three locations in sparse forests at the Canadian Forces Base

Gagetown, central NB (CFB Gagetown, 46� 400 N, 66� 2200 W), and (iii) one

location in a bare field at CFB Gagetown. A second evaluation of the method was

conducted by comparing WI with SWC-values generated with a widely used

hydrological model, the Soil Water Assessment Tool, SWAT (Arnold et al. 1998)

for an area in the Black Brook Watershed in northwest NB (47� 070 N, 67� 460 W).

Simulated SWC-values were descriptive of averaged soil water conditions within a

1-m soil block, in field conditions typical to the potato-growing area of

northwest NB.

15.3 Methods

Figure 15.2 shows a schematic of workflow associated with deriving the new

WI. The method is divided into three main procedural components, namely (i)
the pre-processing of the RADARSAT-1 data, including extracting radar brightness

values, filtering, co-registration, geo-coding, and creating a multi-temporal image

sequence, (ii) deriving WI-values and associated images, and (iii) conducting

comparisons between radar-based values of WI and estimates of SWC obtained

in the field and with the ArcView™ GIS-version of the SWAT model (i.e.,

AVSWAT_2000; Luzio et al. 2002).

15.3.1 Image Pre-processing

Three calibrated, geo-referenced RADARSAT-1 ScanSAR images provided by the

Canadian Space Agency (CSA) were used to extract radar brightness (β0) in dB

values following steps described in ALTRIX Systems (2000); β0 is a measure of

radar reflectivity in the slant range and independent of local incident angle. Instead

of using the commonly-used radar backscattering coefficient (i.e., σ0; a measure of

radar reflectivity near ground range and dependent on local incident angle), we

opted to use β0 in this research. It is well recognized that β0 is highly influenced by

background features (Bamler 2000), such as surface roughness, local incidence

angle, effective surface cover density and surface-scattering properties (e.g., bio-

mass, leaf density), three-dimensional structure of the scattering surface (canopy

layering, trunk placement, buildings), and dielectric constant of the scattering

material. In general, background conditions vary with variations in SWC and the

physiological status of the surface, particularly with respect to the vegetation cover.

Since we intended to use images obtained during similar flight trajectories and

signal polarization, the use of β0 for estimating temporal changes in SWC by

tracking changes in β0 was possible. Note that the resolution of the β0 images had
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potential to be variable given that the incident angle of the ScanSAR Narrow beam

varied from 20 to 40�. However, it was possible to proceed with a constant pixel

spacing of 25 m for the β0 images as these images were rectified (at 25-m resolu-

tion) by CSA (RADARSAT International 2004), prior to their implementation.

As speckles can hinder the interpretation of radar images, a Gamma-map filter

(with a moving-window of 5� 5 pixels) was employed to suppress speckles. Before

filtering, the β0 values (in dB) were converted to a power-scale, and then

re-calculated into dB values as outlined in Wickel et al. (2001). The three images

were co-registered by simply shifting the images using a stable high backscattering

feature or corner reflector in both the x- and y-directions, as described in Hasan

et al. (2003). Then, these images were geo-coded by using ground control points

Fig. 15.2 Workflow in the

generation of the Wetness

Index (WI)-values and their

comparison to soil water

content (SWC), either

measured in the field or

modeled with the SWAT

model
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(GCPs) to position and scale the images with respect to existing orthorectified

LANDSAT-7 ETM+ images (from the 1999 to 2002 period) obtained from

Geobase Canada website, http://geobase.ca, last accessed on 28 June 2008.

15.3.2 Deriving WI-Values and Associated Images

As an initial step, both low and high scattering land-surface features, such as water

bodies and corner reflectors, were eliminated from the multi-temporal images. To

do this, we used the density slicing approach of Lillesand et al. (2008) and

delineation limits of β0 (dB) <�12.22 and �0.00 to identify all water bodies and

corner reflectors in the images.

For a given pixel and image, if a pixel was classified as either being water or a

corner reflector in any one image, it was assumed that the same feature was also

present in the other two images and excluded from all three images. Following

elimination of water and high-scattering image features, we defined the minimum

radar brightness value (i.e., β0min) as �12.22 dB, coinciding with the driest bright-

ness value. Wetness Index (non-dimensional) was then described as a function of

β0min, i.e.,

WI ¼ β0min � β0ins
β0min þ β0ins

ð15:1Þ

where β0ins is the image-specific instantaneous radar brightness. WI-values from

Eq. 15.1 vary from 0 to 1, with values¼ 0 representing dry conditions and

values¼ 1, representing wet conditions, calibrated according to the wetness distri-

bution in the current images. This new WI is founded on existing principles of

another SWC-related index, namely that of Shoshany et al. (2000), the Normalized

radar Backscatter soil Moisture Index (NBMI). The basic differences are: (i) usage
of β0 instead of σ0, (ii) determination of a β0min (dry-soil brightness value) is based

on considering brightness values in the current radar images, whereas NBMI

considers a dry-soil σ0-value as an average of like values reported in a series of

separate articles, and (iii) re-formulation of NBMI to ensure that the values of WI

remain in the range of [0–1], roughly to coincide with the natural range of SWC

(i.e., 0–100 %, permanent wilting point to complete saturation).

15.3.3 Comparisons of WI with SWC-Values Determined
in the Field and with the SWAT Model

Maps of WI-values (given in Sect. 15.4) were generated by applying Eq. 15.1 to the

RADARSAT-1 images covering the same geographic area as all field
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measurements and modeled SWC-values obtained. To directly relate WI-values at

the field level, we determined point-location estimates of WI by (i) taking into

account all WI-values, within a 500� 500 m area (consisting of a 20� 20 pixel

window) centered on the measurement sites, and (ii) averaging their values

(accounting for 400 pixel values). In the second comparison, as the SWAT model

provides spatially-averaged estimates of SWC, we averaged WI-values to provide a

mean value at spatial resolutions equivalent to those used in SWAT (i.e., 62–275 ha

resolution). To compare WI-values with SWC-values directly, we used least

squares regression (and the coefficient of determination, r2) on WI-vs.-SWC data

pairs to determine the degree of agreement between the two independent variables

(i.e., WI and SWC).

15.4 Results and Discussion

Figure 15.3a provides a spatial distribution of WI-values over the study area based

on the 08 August, 2005, RADARSAT-1 image. It revealed that the WI-values fell

mostly in the wetness range of 20–45 % (~95 % of all values), with an average

wetness of 31 % (Fig. 15.3b).

Figure 15.4 shows the variations of WI and SWC at the measurement sites

(forests and bare field) for the radar-image acquisition dates (i.e., 15 July,

08 August, and 01 September, 2005). It revealed that both WI and SWC were the

lowest on 08 August, 2005, except for the measurements at the CL site. Temporal

variability in SWC is strongly coupled to episodes of rainfall within a 1–2 day

period prior to image acquisition (Table 15.2). The unchanging SWC conditions on

08 August at the CL site despite a lack of rainfall during a significant period prior

image acquisition, is most likely related to the site’s position within a prominent

landscape depression, ultimately leading to the site’s elevated soil water conditions
through lateral drainage from the surrounding landscape (Hassan et al. 2006).

Figure 15.5 shows a comparison between RADARSAT-1 ScanSAR-derived

WI-values and field measurements of volumetric SWC at a 10-cm depth as a

function of the three representative landcovers (i.e., dense forests, sparse forests,

and bare field). We preferred to use the field measurements of SWC at 10-cm depth

as it provided a better representation of available water to the vegetation. The

comparisons revealed reasonable agreement between the two variables for the three

areas, yielding r2-values of 74 % for the dense forests, 77 % for the sparsely-

vegetated forests, and 99 % for the bare field.

The C-band SAR backscattering has been previously demonstrated to be highly

influenced by vegetation water content in dense forests, opposed to SWC

(Pulliainen et al. 2004). So it is quite possible that our WI-values produced for

dense forests were affected similarly. However, since SWC is one of the most

critical variables for forest-site productivity (Bourque et al. 2000; Wang and Klinka

1996) and since it has an important role in plant physiology (by means of photo-

synthesis and evapotranspiration), we could envision canopy foliage water content

308 Q.K. Hassan and C.P.-A. Bourque

s2pirast@uwaterloo.ca



Fig. 15.3 Spatial (a) and frequency distribution of WI (b) over the entire study area (i.e., entire

image) based on the RADARSAT-1 ScanSAR image acquired on 08 August, 2005
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of dense forests (overstory + understory) to be in equilibrium with SWC, due to the

relationship between the local water balance and total leaf area index (Grier and

Running 1977). A level of equilibrium should be maintained provided that plant

growth is unaffected by disturbance agents such as disease, insect infestation,

physiological drought caused by soil water-logging or disruption of root-to-shoot

Fig. 15.4 Variations of WI and SWC at the measurement sites, i.e., two in dense forests at the

NWL (a) and CL sites (b); one in a bare field at CFB Gagetown (c); and three in sparsely-vegetated
forests at three different locations at CFB Gagetown (d–f), for the image-acquisition dates of

15 July, 08 August, and 01 September, 2005

Table 15.2 Rainfall conditions at the sites, where volumetric soil water content was either

observed or modeled

Acquisition dates

(2005)

Rainfall (in mm)

Dense

forest

Dense

forest

Sparse forests and bare

field

Potato-production

area

NWL site CL site CFB gagetown sites

Black brook

watershed site

14 July 14.1 12.2 20.6 11

15 July 2.1 8.0 0.0 0.0

07 August 0.0 0.0 0.0 0.0

08 August 0.0 0.0 0.0 0.0

31 August 34.9 22.0 29.2 52.4

01 September 17.0 12.2 7.6 10.2
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ratios by air pollutant deposition (e.g., Rennenberg et al. 1996; Persson and Majdi

1995) or winter conditions, such as prolonged winter thaws (Bourque et al. 2005).

Soil water potential (an indirect measure of SWC) and plant water potential

(a measure of in-canopy foliage water content) have been previously shown to be

strongly correlated (Pabst et al. 1990; Fotelli et al. 2001). Given these conditions,

the WI developed here can be viewed as an indirect measure of SWC and a basis for

SWC-detection in forest-dominated landscapes.

Figure 15.6 provides a spatial comparison between RADARSAT-1 ScanSAR-

derived WI and SWAT-derived, vertically-averaged estimates of volumetric SWC.

Given the rapid growth rate of potato plants and changes in field-surface conditions

during the growing season (3–4 months), emphasis of the second comparison was to

substantiate spatial representation of derived values for a specific time period.

Reasonably good agreement was obtained between estimates, yielding r2-values

of 81 % for 15 July, 65 % for 08 August, and 79 % for 01 September, 2005

comparisons (Fig. 15.6). Both r2 and the position of the regression lines were

found to differ among the three images. Possible reasons for these differences

could be related to differences in (i) rainfall (see Table 15.2 for the Black Brook

Watershed site), (ii) leaf area index (LAI), (iii) misrepresentation of SWC by the

Fig. 15.5 Comparison of

WI and field measurements

of volumetric SWC at a

10-cm depth as a function of

landcover type, i.e., dense

forests, sparsely-vegetated

forests, and a bare field
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SWAT-model by averaging SWC within a 1-m block of soil, (iv) water content in
the potato plant, and (v) surface roughness from July through September.

Despite demonstrating fairly strong relationships between WI and estimates of

SWC (both observed and modeled), this study has a number of limitations, namely

(i) As only three radar images and data from seven field sites were used in this

study (i.e., two in dense forests, three in sparse forests, one in a bare field, and

one in a potato-production area), we feel that a greater number of radar images

and field measurements are required for a more comprehensive evaluation of

the method.

(ii) WI-vs.-SWC comparisons for the three landcover types (Fig. 15.5) revealed

that WI is to some extent dependent on canopy density, and, therefore, LAI.

As a result, refine mapping of SWC should consider landcover. At this

moment, landcover effects on SWC are outside the scope of this work.

(iii) For an improved comprehension of the temporal dynamics of WI, acquiring

radar-images for the spring and fall periods would complement the current

summer images.

(iv) Question of applying the SWAT-model to the forest sites is a critical one,

given that the SWAT model requires a number of inputs, which are not

commonly available from forested sites.

Fig. 15.6 Comparison of

spatially-averaged

WI-values and SWAT-

derived estimates of mean

volumetric SWC for a 1-m

deep soil for field conditions

in a potato-growing region

of northwest NB
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15.5 Concluding Remarks

The method developed here has been shown to be viable for detecting SWC for

specific landcover types (i.e., dense forests, sparse forests, bare field, and potato

fields). Generally, good agreement was obtained between WI and field-

measurement and modeled SWC, with r2-values ranging in between 65 % and

99 %. Our analysis has also shown the potential of using the method as an indirect

measure of SWC in forest-dominated landscapes, where C-band radar signals have

been shown to be most directly influenced by vegetation-cover water content. This

is because radar-signal penetration into the forest is limited to a small fraction of the

upper canopy. This indirect measurement of SWC is possible because of the

equilibrium established between foliage water content and SWC under normal,

non-stressed conditions. Further research is needed to evaluate the usefulness of the

method in other areas of the world.
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