
 

 

 

 

 

Monitoring Lake Simcoe Water Quality using 

Landsat TM Images 
 

 

 

 

 

By 

 

Xian Guan 

 

 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Science 

in 

Geography  

 

 

 

Waterloo, Ontario, Canada, 2009 

 

 

© Xian Guan 2009 



ii 

 

           Author’s Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

 

I understand that my thesis may be made electronically available to the public. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

                 Abstract 

Inland lakes are important resources to humans, while the eutrophication effect caused by 

an overload of nutrients is a significant problem. This study focuses on utilizing the satellite 

remote sensing to monitor the water quality of Lake Simcoe, Ontario, Canada, which has 

been suffering from the overload of Total Phosphorus (TP) and therefore eutrophication for 

decades. The data employed in this study includes 22 cloud-free Landsat 5 TM images, as 

well as the nearly simultaneous in-situ data from 15 observation stations on the lake. 

Compared to the generally used model, an improved model is developed in this study to 

estimate the Secchi Disk Transparency (SDT), a parameter for water clarity measurements, 

using the TM images. Models based on different band combinations are compared to 

estimate the chlorophyll-a (chl-a) concentration. The results of these estimations are 

validated using the in-situ data by the linear regression analysis, and the accuracies are 

measured by the correlation coefficients R
2
. 

 

The results reveal that the improved SDT model provides higher prediction accuracies than 

the general model when applied to 68.2% (15 out of 22) of the images. The majority of the 

SDT predictions show high R
2
, whereas some of the estimated chl-a concentrations have 

weak relationships with the in-situ data. The possible reasons for this are the geo-location 

of stations, as well as the influences of chl-a and Dissolved Organic Carbon (DOC). The 
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resultant concentration maps indicate that the eutrophic water is normally distributed at the 

near-shore areas and the northeastern part of Lake Simcoe. In addition, the southern 

Cook‟s Bay has always been suffering from an extremely serious water quality problem 

even until now. Meanwhile, the water quality of the southwestern part of Lake Simcoe is 

much better than the other parts of this lake. The results also show that the water quality of 

Lake Simcoe was at its worst in August and September for the past 22 years while it was 

much better in the other sampling seasons. According to the trend of the monthly averaged 

SDT, on an overall scale, the SDT dropped from 1980 to 1982 and then kept relatively 

stable until the fall of 1992, followed by a gradual increase until 2000, and then stayed 

constant until the summer of 2008. The chl-a concentration reveals an inverse trend, i.e., 

the higher the chl-a concentration, the more turbid the water. 
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Chapter 1 

Introduction 

Inland water is critical to our citizens. The eutrophication problem caused by the overload 

of nutrients strongly affects the ecosystem in the lakes and therefore people‟s lives. Section 

1.1 introduces the water quality problems existing in inland lakes. Section 1.2 introduces 

the traditional way to monitor water quality and its weakness. Section 1.3 explains the 

reasons for this study, using remote sensing techniques to monitor lake water quality, plus 

it contains the four overall objectives of this study. The organization of this thesis is briefly 

described in Section 1.4. 

1.1 Water Quality Problems of Inland Waters  

Clean and adequate fresh water is essential to the welfare of human beings, as the water 

quality directly affects natural ecosystems, human health, and economic activities. 

Meanwhile, human activities directly affect water quality. Concentrated pollutants entering 

surface waters from specific locations (point-source discharges) and dispersed pollutants 

generated from local or small-scale activities (non-point source discharges) add large 

quantities of nutrients, pathogens, and toxins to the lakes. A Canadian government report in 

2001 stated that human activity resulted in more than 12 thousand tonnes of Phosphorus (P) 
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and 303 thousand tonnes of Nitrogen (N) entering Canadian fresh, ground, and coastal 

waters in 1996. It also reported that municipal sewage, which adds approximately 5.6 

thousand tones P, is the largest point source, while the discharge of industrial wastewater is 

also a considerable source (Chambers et al., 2001).  

 

These overloads of nutrients result in eutrophication, one cause of ecological problems in 

the world today. The excessive phosphorus, together with some other chemicals, can 

accelerate the growth of algae and other aquatic plants. In response to over-enrichment with 

nutrients, the phytoplankton community may shift to bloom-forming nuisance algae, which 

are harmful to other organisms (Smith, 1990). Decomposition of algal blooms can lead to 

foul odors and oxygen depletion, which can in turn, lead to fish deaths (Carpenter et al., 

1998; Smith, 1998). These factors, together with the heightened concentration of suspended 

and dissolved matter caused by humans, lead to a rapid transition to a higher trophic level, 

which entails algal bloom events, anoxia, and eventually a dramatic deterioration of water 

quality (Henderson-Sellers and Markland, 1987; Kondratyev et al., 1998). 

1.2 Water Quality Monitoring Methods 

These problems that inland lakes are suffering from make protecting and monitoring lake 

water quality a major concern for many local, provincial, and federal government agencies. 

Many lake-water monitoring programs have been set up to keep records of the change in 



3 

 

water quality parameters. These programs usually include on-site sampling and laboratory 

analysis. Three water quality variables that have been most commonly used to indicate 

trophic state are total phosphorus (TP), chlorophyll a (chl-a), and Secchi disk transparency 

(SDT). Measurement of these water quality variables, along with various transformations, 

such as the Trophic State Indices (TSIs), has been widely used by lake management 

agencies and organizations. Generally, this ground-based monitoring achieves high 

accuracy of lake water quality measurements. However, the expense, time, and sampling 

frequency make ground-based monitoring impractical to be applied to large areas. The 

resolution is a compromise between spatial and temporal details (Kloiber et al., 2002).  

 

Although it has not been officially admitted as a government policy tool, remote sensing 

techniques have been proven useful for monitoring water quality for decades. The use of 

this satellite-based technology is a cost-effective way to gather the needed information for 

regional water quality assessments in lake-rich countries such as Canada. Among the 

several earth observation satellites, the relatively low cost, temporal coverage, spatial 

resolution, and data availability of the Landsat Thematic Mapper (TM) imagery make it 

particularly useful for assessment of inland lakes. Several studies have demonstrated a 

strong relationship between Landsat Multispectral Scanner (MSS) or TM data and ground 

observations of water clarity and chl-a (e.g., Brown et al., 1977, Lillesand et al., 1983; 

Lathrop and Lillesand, 1986; Lathrop, 1992; Cox et al.,1998). In 1999, with the launch of 
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Landsat 7, data distribution was returned to the public sector, and the cost of data 

acquisition dropped significantly. In particular, TM data is available free of charge. Along 

with today‟s powerful desktop computers and sophisticated software, processing and 

analysis of satellite imagery has become relatively inexpensive and easy to perform. 

1.3 Objectives of the Study 

This study is motivated by the water quality deterioration in the Canadian inland waters, as 

well as the weakness of conventional water quality programs. One of the eutrophic inland 

lakes, Lake Simcoe, is selected as the study site. This study has four overall objectives:  

1. To utilize and develop different models for estimating two useful water quality 

parameters, SDT and chl-a using the Landsat 5 TM images.  

2. To establish empirical relationships between these two water quality parameters and 

spectral information by using linear regression analysis. 

3. To identify both temporal and spatial water quality patterns of the study area and to 

map the excessive pollution regions in reference to the inland lake classification 

criteria.  

4. To graph the overall water quality trends of the study area for a period of 22 years, 

from 1987 to 2008. 
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Despite past efforts to improve the water quality of the study area, Lake Simcoe, the 

ecosystem remains stressed, particularly in the southern part. This, coupled with the 

reduction of observation stations, creates a greater urgency to monitor this area more 

effectively. It is necessary to generate both the temporal change and spatial distribution 

maps of the lake. Furthermore, if the relationship between the estimated data and in-situ 

data is reliable enough, it is possible to estimate and chart water quality of this lake back to 

the late 1970s. This study proves that remote sensing is a reliable technique that can be 

used as a supplement for ground-based water quality observation and could possibly help 

the managers and policy makers at Environment Canada and Ontario Ministry of 

Environment (MOE) to improve the monitoring, and thus the water quality, of Lake 

Simcoe. 

1.4 Thesis Structure  

The remaining parts of this thesis are organized into four chapters:  

 

Chapter 2 reviews the related work done by other researchers. It starts with the importance 

of monitoring water quality by utilizing remote sensing techniques. Then an overview of 

current water quality models is introduced and explained. Next is a review and discussion 

of the specific research concerning the use of Landsat images for water quality estimation. 

Finally, Chapter 2 is summarized and the research gaps are discussed. 

 

http://www.ene.gov.on.ca/en/
http://www.ene.gov.on.ca/en/
http://www.ene.gov.on.ca/en/
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Chapter 3 details the proposed methodology, including a description of the study area and 

the in-situ and satellite data, and presents the models for both the SDT and chl-a parameters, 

and the regression analysis technique.  

 

Chapter 4 details and explains the experimental results from this study, which consists of 

the regression equation for each of the parameters, the temporal trends of the water quality 

of Lake Simcoe over the past 22 years, the spatial distribution of the water pollution, and 

the water quality classification based on the Carlson‟s criteria (1996) . The influence of 

dissolved organic carbon is also discussed in this chapter.  

 

Chapter 5 draws conclusions from this research and suggests further areas of study.  
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Chapter 2 

Remote Sensing of Water Quality: An Overview 

2.1 Importance of Water Quality Monitoring by Remote Sensing  

Inland lakes provide an important recreational, commercial, and aesthetic resource for the 

public (Nelson et al., 2003). However, a continuous deterioration of the ecological status of 

inland water basins, salt-water coastal zones, and oceanic gulfs makes water quality 

problems urgent (NASA, 1986). The reason for this deterioration is largely because of an 

unprecedented intensification of natural eutrophication in the water bodies. This „aging‟ of 

water bodies is triggered and accelerated by the extensive anthropogenic inputs of nutrients, 

usually phosphorus and nitrogen. Additionally, the increase in water temperature caused by 

thermal industrial inflows can also contribute to this effect (Kondratyev et al., 1998). Those 

factors, together with the human-induced heightening of concentrations of suspended and 

dissolved matter, lead to a rapid transition of the basin to a higher trophic level, which 

entails algal bloom, anoxia, and eventually a dramatic deterioration of water quality 

parameters (Henderson-Sellers and Markland, 1987; Kondratyev et al., 1998). 

 

The eutrophic problem existing in the inland lakes makes routine water quality monitoring 

programs of a great necessity. Government agencies usually judge the quality of lake 
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waters by monitoring the water quality indicators, or parameters. One of them is called 

Secchi Disk Transparency (or SDT), which is normally considered an effective and 

economic parameter to measure water clarity. The Secchi Disk is a 20cm diameter white 

disk which is lowered into the water column until it can no longer be seen. The distance 

between the disk and the surface of the water is called the SDT. 

 

Another most common indicator of trophic state is chl-a, which is the green pigment found 

in all plants allowing them to photosynthesize. If populations of algae grow too fast in 

relation to the rest of the system, though, they may create water quality problems in the 

lake ecosystem, such as algal blooms. The absorption peak and the reflection peaks are near 

440nm and 550nm, respectively. The chl-a concentration can be a very good indicator for 

the lake water quality. So the lake scientists often test lakes for chlorophyll to get an 

estimation of the amount of algae growing in a lake (Li et al., 2007).  

 

Dissolved Organic Carbon (DOC) is a broad classification for organic molecules of varied 

origin and composition within aquatic systems. In general, organic carbon compounds are a 

result of the decomposition process of higher organic matter, such as plants. Also, when 

water comes into contact with high organic soils, a certain amount of these components can 

drain into rivers and lakes as DOC. DOC is normally colourless, but it absorbs light across 

the UV (280-400nm) and visible (400-700nm), and therefore reducing the potential of 

reflectance (Hirthle and Rencz, 2003). 
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SDT, together with chlorophyll pigment and total phosphorus are believed to be the three 

main parameters to calculate the Carlson Trophic State Index (Carlson, 1977). Of these 

three, SDT and chl-a can be estimated by satellite imagery (Kloiber et al., 2002).  

 

Traditional methods, which are the ground-based measurements, used in water quality 

classification include the collection of water samples from lakes and their analysis in 

laboratory conditions (Koponen et al., 2004). Ground truth measurements, usually include: 

1) water sampling for laboratory analysis, 2) the on-site measurements, and 3) weather 

observations (Koponen et al., 2002). Normally these existing measurement techniques are 

sophisticated (Nelson et al., 2003). For example, in the chl-a retrieval procedure, the sum of 

chl-a is determined by a spectrophotometer after extraction with hot ethanol and turbidity 

by nephelometric method, then scattered within a 90
o
 angle from the beam directed at the 

water sample (Koponen et al., 2002). 

  

Obviously this in-situ point measurement can give accurate results in the laboratory, and 

there are many studies proving that the quality of data collected by volunteers is 

comparable to data collected by professional monitoring personnel, with no statistical 

difference in summer averages of SDT between volunteer and professional measurements 

(Heiskary et al., 1994; Kerr et al., 1994; Obrecht et al., 1998; Canfield et al., 2002; Nelson 

et al., 2003). However, the vast area of a lake makes it difficult to evaluate water quality of 
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the lake as a whole, especially for a country with thousands of lakes such as Canada. Also, 

a dense water quality monitoring network would not be cost effective. Currently, most of 

the sampling work is fulfilled by volunteers, and it is doubtful that there are sufficient 

volunteers to sample all the lakes, some of which are very large. Furthermore, there are 

some extreme conditions which are so dangerous that human beings cannot access them 

readily. Most importantly, it is difficult to generate the up-to-the-minute spatial overview 

data that is necessary for global assessment and monitoring of water quality (Brivio et al., 

2001; Wang et al., 2004). Meanwhile, the design of regional-scale monitoring programs is 

frequently based on a compromise between spatial and temporal detail. Considering the 

cost and logistical problems, the ground-based monitoring programs usually sacrifice 

spatial coverage to monitor fewer lakes in favor of more frequent sampling (Kloiber et al., 

2002). New approaches and techniques are required to collect the water quality parameters 

on larger lakes and more lakes. 

 

In recent years there is growing interest in evaluating lake water quality using a remote 

sensing technique, which has been proven as a useful tool for monitoring water quality for 

decades, although the routine application of this technique has been slow to catch on. This 

may be due to a lack of familiarity with the technique among inland aquatic scientists and 

also due to a perception that the data are expensive and difficult to process. In 1999 with 

the launch of Landsat 7 with Enhauced Thematic Mapper Plus (ETM
+
), data distribution 
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was made available to the public, dropping the cost of data acquisition significantly, with 

TM data available free of charge. With today‟s advanced hardware and software, 

processing and analyzing satellite images are easier and less costly. 

 

These developments, combined with the improvement of spatial and temporal resolution, as 

well as the optimization of algorithms, satellite remote sensing methods began to hold more 

potential for improving water quality monitoring (Wang et al., 2004). 

2.2 An Overview of Water Quality Models 

The remote sensing technique has been utilized for water quality monitoring for over 

twenty years, and during this time, a variety of approaches for water quality parameters 

estimation were developed. Giardino et al. (2007) categorized the current methodologies 

into three main types, which are: 1) Empirical, 2) Semi-empirical, and 3) Analytical.  

2.1.1 Empirical Approach 

The first category, which is the simplest, is the empirical approach. This methodology is 

based on developing bi-variate or multivariate regressions between the remotely sensed 

reflectance data and the ground measurement water quality parameters. This approach was 

used by Neilson et al. (2003), Li et al. (2007), Koponen et al. (2001), Brezonik et al. (2007), 

who investigated the relationship between digital numbers of single band or the band 

combinations, and the in-situ water quality data collected in coincidence with the sensor 
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overpass. The simple empirical method has been applied in the water quality area for the 

longest period of time, but the most significant weakness of this approach is that it relies 

too much on the in-situ data. If the ground measurements are limited, or not available, the 

empirical approach may be inaccurate. In addition, the empirical approach is often 

site-specific or scene-dependent, which means one model is possibly only being applied to 

one image. 

2.2.2 Semi-Empirical Approach 

A second approach, called semi-empirical, is a method where spectral characteristics of the 

parameters of interest are known, and this knowledge is included in the statistical analysis, 

which is based on the well-chosen spectral areas which correlate with appropriate 

wavebands (Giardino et al., 2007). Harma et al. (2001) investigated the feasibility of band 

combination of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the 

Medium Resolution Imaging Spectrometer Instrument (MERIS) satellite data to monitor 

the lakes and coastal waters in Finland by utilizing this semi-empirical algorithm, and then 

tested the accuracy of the algorithm by Landsat TM data. Ostlund et al. (2001) employed 

the hyperspectral data collected by the Compact Airborne Spectrographic Imager (CASI) 

and Landsat TM data, as well as the in-situ data, to build algorithms to extract the chl-a 

concentration and the suspended sediments. The semi-empirical approach is currently the 

most often used method, but this approach has the same problem of scene-dependence.  
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2.2.3 Analytical Approach 

The third approach is called the analytical approach, which involves inverting four 

relationships to determine water quality parameters from the remote sensed data, in 

accordance with the order of the water quality parameters, the specific Inherent Optical 

Properties, the bulk Inherent Optical Properties, the Apparent Optical Properties and the 

Top of Atmosphere radiance (Giardino et al., 2007). An example of scholars using such an 

approach is Dekker et al. (2001), who used a 1-Dimensional network model, based on 

analytical optical modeling, utilizing the in-situ inherent optical properties. The method 

they used allows comparisons of multiple Total Suspended Matter (TSM) maps, both 

temporal and in-situ, extracted from Landsat TM and SPOT images. Thus they claimed that 

the remotely sensed data can become an independent measurement tool for water 

management. However, in their study, the model is prove to be less sensitive when TSM 

concentration is low. Different from the empirical and semi-empirical approaches, the 

analytical one is a well-calibrated and physically-based model, which can thus theoretically 

be applied to every satellite scene of the selected lake. Although the results of the analytical 

approach are more reliable and applicable than the previous two methods, it is relatively 

complicated and involves many optical characteristics of the body of water; therefore, the 

use of this approach is still limited. Most studies prefer to employ the empirical and 

semi-empirical approaches. 
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2.3 TM Images for Water Quality Monitoring 

2.3.1 Rationale for Choosing Landsat TM Images 

Satellites images of different spatial resolution are employed to estimate the water quality 

parameters. Chen et al. (2007b), using the Sea-Viewing Wide Field-of-View Sensor 

(SeaWiFS) satellite imagery from 1997 to 2005, examined both the spatial and temporal 

variability of the SDT within Tampa Bay. Prangsma and Roozekrans (1989) utilized the 

Advanced Very High Resolution Radiometer (AVHRR) instrument, providing the 

observational data, to interpret the parameters of water quality of the coastal zone. Koponen 

et al. (2004) extracted six water quality parameters of Finnish lakes from the Earth 

Observing System Terra/Aqua MODIS, using a bio-optical reflectance model. The 

accuracy of classification turned out to be 80%.  

 

Although the SeaWiFS, AVHRR and MODIS images have a good temporal resolution and 

data availability, the low spatial resolution of these satellites leads to a missing of water 

quality details in lakes. The open ocean water is defined as Case 1 water, while the coastal, 

estuary or inland water bodies are classified as the Case 2 water (Morel and Prieur, 1977). 

The remote sensing of Case 2 water has been far less successful than that of Case 1 water, 

mainly due to the complex interactions among optically active substances (e.g., 

phytoplankton, suspended sediments, coloured dissolved organic matter, and water) in the 
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former (Oyama et al., 2009). Therefore, the datasets such as MODIS and SeaWiFS, which 

are more frequently used in Ocean and large scale lakes, are generally regarded as not 

suitable for the smaller and more complex inland lakes. Instead, the satellite images with 

medium or high spatial resolution (0.6m-1m spatial resolution) are required. Indeed, there 

have been quite a few studies that utilize high-resolution images to monitor inland water 

quality. Sawaya et al. (2003) employed IKONOS images to evaluate the SDT and urban 

impervious areas. They proved that the modeling and estimation methodologies designed 

for medium-resolution satellite image data could also be employed to the high-resolution 

data. Wolter et al (2005) used QuickBird images to map the Submergent Aquatic 

Vegetation (SAV) of the Great Lakes. Nevertheless, the result of both studies shows that 

the shadow associated with high-resolution images is a limitation that would possibly cause 

interference when extracting the water features and could not be neglected. Given this 

drawback and the high price of high-resolution images, it may be not appropriate to use 

high-resolution images in the study area with large spatial coverage or the long trend 

monitoring. 

 

Combining all the above, the relatively low cost, wide temporal coverage, fair spatial 

resolution, and data availability of the Landsat TM imagery make it particularly useful for 

the assessment of inland lakes (Kloiber et al., 2002).  
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2.3.2 Related Work using Landsat TM images  

Landsat TM images have been explored in several studies as a method of reducing the cost 

and labor of sampling water clarity in the field (Khorram and Cheshire, 1985; Lathrop, 

1992; Kloiber et al., 2000; Dewider and Khedr, 2001; Nelson et al., 2003). It has many 

advantages such as good spatial coverage and the possibility of measuring many lakes 

simultaneously, which would provide valuable data on the seasonal variability of water 

quality. Also, it can reduce water sampling and lakes not monitored by traditional methods 

(Koponen et al., 2002). In addition, sensors such as Landsat provide an excellent tool to 

examine changes over time since Landsat images have been collected over large areas of 

the Earth‟s surface for decades. The first Landsat satellite was launched in 1972, and 

Landsat 5, which is the sensor for all the images used in this study, was launched in 1984 

and is still functioning now.  

 

Early in the 1980s, Khorram et al. (1989) used Landsat 4 TM imagery and the in-situ data 

around the date of satellite‟s overpass to estimate SDT, chl-a, Turbidity and Temperature of 

Augusta Bay, Italy. In this early stage, the model developed only used averaged digital 

number (DN) values extracted from the satellite bands. Only one image was employed, thus 

no change of water quality was presented. In addition, they did not give details of the 

resultant water quality distribution. 
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Wang et al. (2006) employed one Landsat 5 TM image to establish its relationship with 

four water quality indicators, SDT, chl-a, Total Suspended Solids (TSS) and turbidity in the 

Reelfoot Lake, Tennessee. They compared various combinations of TM bands to retrieve 

these parameters and generated the distribution maps of them respectively. Their results 

show that the TM2 is positively correlated to the water quality data while TM3 is negative 

due to the strong absorption of algae bloom, and the poor water quality may result in high 

reflectance of TM2 and low reflectance of TM3. They have noted that the TM2 and TM3 

are the best predictors for water quality. 

 

Kallio et al. (2008) investigated the use of Landsat 7 ETM
+
 images to monitor the turbidity, 

coloured dissolved organic matter (CDOM) and SDT in two river basins in Finland. They 

pointed out that the atmospheric parameters can possibly improve the accuracy of water 

quality estimates without concurrent in situ measurements. 

 

Li et al. (2007) compared inverse models built by other scholars, using a semi-empirical 

approach, to extract seasonal chl-a concentration from 10 TM images of Lake Taihu, China. 

The results of their study showed that the model equations of different seasons turned out to 

be the same or similar, while the coefficients were changing a lot. They also proved that the 

higher the concentration of chl-a, the more accurate the model would be.  
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Wu et al. (2008) compared 22 MODIS and 5 Landsat-5 TM datasets within two years for 

mapping spatial-temporal dynamics of SDT in Poyang Lake, China. They used two 

multiple regression models including the blue and red bands of Landsat images. The results 

show that both datasets can achieve high accuracies with the in-situ data with the R
2
 of 0.94. 

The higher the SDT is, the less signal reflectance would be returning to Landsat TM sensor. 

 

Although many studies show their algorithms of retrieving water quality parameters from 

satellite images have high accuracies, one weakness exists among them. That is they 

usually utilize only one or two satellite images and the corresponding ground data as their 

research scales, which means that their methodologies are probably time-specific or 

site-specific. Although the Landsat images have been used for estimating water quality for 

more than 30 years, few studies have ever been done on the long-time monitoring of inland 

lakes (Olmanson et al., 2008). As the water quality of lakes would not have a dramatic 

change during a very short time period, one algorithm may possibly be applied to many 

images due to this lack of variation. One exception for this is the recent study of Olmanson 

et al. (2008), which completed a 20-year comprehensive water clarity database of over 

10,000 lakes of Minnesota. The results show that there is a close relationship between the 

satellite reflectance value and the in-situ SDT data; they also provide evidence that the SDT 

has a strong geographic pattern in Minnesota. However, this research just simply continues 

their work of year 2002 (Olmanson et al., 2002) by adding some image data with no new 
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models or new water quality parameters. As the SDT is the simplest indicator which can be 

estimated by satellite images, adding more parameters is more challenging and difficult, 

especially for a long period.   

2.3.3 Assessment of Water Quality Estimation Models 

Several investigations have found that reliable empirical relationships can be developed 

between the Landsat data and the in-situ measured water clarity and chlorophyll 

concentration data (Kloiber et al., 2002). The relationship between remotely sensed 

imageries and water quality parameters are usually examined through linear regression of 

the in-situ measured data and the spectral values retrieved from the sensor (Lillesand et al., 

1983; Lathrop and Lillesand, 1986; Kloiber et al., 2002; Nelson et al., 2003; Onderka and 

Pekaroua, 2008). Kondratyev et al. (1998) mentioned in their article that unlike the clear 

marine or oceanic waters, for which linear regression retrieval relationship are valid, inland 

and coastal zone water masses have a high degree of optical complexity.  

 

According to the literature, most of the researchers use the regression models as the 

statistics analysis to calibrate the algorithms of extracting information and look for 

relationships between the image value and the ground data. One example is the study of 

Nelson et al. (2003), which used a linear regression model to relate the band ratio of 

ETM1/ETM3 with the in situ SDT. Fuller et al. (2004) used the multiple regression method 
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to derive the equation for extracting SDT from Landsat 7 ETM+ data and the stepwise 

regression method to identify the best-fit regression equation for predicting chl-a. Similar 

methodologies have been applied by Koponen et al. (2002), Kloiber et al. (2002), Ruhl et al. 

(2001), Sawaya et al. (2003), Chen et al. (2007), etc. The key in regression analysis is to 

select an appropriate regression method and independent variables of high R
2
, which 

indicates good correlation between the regression equation and existing data when its value 

approaches one (Wang et al., 2006). There are some scholars who used other 

methodologies to validate the data. Lathrop (1992) applied a bivariate regression in his 

study. Gan et al. (2004) employed the linear regression (LR) and the nonlinear regression 

(NLR), as well as the artificial neural network (ANN) called modified counter propagation 

network. They found that the NLR described the relationship between spectral data and 

ground data more closely than the LR. They also concluded that the ANN is more suitable 

to learn and generalize information from complex or poorly understood systems, in which 

case it will better represent the relationship than NLR. However this calibration method is 

normally utilized on the condition that the in-situ measurements of water quality 

characteristics are limited in spatial and temporal domains (Sudheer et al., 2006). In 

addition, the input information selection procedure is quite complex and requires 

considerable computational time. Therefore, if sufficient ground measurements exist, the 

regression methods are more frequently used. 
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2.4 Chapter Summary 

To summarize, the eutrophic problems existing in the inland lakes make the routine water 

quality monitoring programs of great necessity and importance. As the spatial coverage and 

sampling frequency make these traditional sampling programs limited, remote sensing is 

widely used in water quality studies nowadays. 

 

The current water quality estimation models based on satellite images are classified into 

three main categories: empirical approach, semi-empirical approach and analytical 

approach. Both the empirical and semi-empirical approaches have the merits of simplicity, 

whereas both of them have the weakness of overly relying on in-situ data. The analytical 

approach is physically-based and relatively independent from the ground measurements 

data but it involves too many optical constituents.  

 

Images with different spatial resolutions have been applied to the area of water quality 

studies. Satellite data with relatively low spatial resolutions such as the SeaWiFS and 

MODIS images have very good temporal resolutions so they are widely utilized in trend 

analysis; however, they are often applied in the context of oceanic water rather than lake 

water studies owing to their limited spatial resolutions. High resolution satellite data such 

as IKONOS and QuickBird can better represent the spatial details of lake water quality, 
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whereas these studies are often limited by the influence of shadow in the images, as well as 

the expensive data acquisition. The 30m medium spatial resolution image such as Landsat 

TM data is considered as a compromise between these weaknesses and it can be used in 

both trend analysis and for displaying spatial details of lake water.  

 

It is also noticeable that several studies of water quality estimation by remote sensing focus 

on the algorithms for retrieving water quality themselves, while ignoring the lake water 

characteristics. Afterall, remote sensing serves as a tool or supplement for water quality 

monitoring in order to reduce human‟s burden, whether it will be treated as a policy or not. 

At the moment, few investigations are aiming at the long trend water quality monitoring of 

inland lakes, although many scholars choose to select one specific study area and focus on 

the water pollution problem itself. 

 

In addition to building a relationship between the TM images and water quality parameters, 

this study aims to analyze water quality (SDT and chl-a) change of one inland lake, Lake 

Simcoe, in the last 22 years, as well as the geographic pattern of these water quality 

parameters. As both the image data and in-situ data involved in this study are quite 

complex and from different time periods of each year, the empirical approach is utilized to 

build reliable relationships between each pair of data (the image data and the almost 

simultaneous in-situ data). To avoid the scene-specific problems of the empirical approach, 
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one best model is chosen for each image after the comparison of different band 

combinations. These empirical equations calculated from regression analysis are then 

utilized to estimate the SDT and chl-a concentration maps. 
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Chapter 3 

Satellite-based Water Quality Monitoring Method 

This chapter provides a detailed description of the methodology developed in this study. 

Section 3.1 introduces the study site of this research, which includes the reasons for 

choosing Lake Simcoe, the problem statement and the related work about this lake. Then 

Section 3.2 describes both the image data and the in-situ data. In Sections 3.3 and 3.4, 

interpretations of the image process procedures and the explanation of models are given. 

Section 3.5 describes how the linear regression is used in this study to calibrate the 

estimated water quality parameters, followed by the spatial and temporal analysis in 

Section 3.6. Lastly this chapter is summarized in Section 3.7. 

3.1 Study Area 

3.1.1 Lake Simcoe and Its Water Quality Problem 

Lake Simcoe, located in the southern part of Ontario, is regarded as the 12
th

 largest lake in 

the province. It is also a large freshwater lake to freeze over completely during the winter. 

With the latitude of 44°25′N and the longitude of 79°20′W, Lake Simcoe has a surface area 

of 722km
2
 in total, a maximum depth of 41m, length of 30km, and width of 25km. This 

lake consists of the “main” basin and two large bays, which are Cook‟s Bay at the south 

and Kempenfelt Bay on the west side (Johnson and Nicholls, 1989).  

http://stable.toolserver.org/geohack/geohack.php?pagename=Lake_Simcoe&params=44_26_12_N_079_20_21_W_type:waterbody_region:CA-ON
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Great significance has been empowered to this lake by the residents living around it. In this 

area, the fishery is known as an important industry, which generates more than 200 million 

dollars a year (Environment Canada, 2009). However, there have been water-quality 

problems in Lake Simcoe since the 1970s, when the phosphorus load to this lake 

dramatically increased and subsequently contributed to the recruitment failure of 

cold-water fish, as well as the excessive growth of aquatic macrophytes and algae (Winter 

et al., 2007). 

 

This overload of phosphorus is derived from the land use around Lake Simcoe, which is 

predominately agricultural land, the forest, and wetland; in addition, the vegetation lands 

occupy 40% of the terrestrial area (Johnson and Nicholls, 1989). Only 5% of the 

catchments area is urban, where the population has doubled in the past twenty years 

(Kilgour et al., 2008; Eimers et al., 2005). Figure 3.1 shows the shape and land use of Lake 

Simcoe and it demonstrates that most of the land around this lake is covered by cultural 

meadow, thicket and the intensive agriculture land. These land cover types are summarized 

in the pie chart (see Figure 3.2). The landforms and land uses in the watershed significantly 

influence the water flowing to the lake, and thus the water quality of the lake.  
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Figure 3.1 Ecological Land Use Map of Lake Simcoe 

(Source: Lake Simcoe Region Conservation Authority) 
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Figure 3.2 Land Use Distribution of the Lake Simcoe Area 

 

3.1.2. Related Studies on Lake Simcoe 

Since Lake Simcoe has a noticeable water-quality problem, in the past two decades, great 

attention has been paid to this watershed in order to improve its water quality. One example 

of this, the Lake Simcoe Environmental Management Strategy (LSEMS), which was 

initiated in the 1980s in response to a declining coldwater fishery in this lake, is to protect 

the health of the Lake Simcoe watershed ecosystem by restoring a self sustaining coldwater 

fishery, improving water quality, reducing phosphorus loads and protecting natural heritage 

features and functions (LSEMS, 2006). The creation of the Lake Simcoe Region 

Conservation Authority (LSRCA) played a role as the lead agency, as well as delivering 

cost effective programs and projects that will help restore a naturally reproducing coldwater 

fishery in Lake Simcoe (LSEMS, 2006). The LSEMS is to protect the local ecosystems and 
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contribute to quality of life in communities throughout the watershed. The Lake Simcoe 

Conservation Foundation (LSCF) was also founded to protect and restore the lake, in 

partnership with the LSRCA and it takes a watershed-based approach to cleaning up the 

lake (LSCF, 2006). 

 

Besides these strategies made by the management departments, the scientists also paid 

significant attention to the problem of Lake Simcoe in the past few years. As phosphorus is 

the main problem of Lake Simcoe, related studies have been conducted in order to lower 

the phosphorus concentration in this lake. Winter et al. (2005) used an empirical modeling 

approach to derive a phosphorus loading objective, and this model was evaluated using the 

data from 1980 to 2004. The proposed total phosphorus (TP) loading target of 75 metric 

tons/year was predicted. Lu et al. (2006) described a 3-D hydrodynamic, thermal and water 

quality model, including wind-driven circulation, temperature variation, to stimulate 

eutrophication processes, such as the algal growth, in response to the loadings of 

phosphorus. Johnsong and Nicholls (1988) used a combination of sonar and core MSR 

measurements to deal with spatial variability in Lake Simcoe. In 1989, they did a temporal 

and spatial variability research of sediment and phosphorus loads in this lake. Nicholls 

(1997) did a limnological-based study for the phosphorus loading objective of Lake 

Simcoe. 
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The research above have contributed greatly to the management of Lake Simcoe, as the 

results of these studies reveal that the TP loads to Lake Simcoe are currently below the 

target 75 metric tons/year (Winter et al., 2007). However, algae and macrophytes continue 

to be problems in the near-shore zone of the lake. In addition, the dissolved oxygen 

concentrations remain below the level (7mg/L), which is considered to be protective of lake 

trout. Therefore, the lake water quality monitoring, as well as the efforts to reduce TP loads 

to this lake still need to be continued (Winter et al., 2007).  

 

The previous studies imply that the water-quality monitoring of Lake Simcoe still relies on 

conventional approaches. However, there has been a reduction of ground stations on this 

lake since 1995. Now only 11 and 8 stations are left for the sampling of SDT and chl-a, 

respectively (Figure 3.3). This, coupled with limitations of the traditional water-quality 

monitoring programs, makes a supplementary or an alternative method necessary for the 

water-quality monitoring of Lake Simcoe. In this study, a remote sensing technique plays 

the role of a supplement to the old methodologies to estimate the water quality parameters 

from the TM images. Also, many of those studies focused on phosphorus concentration 

itself, rather than considering other water quality parameters, which can also indicate the 

problems that Lake Simcoe is facing. As the phosphorus does not had obvious optical 

characteristics, the SDT and the concentration of chl-a are utilized here as indicators of 

eutrophication effects.  
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This research can demonstrate the spatial distribution of the eutrophic areas, as well as 

simulate the trends of water quality change in Lake Simcoe. This study can build a bridge 

between water-quality parameters (e.g., SDT and chl-a) and TM imagery. In year 2008, the 

Canadian government opened a 30-million fund for the Lake Simcoe clean-up, to reduce 

the environmental stresses (ENS, 2008). Therefore, the results of this study are of great 

value and significance to the to the whole environmental management of Lake Simcoe.  

3.2 Satellite Images and Lake Reference Data 

This project has had data support from Environment Canada and Ontario Ministry of 

Environment (MOE). In this study, a total of 5 cloud-free and well-calibrated Landsat 5 

TM images were provided by CCIW, and 17 original Landsat 5 TM images were obtained 

from the United States Geological Survey (USGS) website free of charge. The in-situ data, 

such as the SDT, chl-a concentration, and DOC concentration, were provided by MOE.  

3.2.1 Landsat-5 TM Images 

With Regard to the spatial coverage of Lake Simcoe, Landsat 5 TM imagery is considered 

as appropriate. Although Landsat TM data cannot be used reliably to monitor short-term 

trends in water clarity, this satellite system is well suited to provide broad spatial coverage 

and multi-year trends (Kloiber et al., 2002). The satellite images used in this study were 

from Landsat 5 TM, which has been operating over the entire period (1987-2008). The TM 

images have a spatial resolution of 30m and temporal resolution of 16 days. They consist of 
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seven bands and their parameters are shown in Table 3.1. Each of these bands or the 

combination of them can be selected to detect and monitor different types of Earth 

resources. For example, the first band of TM data, penetrating water for bathymetric 

mapping along coastal areas, is useful for soil-vegetation differentiation and for 

distinguishing forest types. TM2 detects green reflectance from healthy vegetation, and 

TM3 is useful for detecting chlorophyll absorption in vegetation. TM4 data is ideal for 

detecting near infrared (NIR) reflectance peaks in healthy green vegetation and for 

detecting water-land interfaces. The two mid-IR red bands on TM 5 and TM7 are useful for 

vegetation and soil moisture studies and for discriminating between rock and mineral types. 

The thermal infrared (TIR) band on TM6 is designed to assist in thermal mapping, and is 

used for soil moisture and vegetation studies (USGS, 2009). Therefore, the TM1 to TM 4 

are combined and used to estimate the water quality parameters in this study. 

 

A total of 22 Landsat 5 TM images with a time range of 22 years, from April 19, 1987 to 

September 19, 2008, are employed in this study. Table 3.2 shows the metadata of these 

images, which includes the dates, cloud cover, sun elevation and band numbers. All these 

data were downloaded from the website of the USGS free of charge. The selection of data 

is based on the principle that the cloud coverage is less than 10%, as well as the almost 

simultaneous measurements of in situ samplings, within +/- 10days. Table 3.3 lists the 

dates of each pair of the satellite data and in-situ data of this study. 
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Table 3.1 Parameters of Landsat 5 TM images 

 

Bands Spectrum Wavelength (µm) Spatial Resolution (m) 

TM1 Blue 0.45 - 0.52 30 

TM2 Green 0.52 - 0.60 30 

TM3 Red 0.63 - 0.69 30 

TM4 Near IR 0.76 - 0.90 30 

TM5 SWIR 1.55 - 1.75 30 

TM6 LWIR 10.40 - 12.50 120 

TM7 SWIR 2.08 - 2.35 30 

 

Table 3.2 Metadata of Landsat 5 TM images 

 

Date Cloud 

Coverage 

Sun Azimuth (°) Sun Elevation (°) No. of Bands 

1987-04-19 0% 135.8392099 48.8680372 7 

1987-05-05 0% 132.5496972 53.5759521 7 

1988-05-07 0% 134.2458209 55.1267691 7 

1989-06-11 0% 125.7547171 59.3775064 7 

1990-08-17 0% 131.49719753 49.744003 7 

1991-07-19 10% 124.59232065 55.98502985 7 

1991-09-05 0% 139.27477421 45.2589758 7 

1995-07-30 0% 121.13693138 51.27711498 7 

1995-08-15 10% 125.73420458 47.95133289 7 

1996-05-29 0% 122.74349888 56.2541567 7 

2000-07-27 0% 131.1106679 56.4165954 7 

2001-08-15 0% 137.67336349 52.71855079 7 

2001-10-02 0% 152.7970659 38.04354591 7 

2005-07-09 0% 131.90979757 60.66005591 7 

2005-08-26 0% 144.07138577 50.63641318 7 

2006-05-09 0% 142.04860848 58.10068656 7 

2008-06-15 0% 132.5020829 62.13810488 7 

2008-07-01 0.82% 131.34157724 61.39478308 7 

2008-07-17 8.64% 132.60882833 59.39962323 7 

2008-08-18 9.18% 140.70618293 52.51434213 7 

2008-09-03 5.02% 145.90949289 47.91620946 7 

2008-09-19 0.42% 150.83869111 42.75134619 7 
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3.2.2 Lake Reference Data   

Ontario Ministry of the Environment (MOE) has been measuring all kinds of water quality 

parameters of Lake Simcoe for more than 20 years since 1982 and all these data are 

recorded in the documents.  

 

It has been proven that the satellite data and the ground measurement data should be taken 

almost simultaneously, for the reason that water clarity usually does not exhibit large and 

rapid fluctuations in a given lake (Brezonik et al., 2007). Very fortunately, 22 of the 

measurements are found very close to the dates of the available Landsat 5 TM images of 

Lake Simcoe. There are a total of 15 ground sampling stations distributed on the lake (see 

Figure 3.3). Eleven of these stations, which are highlighted in red shown in Figure 3.3, are 

still in use while the other four yellow ones are the historical stations. Sampling is 

conducted routinely every two weeks, during the ice-free seasons through each of those 

years and the water would be analyzed in the laboratory to extract concentrations of 

different water quality indicators. The parameters include pH results, chl-a concentration, 

chl-b concentration, DOC and SDT. Both the chl-a concentration and the SDT are 

important indicators for lake water quality estimation. Table 3.3 shows the dates of both the 

image data and in-situ data used in this study, as well as the available quantity of 

measurement points. It reveals that the number of functional stations has been reduced 

since 1995, and there are only 11 stations left for the sampling of SDT, and 8 stations for 
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chl-a. Normally only the images within a 10-day overlap with the in situ data can be 

selected. However, there are three images with a longer period than 10 days compared with 

the ground measured data in Table 3.3. The reason for doing this is that these three images 

still have a good correlation with the in-situ measurements, and considering that the trends 

analysis is one of the main objectives of this study, they are kept in the list on the condition 

that they do not affect the accuracy of results. 
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Figure 3.3 Location of the Sampling Stations on Lake Simcoe 

(Source: Ontario Ministry of the Environment) 
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Table 3.3 Available Stations for Each Pair of Data 

 

Image Date In-situ Date No. of 

Stations 

Image Date In-situ Date No. of Stations 

  SDT Chl-a   SDT Chl-a 

1987-04-19 1987-05-21 15 15 2001-08-15 2001-08-18 11 8 

1987-05-05 1987-05-21 12 12 2001-10-02 2001-09-28 11 8 

1988-05-07 1988-05-08 12 12 2005-07-09 2005-07-11 11 8 

1989-06-11 1989-06-12 12 12 2005-08-26 2005-08-28 11 8 

1990-08-17 1990-08-15 15 15 2006-05-09 2006-06-05 11 8 

1991-07-19 1991-07-17 15 15 2008-06-15 2008-06-21 11 8 

1991-09-05 1991-09-04 15 15 2008-07-01 2008-07-05 11 8 

1995-07-30 1995-07-25 12 12 2008-07-17 2008-07-19 11 8 

1995-08-15 1995-08-08 12 12 2008-08-18 2008-08-16 11 8 

1996-05-29 1996-05-20 12 15 2008-09-03 2008-08-30 11 8 

2000-07-27 2000-07-30 11 8 2008-09-19 2008-09-14 11 8 

 

3.3 Data Processing 

 

Figure 3.4 presents an overall flowchart of the methodology used in this study. Both the 

satellite data and the in-situ data need to be preprocessed, which includes resampling, 

vector clipping, and the atmospheric correction for the satellite data; coupled with creating 

the point layers and the conversion to areas-of-interest (AOI) for the in-situ data. The DN 

values of the stations on the images are extracted through the AOIs and outputted as ASCII 

files, and then these values are compared with the in-situ data. Different models are used 

for the estimations of SDT and chl-a concentration, by utilizing linear regression analysis. 

Once the correlation coefficient R
2
 is considered as high enough (more than 0.5 in this 

study specifically), a regression equation will be calculated and this equation can be used 
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for the whole image and generates a clarity or concentration map. Finally the result maps 

need to be smoothed, to remove the random or irregular pixels that seem to be discordant 

with the surrounding pixels. Therefore, a 5*5 median filter in ENVI software is used for the 

result display, which makes the maps more coherent and consistent. A more specific and 

detailed explanation for every single step in this flowchart will be given in the following 

sections. Sections 3.3.1 and 3.3.2 describe how the satellite images are pre-processed and 

how the atmospheric effects are removed, while Section 3.3.3 shows the steps of the in-situ 

data processing. 
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 Figure 3.4 Flowchart of the Entire Image Processing 
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3.3.1 Satellite Image Pre-processing  

Each TM image needs to be pre-processed and compared with the in-situ measured 

information. Both Figures 3.6 and 3.7 include the framework about how the TM images are 

pre-processed. The pre-processing procedure in this study includes three steps: resampling, 

registration, and the creation of water-only images. 

Data Resampling 

In remote sensing, as the given data are usually in one discrete space, the resampling 

methods are often utilized to represent the application data more accurately in the desired 

output discrete space (Trainer and Sun, 1991). Resampling is a process used to determine 

the pixel values to fill into the output matrix from the original image matrix (Lillesand et al., 

2004). As most of the image data in this study are the raw data downloaded from the USGS 

website, firstly, all of these Landsat 5 TM images are resampled to 30m using the nearest 

neighbor resampling method available in ENVI 4.4. The nearest neighbor resampling uses 

the nearest pixel without any interpolation to create the warped image (ENVI, 2007). 

Registration 

The second step of the image pre-processing is registration, which is to reference the 

images to geographic coordinates and correct them to match the base image geometry. In 

this study, the image-to-image registration is available in ENVI 4.4. A total of 10 ground 

control points (GCPs) are selected, and all of the 17 raw images (the wrap images) are 
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geographically registered to the standard images (the base images) from CCIW. Figure 3.5 

shows the distribution of GCPs in this study. In addition, these satellite images are 

uniformly projected to Zone 17N in the UTM (Universal Transverse Mercator Coordinate), 

with the datum of World Geodetic System 1984 (WGS84).  

 

 

Figure 3.5 Distribution of Ground Control Points in Lake Simcoe 

 

Creation of Water-Only Images 

As Lake Simcoe only occupies a relatively small area of each of the satellite images, a 

vector boundary layer covering this lake and the southern part of Cook‟s Bay was created 

 

 

GCPs GCPs 

GCPs 

http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
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using ArcGIS 9.2 software with the accordance of the well-calibrated satellite data. By 

using the same software package, each of the images is cut with this vector layer, and the 

water-only images are extracted. This step accelerates the speed of each calculation 

afterwards and gives a better colour display or distribution of the results. 

3.3.2 Removal of Atmospheric Effects  

The water quality information is usually so weak that some of the evitable influences, such 

as the errors caused by the atmosphere, need to be removed. Therefore, the atmospheric 

correction is performed to the original images after the pre-processing procedures.  

 

The atmospheric correction is completed with the ATCOR-2 module, which is an add-on 

module designed particularly for the atmospheric correction in flat terrains in the PCI 

Geomatica 10.1 package. The TM standard calibration file designed for Landsat 4 and 5 

TM is selected for this correction. Calibrations of the images without a “header.dat” files 

are calculated by reference to the solar zenith and solar azimuth, according to the metadata 

of each image. In addition, two parameters need to be defined for this correction: the 

atmospheric condition of this study area is chosen as rural; while the conditions, as well as 

the thermal atmospheric definition, are selected as mid-latitude summer. 
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3.3.3 Areas of Interest from In-situ Data 

The right upper part of Figure 3.4 shows how the water quality data in the text-file are 

transferred into visualized geographical information on the maps. As the in-situ data 

obtained from MOE include one geo-location file describing the 15 observation stations on 

Lake Simcoe, a point layer in accordance to the latitude and longitude of these 15 stations 

is created by ArcGIS 9.2 software. This vector layer can be transferred to an AOI by using 

ENVI 4.4, when it is overlaid with one of the satellite images. Then the DN values of the 

station locations on that image can be recorded to the ASCII files. Each of these ASCII 

files consists of the information of 7 bands, and those numbers can then be calculated or 

directly used to estimate the SDT and chl-a of Lake Simcoe. 

3.4 Model Development and Validation 

3.4.1 Models for SDT Estimation 

In this section, the SDT is estimated from the satellite images, by utilizing both the general 

equation and the improved one in this study. 

SDT Estimation using the General Equation 

Figure 3.6 presents a flowchart showing more details about image pre-processing 

procedures, as well as the model development. After the data pre-processing and the 

creation of AOIs, the DN values of those specific stations are extracted from the images. 
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Then these DN values of different bands are combined and calculated based on Equation 

(1), which is the general predictive equation for water clarity of inland lakes, and then are 

compared with the ground measurements.  

 

ln(SDT) = a(TM1/TM3) + b(TM1) + c                 (1) 

 

Where, TM1 and TM3 are the brightness values measured by the Landsat sensor in the blue 

and red bands, respectively. ln(SDT) stands for the natural logarithm of the SDT. a, b, and c 

are the coefficients fitting to the in-situ data by the regression analysis. These coefficients 

can be used to estimate the SDT values for the entire lake in the same Landsat image, once 

they have been fitted to the equation. (Brezonik et al., 2002).  

 

In this study specifically, however, the SDT value itself, rather than its natural logarithm, 

has a higher R
2 

and therefore a better correlation with the satellite brightness values by 

correlation analysis in SPSS 16.0 software. So the in-situ SDT itself is compared with the 

estimated SDT from satellite images instead, and this relation can be described in Equation 

(2), where a, b, and c are the regression coefficients which will fit the ground truth data; 

TM1 and TM3 stand for the reflectance values of the TM1 and TM3 of the Landsat 5 TM 

images, and the SDTE1 refers to the estimated SDT from TM images.  

 

SDTE1 = a(TM1/TM3) + b(TM1) + c                 (2) 

 

The SDT Estimation using the Improved Equation 
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A preliminary comparison is made between the reflectance values extracted from TM data 

and the in-situ measured SDT values. It shows that sampling points with low SDT are 

frequently accompanied with a high reflectance of TM3. Moreover, the reflectance values 

of TM3 alter following the change of SDT regularly, whereas the brightness data of TM1 

do not show such a related trend. Therefore, TM3 is regarded as a better predictor than 

TM1 for the SDT estimation in this study. In Equation (3), TM3 reflectance values are 

subsequently employed to replace the TM1 reflectance in Equation (2), in order to improve 

the prediction accuracies of SDT. 

 

SDTE2 = a (TM1/TM3) + b(TM3) + c                 (3) 

 

where a, b, and c are the regression coefficients fitting the calibration data; TM1 and TM3 

stand for the reflectance values of blue and red bands of the Landsat TM images, and the 

SDTE2 refers to the estimated SDT from TM images using Equation (3).  

 

To summarize, based on the reflectance characteristics of the Landsat TM images in this 

study, as well as their similarities with the in-situ data, the generally used SDT equation is 

improved by replacing TM1 with TM3. Both of these two equations are used for the SDT 

estimations. The accuracies of these estimations are compared by utilizing the linear 

regression analysis which will be described in detail in Section 3.5. 
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Figure 3.6 Flowcharts for SDT and Satellite Comparison 

3.4.2 Models for Chl-a Estimation 

Chlorophyll has a specific absorption and reflection spectrum. The absorption peak is near 

440nm, the reflection peak near 550nm and a visible fluorescence near 685nm (Li et al., 

2007). Therefore, these characteristics of absorption and reflection make TM1 to TM4 

useful for the estimation of chl-a concentration. Figure 3.7 illustrates the work flow of 

estimating chl-a concentration from the Landsat 5 TM images. There have been a variety of 
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algorithms in previous studies to retrieve the chl-a concentration from the TM images, but 

it turned out that these models have different results in each image of this study. As no 

universal algorithm in this study is applicable to chl-a estimation, the predictive models for 

chl-a concentration are based on the empirical approach. In order to find at least one 

effective band combination for each of the images, different bands and their combinations 

are compared to get highest correlation coefficient R
2
 for each pair of data. This best-fit 

model will then be chosen as the regression equation for that specific image and be 

considered as the one which can represent or estimate the chl-a concentration of that image. 

The predictive equation below can be used for the estimation of chl-a concentration,  

 

CHL-AE = kX+b                                       (4) 

 

where k and b stand for the regression coefficients, CHL-AE means the estimated chl-a 

concentration from the satellite reflectance data, and X refers to the bands combination 

with the highest correlation coefficient R
2
 with the calibration data. A total of 9 bands 

combinations in total are compared to constitute the chl-a estimating equations of each 

image:  

 

CHL-A1=k (TM3*TM4) +b                               (5) 

CHL-A2=k (TM3*TM4/lnTM1) +b                         ( 6 ) 

CHL-A3=k (TM3*TM4/ln(TM1+TM2) +b                   (7) 

CHL-A4=k (TM3/TM4) +b                               (8)                              
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CHL-A5=k (TM4-TM3)/ (TM4+TM3) +b                   (9) 

CHL-A6=k (TM4/TM1) +b                              (10) 

CHL-A7=k (TM1/TM2) +b                              (11) 

CHL-A8=k (ln (TM1/TM2)) +b                           (12) 

CHL-A9=k ((TM1-TM3)/ (TM2-TM3)) +b                  (13) 

where k and b are regression coefficients, TM1-TM4 are the reflectance value of TM band 

1- band 4, respectively. CHL-A1 to CHL-A9 stand for the chl-a concentrations estimated 

by Equations (5) – (13).  

 

Among these equations, Equation (5) is proposed by Chen et al. (1996), who indicated that 

TM3*TM4 was the most suitable variable for estimating chl-a concentration of seashore 

undersurface. Equations (6) and (7) are the improved equations used in the study of Li et al. 

(2007), which can possibly remove the effects caused by sediment scattering. Equation (9) 

utilizes the vegetation index as the independent variable. Equations (11) and (12) use 

TM1/TM2 as the predictor of chl-a concentration (Dwivedi and Narain, 1987; Li et al., 

2007). In Equation (13), TM3 is subtracted from TM1 and TM2 before calculating the 

blue/green ratio to remove some of the scattering effects. 
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Figure 3.7 Flowchart of Chl-a Concentration Estimation 

3.5 Regression Analysis 

After utilizing different models to estimate SDT and chl-a concentration, the regression 

analysis is employed to find the best-fit equation to describe the relationship between each 
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of the estimated data and the corresponding in-situ data. The accuracies of these 

estimations are measured by the correlation coefficient R
2
. 

 

In statistics, the objective of regression analysis is to build a function of predictor (or 

independent) variables to express the response (or dependent) variable. Linear regression 

analysis, modeled by a least squares function, is to give information on the relationship 

between a dependent variable and one or more independent variables to the extent that 

information is contained in the data (Kaw and Kalu, 2008).  

 

The correlation between two variables reflects the degree to which the variables are related 

and the Pearson Product Moment Correlation (called Pearson‟s correlation for short) is a 

commonly used measure of correlation. The correlation coefficient measures the degree to 

which two things vary together or oppositely. The maximum positive correlation is 1.00. If 

the two standardized variables covary positively and perfectly, or vary oppositely and 

perfectly, then the correlations will both equal to 1.00 (Rummel, 1976). When computed in 

a sample, it is designated by the letter “r” and is sometimes called “Pearson r”. Pearson r 

reflects the degree of linear relationship between two variables and it ranges from +1 to -1. 

A correlation of “+1” means that there is a perfect positive linear relationship between 

variables. In a scatter plot depicting this relationship, the relationship is positive when the 

scores on the X-axis are high associated with high scores on the Y-axis. 
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Each of these 22 images is compared with the corresponding in-situ measured data. The 

multiple linear regression analysis is conducted under the environment of the statistical 

analysis software SPSS 16.0. Two couples of variables are compared by correlating to the 

calibration data, one couple is the reflectance value of TM1 and TM1/TM3, while the other 

is the reflectance value of TM3 and TM1/TM3. The couple with higher coefficients R
2
 will 

be utilized as the independent variables for linear regression analysis, and the in-situ SDT 

will be employed as the dependent variable. The resulting regression equations will be 

applied to the entire lake area of those images in order to map and stimulate the SDT 

distribution of Lake Simcoe. Similar comparisons are conducted for the chl-a concentration 

estimation, while the combinations of reflectance value are more complex which include 

TM3*TM4 (Chen et al., 1996), TM3*TM4/lnTM1(Li et al., 2007), 

TM3*TM4/ln(TM1+TM2) (Li et al., 2007), TM3/TM4, (TM4-TM3)/(TM4+TM3), 

TM4/TM1, TM1/TM2 (Dwivedi and Narain, 1987), ln(TM1/TM2) (Li et al., 2007), and  

(TM1-TM3)/(TM2-TM3). 

3.6 Spatial and Temporal Analysis 

By applying the regression equations to each of the images in the database, the spatial 

patterns, as well as the temporal trends of SDT and chl-a, can be investigated. 
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3.6.1 Spatial Patterns of SDT and Chl-a 

The spatial patterns of both SDT and chl-a are displayed in terms of the concentration maps. 

These maps are generated by employing each of the regression equations to calculate its 

corresponding image, on condition that these equations are reliable enough. A 5*5 medium 

filter is utilized for the resultant maps individually, in order to reduce the noise and make 

the output images smoother.  

3.6.2 Temporal Trends of SDT and Chl-a 

The seasonal patterns and temporal trends of water quality in Lake Simcoe are both 

analyzed in this study, as the available data for Lake Simcoe have a long time span of 22 

years. These patterns and trends of SDT and chl-a can be determined in terms of both the 

line charts and the concentration maps. The line charts are calculated from the monthly 

averaged SDT and chl-a collected by the ground stations, using Microsoft Excel 2007. The 

concentration maps are based on the regression equations, see Section 3.6.1. 

3.7 Chapter Summary 

In this study, Lake Simcoe is selected as the study site because of its eutrophication 

problem, the reduction of ground stations, and the data availability, as well as the lack of 

remote sensing studies. A total of 22 Landsat 5 TM images ranging from 1987 to 2008, are 

chosen as the satellite data on condition that the cloud coverage is no more than 10%. The 
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calibration data, including SDT, chl-a and DOC concentrations, are selected when the 

in-situ measurements are approximately simultaneous (±10days) with the overpass time of 

the satellite. 

 

All the images are pre-processed, including the data resampling, the water-only image 

creation, and the atmospheric correction. The empirical models based on different band 

combinations are developed or used to estimate the SDT and chl-a concentration from the 

satellite images. The accuracies of these estimations are measured by the correlation 

coefficient R
2
.  

 

Besides the general SDT prediction model, the model utilized in this study is improved by 

replacing TM1 with TM3. For the chl-a concentration, 9 current models are compared, so 

as to select one best model to estimate chl-a from each image. By performing the linear 

regression analysis, equations fitting the linear relationship between the reflectance values 

and the calibration data are developed and then applied to each image, for the purpose of 

estimating the SDT or chl-a concentration of Lake Simcoe.  
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Chapter 4 

Results and Discussion 

This chapter presents the results and explains the findings of this study. The beginning two 

sections describe and discuss the results of linear regression for the SDT and chl-a 

estimations. Section 4.3 graphs and analyzes the spatial distribution of eutrophic areas, as 

well as the trends of SDT and chl-a over these years. A lake water classification based on 

the trophic state criteria is depicted in Section 4.4. Section 4.5 discusses the influence of 

DOC on the water quality estimation. Finally this chapter is summarized in Section 4.6. 

4.1 Evaluation of Lake Clarity Estimation 

In this section, the accuracies of SDT estimation are evaluated. The SDT calculated from 

the Landsat images are compared to the in-situ measurements in three ways, which include: 

the individual comparison, the comparison for year 2008, and the comparison of the entire 

dataset. 

4.1.1 SDT Evaluation for Individual Datasets 

A Comparison between Two Models 

Regression equations relating each TM image to the corresponding in-situ SDT are listed in 

Table 4.1, which includes the R
2
, and SEE as well. The results indicate that the estimations 

using both models have good agreements with the in-situ SDT. The generally used SDT 
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model is related to the ground measurements with the R
2
 ranging from 0.225 to 0.836, the 

average R
2
 of 0.545 and the average standard error of estimation (SEE) of 1.545. On the 

other hand, the improved model in this study has the R
2
 ranging from 0.232 to 0.861, the 

average R
2 
of 0.622, and the average SEE of 1.374. In other words, the composed TM3 and 

TM1/TM3 is better correlated to the calibration data than combination of TM1 and 

TM1/TM3 in general. Additionally, 68.2% (15 out of 22 images) of these comparisons 

have higher R
2
 by using the combination of TM3 and TM1/TM3, while only 7 images have 

higher R
2 

by utilizing the general predictive variables for SDT estimation. Furthermore, it is 

impressive that a total of 5 comparisons of the commonly used combination, highlighted in 

Table 4.1, show poor correlations with the calibration data, while the improved one in this 

study has significantly better correlations instead. These comparisons are illustrated in the 

form of scatter plots in Figure 4.1, including the data of 1991-09-05, 2001-08-15, 

2005-07-09, 2008-07-17 and 2008-09-03. In these scatter plots, 1991-09-05(a), 

2001-08-15(a), 2005-07-09(a), 2008-07-17(a) and 2008-09-03(a), on the left side, are the 

estimations made by the general model, while 1991-09-05(b), 2001-08-15(b), 

2005-07-09(b), 2008-07-17(b) and 2008-09-03(b) are the estimations made by the 

improved model. Each of these scatter plots contains a regression line, which is the 

equation made by linear regression. If the estimated SDT is well related to the 

ground-based SDT, the scatter points should be close to the reference line. Also, the 

regression line should be close to the line of 1:1, if the estimation is reliable. Thus, these 
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comparisons show that the improved model has a better agreement with the calibration data, 

which indicates that the TM3 and TM1/TM3 combination can greatly improve the 

accuracies of SDT estimations from Landsat 5 TM images in this study.  

 

The results of multiple regression analysis for Landsat 5 TM imagery and the in situ SDT 

data also show that the reflectance value of TM1 has a much lower partial correlation than 

the ratio of TM1 and TM3 by comparison to the observed ground data. This disagreement 

is probably due to the high concentration of dissolved organic carbon in this lake, which 

will significantly influence the absorption of the blue light and therefore lower the 

reflectance of TM1. In this case, the partial correlation results would not have a good 

relationship with this band. 
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Figure 4.1 Scatter Plots Comparisons for SDT Estimations 
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Figure 4.1(Cont.) Scatter Plots Comparisons for SDT Estimations 
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Table 4.1 Regression Equations for Prediction of SDT from TM Images 

 

Date R
2
 SEE R

2 
SEE Regression Equations 

Variables (TM1,TM1/TM3) (TM3, TM1/TM3) B1=TM1; B3=TM3 

1987/04/19 0.502 1.34297 0.432 1.43450 2.086(B1/B3)+0.241B1-21.272 

1987/05/05 0.609 1.18947 0.615 1.18075 0.507(B1/B3)+0.053B3+0.381 

1988/05/07 0.524 0.59201 0.578 0.55720 -2.002(B1/B3)-0.652B3+22.027 

1989/06/11 0.457 0.97484 0.453 0.97771 0.948(B1/B3)-0.140B1+11.221 

1990/08/17 0.846 0.50091 0.839 0.51252 2.187(B1/B3)+0.096B1-6.109 

1991/07/19 0.842 0.54136 0.714 0.73008 2.411(B1/B3)+0.025B1-3.433 

1991/09/05 0.402 0.80485 0.832 0.42637 -0.032(B1/B3)-0.199 B3+3.842 

1995/07/30 0.169 1.27560 0.248 1.21342 -0.011(B1/B3)-0.554B3+4.967 

1995/08/15 0.718 0.41423 0.701 0.42689 0.215(B1/B3)+0.088B1+1.884 

1996/05/29 0.323 1.11368 0.343 1.09725 -1.846(B1/B3)-0.587B3+10.488 

2000/07/27 0.714 1.55438 0.834 1.18621 -5.159(B1/B3)-0.634B3+18.816 

2001/08/15 0.474 1.46664 0.640 1.21379 -0.196(B1/B3)-0.254B3+6.141 

2001/10/02 0.597 2.04098 0.600 2.15759 6.757(B1/B3)+0.103B3-1.298 

2005/07/09 0.489 3.75593 0.771 2.51644 -2.120(B1/B3)-0.621B3+17.133 

2005/08/26 0.598 1.90506 0.586 1.93198 2.373(B1/B3)+0.036B1+1.453 

2006/05/09 0.707 2.08672 0.776 1.82628 1.956(B1/B3)-0.192B3+3.722 

2008/06/15 0.445 2.50248 0.402 2.59570 1.643(B1/B3)+0.231B1+0.503 

2008/07/01 0.225 3.18481 0.232 3.16913 0.009(B1/B3)-0.416B3+6.829 

2008/07/17 0.225 3.38402 0.620 2.36985 -1.149(B1/B3)-0.919B3+13.861 

2008/08/18 0.671 1.22578 0.770 1.02469 1.645(B1/B3)-0.477B3+5.381 

2008/09/03 0.599 1.18845 0.839 0.75380 0.024(B1/B3)-0.328B3+4.794 

2008/09/19 0.843 0.93669 0.861 0.93488 7.088(B1/B3)+0.218B3-2.231 

 

Seasonal Influences to SDT Estimation 

In Table 4.1, the estimations of three datasets (1987/04/19, 1989/06/11 and 2008/06/15) are 

not reliable enough that the R
2
 of them are between 0.4 and 0.5. There are even two 

comparisons (1995/07/30 and 2008/07/01) with the R
2 
lower than 0.250.  

 



59 

 

Since all the Landsat images have been corrected to remove the atmospheric affects, the 

possible reason to explain these poor agreements is the seasonal influence. Olmanson et al. 

(2007) and Stadelmann et al. (2001) pointed out in their studies of Minnesota Lakes that the 

late-summer period is the best index period for the remote sensing of water clarity. Two 

reasons are concluded for this perspective: one is that most lakes have their worst water 

clarity in this period; the other is that the lake water clarity has the minimum short-term 

variability in the late-summer season (Olmanson et al., 2007). Their point is verified in this 

study as well. The employed satellite data have a seasonal variability, which include the 

early spring, late spring, early summer, late summer and even fall. In this study, the 

late-summer is defined as August and September. The results in Table 4.1 show that the 

vast majority of comparisons in the last-summer period have very close relationships, 

whereas those badly related data are mostly collected in the spring or early summer. For 

Lake Simcoe, as the early spring is the period right after the snow melting, it is 

understandable that there may be an internal mixing in the lake. Also, locations in a lake 

can vary due to wind mixing fairly rapidly. All of these factors can contribute to the 

instability of lake water and the low agreements between the satellite-estimated SDT and 

the in-situ SDT. 
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4.1.2 SDT Evaluation for 2008 

The available data in this study are more sufficient in 2008 than the other years. A total of 6 

images and the corresponding in-situ data are collected in 2008, from the very early 

summer to fall. This section shows the comparison between these two datasets.  

 

The scatter plot in Figure 4.2 shows that the satellite estimated SDT and the in-situ SDT 

have a fair agreement with the R
2 
of 0.606. Figure 4.3 is the similar comparison, which only 

uses the late-summer data in 2008. The linear relationship is much closer than the previous 

one and the R
2
 increases to 0.84. The late-summer comparison has a better correlation in 

that most of the samples are close to the reference line. Therefore, it can support the 

suggestion that the late-summer can be regarded as a better period for the lake water clarity 

prediction in 2008. However, compared with Figure 4.4, which is the scatter plot of in-situ 

SDT vs. the Estimated SDT for late-summer period in the entire database, the data in 2008 

still have a better agreement. The gap between these two results indicates that the close 

dates can lead to similar water clarity conditions, as the lake water quality does not show 

big difference during a short period. 
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Figure 4.2 Comparison between In-situ SDT and Estimated SDT for 2008 

 

 

 

Figure 4.3 Comparison between In-situ and Estimated SDT for late-summer 2008 
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4.1.3 SDT Evaluation for Entire Database 

This section shows the comparison results for the estimated SDT and in-situ SDT of the 

entire database. Firstly, all of the data of the late-summer period are employed in Figure 4.4, 

and then the dataset extended to the entire database in Figure 4.5. Both pairs of the datasets 

have good agreements, with the R
2
 of 0.747 and 0.712, respectively. Therefore, it can be 

concluded that the Landsat 5 TM images are reliable enough to predict the water clarity in 

Lake Simcoe. Also, the advantage of sampling in the late-summer is demonstrated again, as 

the comparison in that period has a higher R
2
 than the others. In the late-summer period, the 

lake usually has its worst water clarity (Olmanson et al., 2007), are there are more lights 

and signals reflected to the remote sensor. Therefore, the relationships between the 

reflectance values and in-situ data become stronger. 

 

Figure 4.4 Comparison between In-situ SDT and Estimated SDT for late-summer period 
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Figure 4.5 Comparison between In-situ and Estimated SDT for Entire Database 

4.2 Evaluation of Estimates of Chl-a Concentration 

4.2.1 Chl-a Evaluation for Individual Datasets 

The chl-a concentration estimated by 9 models composed of different bands have been 

compared to the in-situ chl-a data, and none of them show an obvious superiority than the 

other eight. Therefore in this study no model is proven to be the best or most efficient 

model to estimate the chl-a concentration from the TM images. Table 4.2 lists the resultant 

parameters of these comparisons, which include the correlation coefficient R, R
2
, SEE, best 

model and the regression equations for each pair of data, respectively. The results show that 

the best correlations between the Landsat TM images and the in-situ calibration data range 

from 0.142 to 0.941.  
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It is apparent that not every model suits all the imageries, however, each of those imageries 

have at least one best model with highest coefficient R
2
 , which mean that model is possibly 

the most reliable one to predict the chl-a in that specific image. For example, Figure 4.6 

shows four different models (B3*B4/lnB1, B3/B4, B3*B4 and Normalized Difference 

Vegetation Index (NDVI)) for the TM image of 1995-07-30, compared with the chemical 

data of July 23
th

, 1995. Those four comparisons have the correlation coefficients R
2 

of 

0.941, 0.486, 0.083, and 0.273, respectively. The prediction made by the model of 

B3*B4/lnB1 has a very good linear relationship with the chemical data, and the scatter 

points on the first plot seem to be close to the line, which means their relationship is 

probably linear. By contrast, in the other three scatter plots, the points are irregularly 

distributed and quite far-away from the line, so the estimated chl-a information extracted 

with those three models is in a very weak relationship with the in situ observed data. 

 

This comparison above indicates that the B3*B4/lnB1model is the best model for retrieving 

chlorophyll-a concentration from the TM image of 1995-07-30. Similar studies have been 

conducted for the rest of 21 images, and the best models for each image are listed in Table 

4.2. 
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Table 4.2 Results of Regression Analysis for Chl-a Estimations 

 

Date R R
2
 SEE Best Model Regression Equation 

(where X refers to the 

best model) 

1987/04/19 0.594 0.353 15.17618 B3/B4 Y=-22.533X+45.088 

1987/05/05 0.850 0.722 9.94329 B2/B1 Y=-12.737X+41.296 

1988/05/07 0.642 0.412 0.90519 B2/B1 Y=-4.588X+17.094 

1989/06/11 0.929 0.863 10.20124 B2/B1 Y=-156.791X+60.590 

1990/08/17 0.779 0.607 13.69362 NDVI Y=75.034X+11.139 

1991/07/19 0.753 0.568 9.99204 NDVI Y=43.284X+7.874 

1991/09/05 0.795 0.632 43.95226 (B1-B3)/(B2-B3) Y=-103.400X+91.043 

1995/07/30 0.970 0.941 0.67165 B3*B4/LnB1 Y=0.774X+0.569 

1995/08/15 0.733 0.538 0.76811 B1/B4 Y=0.875X+1.429 

1996/05/29 0.783 0.614 15.52595 B1/B4 Y=21.215X-24.228 

2000/07/27 0.710 0.505 5.57228 B3*B4 Y=0.065X-0.954 

2001/08/15 0.464 0.216 1.05171 NDVI Y=2.760X+3.101 

2001/10/02 0.802 0.643 7.32872 B3*B4/LnB1 Y=0.575X-4.021 

2005/07/09 0.377 0.142 0.35374 (B1-B3)/(B2-B3) Y=0.175X+1.224 

2005/08/26 0.557 0.310 0.34220 B3/B4 Y=-0.752X+3.421 

2006/05/09 0.468 0.219 1.10766 B3*B4 Y=0.077X+2.313 

2008/06/15 0.569 0.324 0.41241 B1/B4 Y=0.578X+1.404 

2008/07/01 0.481 0.232 0.58793 B1/B4 Y=0.266X+2.082 

2008/07/17 0.454 0.206 0.17637 B1/B2 Y=-0.794X+1.776 

2008/08/18 0.748 0.559 0.61880 Ln(B1/B2) Y=-3.986X+0.405 

2008/09/03 0.838 0.702 1.11818 (B1-B3)/(B2-B3) Y=-7.294X+5.758 

2008/09/19 0.965 0.932 0.27899 B3*B4/LnB1 Y=0.043X+2.120 
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Figure 4.6 Comparison of In-situ and Estimated Chl-a from Four Models 

4.2.2 Seasonal Influences for Chl-a Estimations 

The estimation of chl-a concentration for Lake Simcoe also shows seasonal patterns. 

Calculated from Table 4.2, the chl-a comparisons have an average R
2
 of 0.511. The 

late-summer comparisons have the average R
2
 of 0.523, while the non-late-summer ones 

have the average R
2
 of 0.492. The slight difference between these two sampling periods is 

enlarged when the data are limited within the same year. Take year 2008 with a total of 6 

comparisons for example, the late-summer data pairs have an average R
2
 of 0.731, whereas 

B3*B4/lnB1 B3*B4 

B3/B4 NDVI 
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the non-late-summer ones only have the mean R
2
 of 0.254. The possible reasons for these 

seasonal lake-water variations include the lake geometry, air temperature and precipitation 

(Stadelmann et al., 2001). In the late-summer period, the precipitation is decreased, while 

the temperature of the lake is maximized. Therefore, more reflectance can be send back to 

the remote sensor. For the Lake Simcoe study, because there is a lack of these data, the 

relation between them and the water quality variations cannot be statistically analyzed. 

Nevertheless, the regression results show that chl-a has similar seasonal patterns with SDT. 

4.2.3 Chl-a Evaluation for Entire Database 

The estimation for chl-a concentration is not as good as the SDT prediction. Besides 

several poorly related individual comparisons, there are even 5 comparisons with the SEE 

larger than 10.00. The predictions from 9 models for 1991-09-05 have the SEE ranging 

from 43.952 to 70.247, respectively, which means this dataset is not suitable for the Chl-a 

estimation. Therefore, the data from this date are removed from the chl-a estimation for the 

entire database. 

 

Figure 4.7 presents the scatter plot of all the satellite estimated chl-a concentration 

compared with the ground-sampled chl-a. The resultant R
2
 is 0.632 and the SEE is 14.335. 

Highlighted in this figure, the regression fit line has a larger slope than the reference line 
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“y=x”. This offset indicates that the chl-a concentration is underestimated in this study, as 

the vertical coordinate of each point is greater than the horizontal one. 

 

The colour in the lake water can increase the absorption of light and therefore decrease the 

signal back to the remote sensors (Moore, 1980). Therefore, this underestimation maybe 

due to the chl-a itself as its concentration is normally high in Lake Simcoe, not to mention 

the hyper-eutrophic water in the southern bay. Besides the phytoplankton, DOC in the lake 

water is another absorber of light (Kondratyev et al., 1998). The monthly averaged DOC 

concentration in Lake Simcoe was above 4mg/L in the past, and it began to gradually 

increase to 6mg/L since the late 1990s. The reflected light can be decreased by this matter, 

and the signals come back to the sensor are therefore weakened. 

 

Brezonik et al. (2007) mentioned in their study that the reason for those low agreements 

can include the atmospheric conditions (e.g., haze and water vapor content), which will 

affect the light reflected by land and water surfaces as it travels back toward the satellite 

sensors. In this research, some of the images have slight cloud coverage between 0 and 

10%. Moreover, the water vapor content condition is unknown. These can both be the 

possible reasons for the low agreements between estimated data and in-situ data. 
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Figure 4.7 Comparison between In-situ and Estimated chl-a for Entire Database 

4.3 Spatial and Temporal Analysis 

4.3.1 Spatial Distribution of Polluted Areas 

The concentration map estimated by the regression equations can indicate the spatial 

distribution of the eutrophic areas. Figures 4.8 and 4.9 are the blue/white and the 

green/white color maps displaying the SDT and chl-a concentration estimated from the 

regression equations on 1991-08-17. In the blue/white map, the lighter the colour is, the 

clearer the water is. In the other map, the lighter the colour is, the higher the chl-a 

concentration is. This means that the dark blue area has the lowest SDT and the dark green 

area has the lowest chl-a concentration. From the blue/white map, it is obvious that the 

middle part of the lake body is normally clearer than the near-shore area, and the turbid 

area is concentrated at the northeast shore and the southern near-shore area. Both of the 
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maps show that the SDT and chl-a concentration are related, because in the same area, the 

higher the chl-a concentration is, the lower the SDT clarity usually is. And the area of low 

chl-a concentration is normally with a high SDT value. This characteristic is more obvious 

when the water is away from the shore, as there are frequently confusions between the 

land-pixels and lake-pixels. In the scale of the whole Lake Simcoe, the northeast part of this 

lake has worse water quality than the southwest part. This indicates that the northeast part 

of Lake Simcoe is suffering from a more severe water quality problem than the southwest 

part. It can also be found that the water quality is turning bad gradually following the 

direction from northeast to southwest. 
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Figure 4.8 Blue/White Map of the Estimated SDT of 1991-08-17 
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Figure 4.9 Estimated Chl-a Concentration Map of 1991-08-17 

4.3.2 Trends of SDT 

Figure 4.10 presents a line chart showing a trend of monthly average SDT, monthly 

maximum SDT and monthly minimum SDT dating from 1980 to 2008, based on the 

fix-point in-situ measurement data. During this time period, Lake Simcoe has an overall 
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monthly average SDT of 4.05m, a maximum monthly average SDT of 8.79m, in May 2005 

and a minimum monthly average of 0.4m, in April 1984.  

 

Cook Bay, which is located at the southernmost area of Lake Simcoe and about 60 km 

north of Toronto, is suffering from the most severe environmental problem among the Lake 

Simcoe areas. The contribution of TP is relatively high (2.1kg P/ha yr) in drainage water 

pumped from the intensively cultivated marsh (Nicholls and Maccrimmon, 1975). From the 

in-situ measured data, it is easy to find that the H3, H4 and H6 stations, which are the only 

three observation stations located within the Cook Bay area, always have a very low SDT 

and quite high chl-a concentration. It is normal for this bay to have the SDT less than 1 m, 

corresponding with a chl-a concentration higher than 80µg/L or even 140µg/L. According 

to Carlson‟s lake water quality criteria (Carlson and Simpson, 1996), the Cook Bay area 

should be classified as the eutrophic lake area, or hypereutrophic lake area. So the monthly 

minimum value of green line in Figure 4.10 can give an explicit explanation of the monthly 

SDT of the Cook Bay area, because it is also the most turbid part in the Lake Simcoe area. 

It can also be concluded that although the water quality of Lake Simcoe has been improved 

a lot since the 1990s, the water quality in Cook Bay has been continuously bad with little 

change. 
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According to the trend of the monthly averaged SDT, on an overall scale, there are three 

obvious periods of change: (1) the lake water clarity kept relatively stable from 1987 until 

fall 1992, (2) followed by a rising up until 2000, (3) lastly stayed consistent from that time 

to the summer of 2008. As the three ground stations (H3, H4 and H6) are historical stations, 

they joined the measurement since 1993 could no longer be used until 2000. It is possibly 

one explanation of the third stage, because these three areas were always turbid which 

would dramatically lower the average SDT of the whole area, considering there are only 15 

fixed stations. Secondly, regarding to the maximum average SDT trend, the value also 

increased, which means the removal of three stations is not the only reason of stage 3, the 

strategies executed by the agencies also contributed to this clarity upgrading.  

  

On the other hand, from an annual scale, it is not difficult to be aware that the water clarity 

has a similar trend every year. During each of the observation years, the SDT is minimized 

in the late summer period, normally in August or September time; the SDT is relatively 

higher before and after these two months, which means it will decrease to the lowest point 

and increase after then, during each of these 22 years.  

 

This SDT trend of Lake Simcoe can also be performed by the concentration map. In Figure 

4.11, 19 SDT maps, calculated by the regression equations from the TM images are 

compared to exhibit the change of water clarity over these years. The results of calculation 

are classified into 5 colors by using the density slice colour table. Dark red, light blue, cyan, 
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dark blue and black mean the SDT between 0-2m, 2-4m, 4-8m, 8-12m and 12-18m, 

respectively. The SDT trend presented in this way is coincident with the line chart. For 

instance, the averaged SDT in April 1987 was quite low on the line chart, so most of the 

water on Figure 4.11 (a) is classified as dark red. Figure 4.11 (b)-(h) show that there was a 

continuous increasing of water clarity from August 1990 to July 2000. There was a slight 

water clarity decreasing since August 2001, while it recovered soon in 2005. The 

consistency between the line chart and estimated water clarity maps indicates that the TM 

images can be a reliable source of estimated SDT for Lake Simcoe. 
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Figure 4.11 Estimated Water Clarity Maps of Lake Simcoe 

 

(b) 1990-08-17 

(c) 1991-07-19 (d)1991-09-15 

(a) 1987-04-19 
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Figure 4.11(Cont.) Estimated Water Clarity Maps of Lake Simcoe 

 

(e) 1995-07-30 (f) 1995-08-15 

(g) 1996-05-29 (h) 2000-07-27 
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Figure 4.11(Cont.) Estimated Water Clarity Maps of Lake Simcoe 

 

(i)2001-08-15 (j) 2001-10-02 

(k) 2005-07-09 (l) 2005-08-26 
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Figure 4.11(Cont.) Estimated Water Clarity Maps of Lake Simcoe 

 

(m) 2006-05-09 (n)2008-06-15 

(o) 2008-07-01 

 

2008-07-17 

(p) 2008-07-17 
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Figure 4.11(Cont.) Estimated Water Clarity Maps of Lake Simcoe 

  

2008-08-18 

   (r) 2008-09-03 
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2008-09-192
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(s) 2008-09-19 
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4.3.3 Trend of Chl-a Concentration 

Figure 4.12 shows a trend of monthly average, monthly maximum and monthly minimum 

chl-a concentrations of Lake Simcoe, dating from 1987 to 2008, based on the fixed-point in 

situ measurement data. The blue line presents the monthly average chl-a concentration, 

while the red and green lines show the monthly maximum and minimum chl-a 

concentration, respectively. During this time period, Lake Simcoe has an overall monthly 

average chl-a concentration of 10.813µg/L, a maximum monthly average chl-a 

concentration of 56.4 µg/L, on August 20, 1997 and a minimum monthly average of 0.7 

µg/L, on July 13, 2002. During this time period, Lake Simcoe has a monthly maximum 

chl-a concentration of 233µg/L, on September 4, 1991 and a monthly minimum 

concentration of 0.1 µg/L on June 3, 1992. 

 

Because the chl-a concentration sampled from H3, H4 and H6 stations always has a big 

difference from the other stations, we need to consider the availability of these three 

stations during each of these years. According to the record of the in-situ data, these three 

stations were in use during 1982 to 1993, 1996 to 1998, and 2001 to 2002 periods, 

respectively. It is the possible reason why the chl-a concentration during those time periods 

are higher than the periods around them. The blue line chart shows that in these time period, 

the monthly average chl-a concentration is higher than the other years without those 

stations. However, it is also obvious that the chl-a concentration in this lake has an overall 
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trend of decreasing, because since 1993, not only the monthly average chl-a concentration 

decreased, the monthly maximum also decreased a lot, even though the H3,H4 and H6 

stations were added in during 1995 to 1997, and 2001 to 2001. 

 

The concentration of chl-a shows a similar trend as the SDT during a yearly period. The 

chl-a concentration has a maximum peak in August or September of each year, and then 

decreases until November. Before this period of every year, the concentration of chl-a 

keeps lowering until the late summer. It is also evident that the water quality of Cook‟ Bay 

has a very serious problem during all these years as its chl-a concentration usually is above 

100µg/L and can even be higher than 200µg/L sometimes. So according to Carlson‟s 

criteria (1996), the water quality of this place can be considered as hypereutrophic most of 

the time in a year. Even though some programs were developed to improve the water 

quality after the 1990s, the concentration of chl-a in this bay was still above 60µg/L, which 

means hypereutrophic again. The trends of both SDT and chl-a imply that although the 

water quality of the entire Lake Simcoe has improved, the water quality in the southern 

area, Cook‟s Bay, is still hypereutrophic, and more attention needs to be paid to this area. 

 

Figure 4.13 shows two estimated chl-a maps from bands combination models using colours 

in blue, green, red and yellow. Two imageries in July of different years are employed here 

to demonstrate the change of chl-a concentration in Lake Simcoe. The darker the color is, 

the lower the chl-a concentration the lake has. On the contrary, yellow means the chl-a 
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concentration is very high in water. The comparison of those two estimated maps shows 

that Lake Simcoe has an extremely high concentration of chl-a in the summer of 1991, 

however this situation has been changed a lot until 1995 summer. This change of chl-a 

concentration is coincident with the line chart generated from the in-situ monthly averaged 

chl-a concentration.  
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Figure 4.13 A Comparison of the Estimated Chl-a Concentration 

4.4 Water Quality Classification 

4.4.1 Trophic States Criteria 

A lake is usually classified as being in one of three possible classes: oligotrophic, 

mesotrophic and eutrophic. Lakes with extreme trophic indices may also be considered 

hyperoligotrophic or hypereutrophic. In Carlson and Simpson‟s study (1996), they also 

summarized a table demonstrating how the TSI values translate into trophic classes and 

Table 4.3 shows a classification of different parameters including Trophic Index, 

Chlorophyll, Phosphorus, Secchi depth, and Trophic Class (Carlson and Simpton, 1996). In 

1991-07-19 1995-07-30 
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this table, oligotrphic lakes generally host very little or no aquatic vegetation and are 

relatively clear, while eutrophic lakes tend to have large quantities of organisms, including 

algal blooms. If the algal biomass in a lake or other water body reaches too high a 

concentration, massive fish die-offs may occur as decomposing biomass deoxygenates the 

water.  

 

Table 4.3 Classification of Lake Water Trophic State Index (Carlson and Simpson, 1996) 

 

TI CHL P SD Trophic Class 

<30-40 0-2.6 0-12 >8-4 Oligotrophic 

40-50 2.6-7.3 12-24 4-2 Mesotrophic 

50-70 7.3-56 24-96 2-0.5 Eutrophic 

70-100+ 56-155+ 96-384+ 0.5-<0.25 Hypereutrophic 

 

4.4.2 Water Quality Classification of Lake Simcoe 

As the eutrophication effect is the main problem of Lake Simcoe, the chl-a concentration is 

considered to be the most important parameter here to indicate the water quality of this lake. 

The Carlson‟s modified tropic state index TSIm (see Table 4.3) is applied in this study, as it 

only uses the chl-a concentration to represent the trophic state index of inland lakes (Aizaki 

et al., 1981; Wang et al., 2008). In this study, the lake water is classified into four 

categories: Oligotrophic, lower-mesotrophic, higher-mesotrophic and hypereutrophic. The 

modified trophic state index is calculated by 

 

           TSIM (Chl-a) =10*(2.46+ (Log10 (Chl-a)/Log102.5))       (14) 
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The estimated chl-a concentration maps are calculated using the equations above and the 

result is displayed using density slice to show the different classes. When the resulting 

value is between 0 and 38, it would be classified as oligotrophic; for the values between 38 

and 45, it would be considered as lower-mesotrophic lake water; for the values between 45 

and 53, it should be classified as higher-mesotrophic water; for the values higher than 53, it 

is called hypereutrophic lake waters. 

 

Figure 4.14 shows the comparison of Lake Simcoe‟s TSIM of 1995 and 2008, and the 

oligotrophic, lower-mesotrophic, higher-mesotrophic and hypereutrophic waters are 

represented by blue, green, cyan and red, respectively. In the left figure which represents 

the TSIM in 1995, most of the lake water is classified as the hypereutrophic category, and 

only the north part and east part are shown in green which is lower-mesotrophic.  By 

contrast in the right figure of 2008, apparently the water quality has improved a lot, as the 

hypereutrophic areas are now in blue, oligotrophic.  
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Figure 4.14 TSI comparison of 1995 and 2008 for Lake Simcoe 

4.5 The Influence of Dissolved Organic Carbon Concentration 

It might be noticed that the estimated SDT and chl-a concentration of certain dates do not 

have a good correlation relationship with the in-situ data. Besides the errors caused by the 

sensor and the atmosphere, there are two reasons that may contribute to those results with 

relatively low correlation. 

 

The first reason is that most of the observation stations are located very close the shore of 

Lake Simcoe. This means that we cannot guarantee it is the water quality problem that 

1995-08-15 2008-08-18 

0-38 

Oligotro 
38-45 

45-53 

53-100 

0-38 

38-45 
45-53 

53-100 
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contributes to the turbidity or the water itself is not deep enough. Also, the near-shore lake 

water is much more complex than the water far away from the shore, as there might be 

some other components in the water such as the garbage left by the residents. The eroded 

soil will make the near-shore water turbid as well. On the other hand, there are usually a 

confusion of the pixels in satellite imagery between the water and soil if the spatial 

resolution of the satellite images is not high enough. Sometimes even if the stations are 

located perfectly on the imagery, it still may turn out that the DN values of soil rather than 

water are extracted. All of these reasons may more or less affect the results of estimation. 

 

Another reason is the effect of the DOC concentration in the lake water. This parameter 

influences not only the water quality itself, but also the absorption of blue light, which 

means that TM1 can not accurately represent the real reflectance of the water body. 

However, both the SDT and chl-a concentration estimation need the blue light band to be 

considered and calculated. Figure 4.15 shows the overall trend of the monthly average 

DOC from 1987 to 2008. It is obvious to find that the DOC concentration stays quite stable 

around 4mg/L until 1995, and it starts to increase gradually since 1996 and becomes 

unstable. There are two concentration peaks which are the 1997 summer and 1998 summer, 

when the DOC concentration has achieved 8mg/L and almost 10mg/L respectively. The 

average concentrations are about 2mg/L higher during the period after 1996 than before 

1996. Correspondingly, the correlation coefficients before 1996 are relatively high, which 
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means the estimated water quality parameters are well-correlated to the ground measured 

water quality parameters; on the contrary, not all the correlation coefficients after 1996 are 

high enough to prove the relationship between the estimated data and in-situ data, such as 

the estimated chl-a of July 2007, August 2005, May 2006 and June 2008, they only have 

the highest R
2
 of 0.505, 0.310, 0.219 and 0.324 respectively. Although there is no statistical 

or quantitative evidence in this study to prove that the reasons are exactly the increase of 

DOC concentration, based on the literature, as well as the overlap of decreased correlation 

and increased DOC concentration, it is believed here, to some extent, that the rising DOC 

concentration is one reason for these poor relationships. 
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4.6 Chapter Summary 

This chapter presents and discusses the results of this study. The linear regression shows 

that the vast majority of image-estimated SDT are closely correlated with the in-situ ones. 

Meanwhile, the improved model exhibits an advantage over the general one in this study. 

On the other hand, the prediction for chl-a concentration only reveals fair agreements with 

the in-situ data. Moreover, none of the nine models show obvious superiorities. The reasons 

for this are possibly due to the absorption of light caused by chl-a and DOC in the water, as 

well as the location of stations. Both the SDT and chl-a reveal noticeable seasonal 

variations, and the estimations during the late-summer period have higher accuracies. 

 

The results of the estimated maps indicate that the spatial distribution of eutrophic area is 

normally concentrated at the near-shore areas and the northeast part of Lake Simcoe. 

Meanwhile, the water quality of the southwest part of Lake Simcoe is much better. Also, 

the southern Cook‟s Bay, is suffering from an extremely serious water quality problem.  

 

The trends analysis indicates that the water quality of Lake Simcoe is worst in August and 

September while it is much better during the other months annually. According to the 

overall trend of the monthly averaged SDT, the SDT kept relatively stable until the fall of 

1992, followed by a rising up until 2000, and lastly stayed consistent from that time to the 
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summer of 2008. The chl-a concentration reveals an inverse trend to SDT, which means the 

higher the concentration of chl-a is, the more turbid the water is.  
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Chapter 5 

Conclusions and Recommendations 

5.1 Conclusions 

This study focused on estimating the water quality change of Lake Simcoe from 1987 to 

2008, via the approach of comparing Landsat 5 TM images and the in-situ data, including 

SDT and chl-a concentration. Specifically, this research was able to:  

 

1) Build the empirical relationships between the TM images and the in-situ water quality 

data, so as to estimate SDT and chl-a concentration of Lake Simcoe during a period of 

22 years, from 1987 to 2008.  

2) Identify the turbid and eutrophic regions based on the concentration maps calculated 

from the regression equations.  

3) Simulate the water quality trends of the past 22 years by the ways of both the line chart 

and the concentration maps.  

4) Classify the lake water into four eutrophic levels based on the inland lake classification 

criteria.  

 

The estimated results from TM images reveal that the predicted SDT has a close agreement 

with the in-situ data. A total of 77.3% comparisons have good correlation coefficients. 

Moreover, TM3 is found to be a better predictor than TM1 for the SDT estimation. 68.2% 
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of the comparisons show higher predictive accuracies by utilizing the improved model, 

composed of TM3 and the TM1/TM3 ratio. On the other hand, after comparing 9 chl-a 

prediction models, only 59.1% estimations for chl-a concentration have acceptable 

agreements with the in-situ measurements. The possible reasons for the low correlation are 

the chl-a itself, as well as the DOC in Lake Simcoe, which can strongly absorb the blue and 

green light and therefore weaken the signals back to the satellites. 

 

It is indicated that both the SDT and chl-a concentration estimations have seasonal 

variations, i.e., the late-summer comparisons frequently lead to high agreements. The 

concentration maps show that the eutrophic area is normally centralized at the near-shore 

areas and the northeast part of Lake Simcoe. The overall trend of SDT begins with decrease 

values during 1980 to 1982, followed by a relatively stable stage until the fall of 1992, then 

rises up till 2000, and lastly stays consistent to the summer of 2008. The chl-a has an 

inverse trend with the SDT. 

5.2 Suggestions for Future Research 

As the in-situ stations on Lake Simcoe have been continuously reduced since 1995, the 

estimated water quality parameters can play a role to supplement the traditional 

measurements. Nevertheless, some limitations still exist in this study and they can possibly 

be improved in the future.  
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The first limitation of this study is the seasonal variability. As the late-summer period is the 

best season to estimate the lake water quality, more accurate results would be given during 

this period. However, almost 50% of the data in this study are collected in spring and fall 

season. As consequence, some of these images have poor agreements with the in-situ data. 

The reasons for this unsatisfied data collection include: (1) the 16-day temporal resolution 

of Landsat, (2) the demand for cloud-free images during the ice-free period, (3) the 

coincidence with the in-situ data, and (4) the limited free data availability on the USGS 

website. Consequently, the odds of qualified data are actually low. Not surprisingly, only 

22 imageries are acquired during the whole 22-year period. In order to stimulate the 

long-period trend, the unification of seasons has to be sacrificed. In spite of this, the 

seasonal variation can be overcome by combining MODIS and Landsat images as the 

datasets. The high temporal resolution of MODIS images can guarantee an adequate 

late-summer data selection, while the fair spatial resolution of Landsat images can exhibit 

the spatial patterns of water quality parameters. 

  

A second point is that the reasons for the spatial patterns of water quality parameters have 

not been explained. As the MOE only collects the water quality data of Lake Simcoe, 

insufficient land-use data have been obtained to conduct quantitative research. Therefore, 

the causes for those spatial patterns are still unknown. These causes can be analyzed and 

therefore interpreted once the detailed land-use data become available. 
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Moreover, the spatial resolution of TM images is not high enough for some sampling 

stations, such as the stations H3, H4, and H6, located at the Cook‟s Bay, where the shape of 

the lake becomes quite narrow. Therefore, this region can easily get confused with the 

agriculture lands surrounding by it on the images. As a result, when estimated by the 

regression equations, the pixels within this region cannot be calculated correctly. Since the 

Cook‟s Bay is a key area that is worth monitoring, owing to its consistently poor water 

quality, images with higher spatial resolution are required in the future studies. 

 

A fourth point includes the errors during both the data sampling and the processing 

procedures. Firstly, it is not guaranteed that the water is sampled from the same depth every 

time. The water in different depths can result in various concentrations of chl-a. Therefore, 

the water quality data from the same depth should be compared to the reflectance values if 

the depth information is available. On the other hand, there are various methods to remove 

the atmospheric effects from the Landsat-5 TM images. However, in this study, only one 

method in PCI Geomatica is utilized to correct this effect. Thus, it is valuable to use or 

compare other softwares and methodologies for the atmospheric correction in the future. 

 

Last but not least, the improved equation for SDT estimation needs to be applied to other 

study areas. Although TM3 and the TM1/TM3 ratio have impressive estimation accuracies 

in this study, the universality of this prediction model is still doubtable. One feasible 

approach is to employ this method to other research sites of the existing studies using the 
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general SDT prediction equation, and to compare the accuracies with those studies 

afterwards. On the other hand, the exploration for a general prediction equation of chl-a 

concentration should not be given up either. 

 

To conclude, this research can be improved by acquiring satellite data with higher spatial 

and temporal resolutions, obtaining quantitative land-use data of the Lake Simcoe region, 

and testing the improved SDT equation in other study areas. 
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