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a b s t r a c t

Graph-based methods are currently popular for dimensionality reduction. However, most of them

suffer from over-simplified assumption of pairwise relationships among data. Especially for multi-view

data, different relationships from different views are hard to be integrated into a single graph. In this

paper, we propose a novel semi-supervised dimensionality reduction method for multi-view data. First,

framework. Second, the weights of the hyperedges are computed with statistics of distances between

neighboring pairs and the patches from different views are integrated. In this way, we construct Multi-

view Hypergraph Laplacian matrix and we get the dimensionality-reduced data by solving the standard

eigen-decomposition to obtain the projection matrix. The experimental results demonstrate the

effectiveness of the proposed method on retrieval performance.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Images or objects could be represented by several types of
features in the related researches on computer vision. These
features include color, shape, contour, texture and so on. Actually,
varied features describe different properties of the same image.
Since every single type of features could not completely describe
one image, researchers have proposed learning methods by
combining different types of features. These methods are called
multi-view learning methods. Although combining multiple fea-
ture is not always beneficial [1], multi-view learning has attracted
plenty of attention [2–4].

A great deal of efforts have been carried out to get better
multi-view learning methods which are used in applications such
as classification, retrieval, clustering and feature selection. How-
ever, the features representing images are usually in a high-
dimensional space. This leads to the so-called ‘‘curse of dimen-
sionality’’ problem. In this way, the consumption of both time and
space in the learning process are influenced by the high-
dimensional features.

Researchers have also devoted themselves into solving the
‘‘curse of dimensionality’’ problem by using dimensionality
reduction approaches. Traditional well-known dimensionality
reduction approaches include principle component analysis
(PCA) [5]. It is unsupervised and does not consider the
ll rights reserved.
connectivity among different view. Therefore, PCA is not suitable
for dimensionality reduction of multi-view data. Linear discrimi-
nant analysis (LDA) is another widely used approach [6]. It is
supervised, but the global linearity of LDA prohibits its effective-
ness for non-linear distributed measurements. Other researchers
proposed manifold learning based dimensionality reduction
approaches, including locally linear embedding (LLE) [7], ISOMAP
[8], Laplacian eigenmaps (LE) [9], Hessian eigenmaps (HLLE) [10],
and local tangent space alignment (LTSA) [11]. Among these
approaches, Laplacian eigenmaps is a graph-based approach. It
represents the images as vertices and the links between each pair
of them as edges. If two vertices are connected by an edge, they
may share some similar characteristics and they are called
neighbors. In this way, a correlation graph can be constructed.
Therefore, we can easily conclude that the key problem of graph-
based dimensionality reduction approaches is how to construct
the correlation graph. Most of the researches on graph-based
dimensionality reduction approaches focus on this problem, such
as Laplacian Regularization [12], Normalized Laplacian Regular-
ization [13,14], Local Learning Regularization [15] and Markov
random walk explanation [16]. It could also be combined with
sparsity-based model to conduct semi-supervised learning [17].
Graph-based idea could describe different features in a unified
form [18–20]. In this way, it has also been extended to dimen-
sionality reduction for multi-view data [21]. The training results
of these methods are matrices describing the structures of the
correlation graphs. These matrices are called Laplacian matrices.
However, graph-based approaches for multi-view learning
usually encounter two problems.
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�
 First, they always assume the relationships among images are
pairwise. For example, the method by Yan et al. disposes most
of the parameters, but the performance is still limited by the
simplified assumption of pairwise relationships [22].

�
 Second, combining the correlations embedded in different

views is difficult. The similarities of different features are
measured by different criteria. Most of the approaches require
a recursive refining process to get a reasonable combination of
criteria.

To avoid the over-simplified assumption of pairwise relationships
among data, researchers further proposed hypergraph. Hypergraph
representation is becoming more and more popular and now widely
used in many applications, such as classification [23], image segmen-
tation [24] and video object segmentation [25]. Unlike a simple graph
that has an edge between two vertices, a set of vertices is connected
by a hyperedge in a hypergraph. Each hyperedge is assigned a weight.
When constructing hypergraph, computing the weights of the
hyperedges is critical. It significantly influence the description power
of the features after dimensionality reduction. For example, the
weight of each hyperedge is simply set to 1 in [26]. In [27], the
weight of a hyperedge is calculated by summing up the pairwise
affinities within the hyperedge. In practice, we are usually faced with
a large number of hyperedges, and these hyperedges have different
effects. For example, in the handwriting digit classification [26], a set
of hyperedges is generated for each pixel; thus, some hyperedges are
redundant. Therefore, weighting or selecting hyperedges will help
improve classification performance.

In this paper, we propose a novel dimensionality reduction
method for multi-view data based on patch alignment frame-
work, which is named as Multi-view Hypergraph Learning (MHL).
The contribution of our method is two-fold.
�
 We introduce hypergraph construction to the part optimiza-
tion in patch alignment framework. This process is based on a
real-valued form of combinatorial optimization problem in
constructing hypergraph. The weights of hyperedges for the
whole alignment are computed by statistics of distances
between neighboring pairs.

�
 We apply the novel hypergraph to semi-supervised dimen-

sionality reduction of multi-view data. The hyperedges com-
puted with data of different views are integrated together and
the dimensionality-reduced data are embedded in the inte-
grated Laplacian matrix.

The rest of this paper is organized as follows. In Section 2, we
review the work related to our research including hypergraph and
patch alignment framework. In Section 3, the definitions of
hypergraph are summarized. In Section 4, we introduce the
proposed dimensionality reduction method. Theoretical deriva-
tion, algorithm details and analysis are all contained. In Section 5,
we show the experimental results by comparing the proposed
method with the previous methods. Finally, we show our con-
clusion the paper in Section 6.
Table 1
Images in the data set.

Images Contains a flower Contains a dog Contains a man

I1 Yes No Yes

I2 Yes No No

I3 No No Yes

I4 No Yes Yes

I5 No Yes No

I6 Yes Yes No

I7 No No Yes
2. Related work

2.1. Hypergraph

In traditional machine learning problem settings with graph-
based idea or subspace using manifold assumption, the relationships
among objects are usually assumed to be pairwise [28–32]. These
objects and their relationships can be described by graphs. However,
one edge links only two vertices in traditional graph-based
representations. If more than two objects share the same character-
istics, more than one edge is needed [26]. To avoid this problem, the
hypergraph representation is proposed [33]. Different from the
traditional graph-base representation, one edge is able to connect
more than two vertices in the hypergraph representation. In other
words, vertices connected by an edge are thought as a subset of
vertices in the graph. In this way, the hypergraph representation is
much more descriptive and powerful than traditional graph repre-
sentations. Hypergraph representation is now widely used in many
applications, such as classification [23,34,35], image segmentation
[24], video object segmentation [25], tag-based image search [37–40]
and retrieval [41,42].

2.2. Patch alignment framework

Patch alignment framework was proposed by Zhang et al. [43].
It unifies spectral analysis based dimensionality reduction
approaches, including LLE/NPE/ONPP, ISOMAP, LE/LPP, LTSA/
LLTSA, HLLE, PCA and LDA. It is proposed as a powerful analysis
and development tool for dimensionality reduction. It consists of
two stages. In the part optimization stage, different approaches
have different optimization criteria over patches, each of which is
built by one measurement associated with its related ones. In the
whole alignment stage, all part optimizations are integrated to
form the final global coordinate for all independent patches based
on the alignment trick, originally used by Zhang and Zha.
Different algorithms were shown to construct whole alignment
matrices in an almost identical way, but vary with patch optimi-
zations. Based on patch alignment framework, Zhang further
proposed Discriminative Locality Alignment (DLA) for dimension-
ality reduction [44]. It uses KNN to discover relationships among
data. DLA is supervised and could also be extended to a semi-
supervised approach. In Xia et al.’s work, DLA is used as an
unsupervised approach of dimensionality reduction for multi-
view data [45]. Yu et al. [36] proposed a semi-supervised patch
alignment framework, and applied it to solve the problem of
correspondence construction for cartoon animation.
3. Hypergraph for semantic representations

As has been mentioned in the introduction, graph-based
representation is widely used in dimensionality reduction
algorithms. These algorithms usually assume the relationships
among images are pairwise. However, we can only achieve
which pairs of images are similar in the graph but we know
nothing about the details of the properties they shared. If more
than two objects sharing the same properties, more than one
edge is required to connect them. Therefore, this assumption is
over-simplified and plenty of information is lost while con-
structing graphs. Assume there are 7 images in the data set.
They may contain a flower, a dog or a man, as is shown in
Table 1. To describe their relationships, we construct a graph in
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Fig. 1. The vertices in this figure are images in the data set. If
two images contain the same object, they will be connected by
an edge. This representation seems natural, but we miss the
information about the objects that images contain. For exam-
ple, we cannot know which images have trees in this graph.
Such information is very useful in dimensionality reduction
algorithms for multi-view data, since different views reflect
different properties of the images and the relationships on
different views lead to different clustering standards. In con-
trast to the traditional graph, hypergraph gets rid of pairwise
assumption. In hypergraph representation, an edge can con-
nect more than two vertices. In this way, an edge actually
contains a subset of vertices. Take the same problem in the
previous paragraph as an example, images with the objects
they share are used to construct the hypergraph shown in
Fig. 1. In the hypergraph, the images that contain the same
object are clearly grouped. Therefore, we used the hypergraph
instead of traditional graph to represent the semantic correla-
tions of the dat.
4. Multi-view hypergraph learning by patch alignment
framework

According to the patch alignment framework, the learning
process of the proposed dimensionality reduction approach con-
sists of part optimization and global alignment. The flowchart is
shown in Fig. 2. In this section, we follow the definitions used in
the previous section. The definitions of symbols in the hypergraph
are presented in Table 2.
I5

I4

I7

I1

I6

I2

I3

I5

I4

I7

I1

I6

I2

I3

Fig. 1. The comparison of the simple graph and the hypergraph. (a) Traditional

graph representing Table 1. (b) Hypergraph representing Table 1.

Table 2
The definition of symbols in hypergraph.

Symbol Definition

u, v Vertices in the hypergraph

e Edges in the hypergraph

oðeÞ The weight of an edge e

dðeÞ The degree of an edge e. It illustrates how many vertices

d(v) The degree of a vertex v. It is calculated by summing the

Dv The diagonal matrix containing the vertex degrees

De The diagonal matrix containing the edge degrees

H In this matrix, Hðv,eÞ ¼ 1 if vAe

O The diagonal matrix containing the weights of hyperedge

V The set of vertices

E The set of edges
4.1. Part optimization

As in [26,24], the combinatorial optimization problem in
constructing hypergraph could be relaxed into a real-valued form

arg min
f AR9V9

1

2

X
eAE

X
u,v � e

oðeÞ
dðeÞ

f ðuÞffiffiffiffiffiffiffiffiffi
dðuÞ

p �
f ðvÞffiffiffiffiffiffiffiffiffi
dðvÞ

p
 !2

ð1Þ

In the part optimization stage, we define one patch to be the
vertices connected by one hyperedge. In this way, the patch in the
proposed learning process is defined by

arg min
f AR9V9

X
u,v � e

oðeÞ
dðeÞ

f ðuÞffiffiffiffiffiffiffiffiffi
dðuÞ

p �
f ðvÞffiffiffiffiffiffiffiffiffi
dðvÞ

p
 !2

ð2Þ

For one patch, we should compute

X
u,v � e

oðeÞ
dðeÞ

f ðuÞffiffiffiffiffiffiffiffiffi
dðuÞ

p �
f ðvÞffiffiffiffiffiffiffiffiffi
dðvÞ

p
 !2

ð3Þ

It means that we randomly choose two vertices in the subset
of vertices contained by a hyperedge e and sum the value of

oðeÞ
dðeÞ

f ðuÞffiffiffiffiffiffiffiffiffi
dðuÞ

p �
f ðvÞffiffiffiffiffiffiffiffiffi
dðvÞ

p
 !2

ð4Þ

Therefore, Eq. (3) could be expanded as

oðeÞ
dðeÞ

f ð1Þffiffiffiffiffiffiffiffiffi
dð1Þ

p �
f ð2Þffiffiffiffiffiffiffiffiffi
dð2Þ

p
 !2

þ
oðeÞ
dðeÞ

f ð1Þffiffiffiffiffiffiffiffiffi
dð1Þ

p �
f ð3Þffiffiffiffiffiffiffiffiffi
dð3Þ

p
 !2

þ � � � þ
oðeÞ
dðeÞ

f ð1Þffiffiffiffiffiffiffiffiffi
dð1Þ

p �
f ðnÞffiffiffiffiffiffiffiffiffi
dðnÞ

p
 !2

þ
oðeÞ
dðeÞ

f ð2Þffiffiffiffiffiffiffiffiffi
dð2Þ

p �
f ð1Þffiffiffiffiffiffiffiffiffi
dð1Þ

p
 !2

þ
oðeÞ
dðeÞ

f ð2Þffiffiffiffiffiffiffiffiffi
dð2Þ

p �
f ð3Þffiffiffiffiffiffiffiffiffi
dð3Þ

p
 !2

þ � � � þ
oðeÞ
dðeÞ

f ð2Þffiffiffiffiffiffiffiffiffi
dð2Þ

p �
f ðnÞffiffiffiffiffiffiffiffiffi
dðnÞ

p
 !2

þ � � � þ
oðeÞ
dðeÞ

f ðnÞffiffiffiffiffiffiffiffiffi
dðnÞ

p �
f ð1Þffiffiffiffiffiffiffiffiffi
dð1Þ

p
 !2

þ
oðeÞ
dðeÞ

f ðnÞffiffiffiffiffiffiffiffiffi
dðnÞ

p �
f ð2Þffiffiffiffiffiffiffiffiffi
dð2Þ

p
 !2

þ � � � þ
oðeÞ
dðeÞ

f ðnÞffiffiffiffiffiffiffiffiffi
dðnÞ

p �
f ðn�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðn�1Þ

p
 !2

ð5Þ

In this equation, n is the number of vertices contained in e.
In another word, n is the sum of the eth column in matrix
H. According to patch alignment framework, the matrix form of
Eq. (5) is

AT
1Hu,e

O
De

Hu,eA1þAT
2Hu,e

O
De

Hu,eA2þ � � � þAT
NHu,e

O
De

Hu,eAN ð6Þ

Hu,e indicates the uth item in the eth column. Hu,e ¼ ¼ 1 means
that vertex u is in hyperedge e. N is the total number of vertices in
are connected by e. In traditional graph representation, dðeÞ ¼ 2

weighting values of edges connected to this vertex

s
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Fig. 2. Flowchart of the proposed method.
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the hypergraph. An is

A1 ¼ 0
f ð1Þffiffiffiffiffiffiffiffiffi
dð1Þ

p �
f ð2Þffiffiffiffiffiffiffiffiffi
dð2Þ

p f ð1Þffiffiffiffiffiffiffiffiffi
dð1Þ

p �
f ð3Þffiffiffiffiffiffiffiffiffi
dð3Þ

p . . .
f ð1Þffiffiffiffiffiffiffiffiffi
dð1Þ

p �
f ðNÞffiffiffiffiffiffiffiffiffiffi
dðNÞ

p
" #

A2 ¼ 0 0
f ð2Þffiffiffiffiffiffiffiffiffi
dð2Þ

p �
f ð3Þffiffiffiffiffiffiffiffiffi
dð3Þ

p . . .
f ð2Þffiffiffiffiffiffiffiffiffi
dð2Þ

p �
f ðNÞffiffiffiffiffiffiffiffiffiffi
dðNÞ

p
" #

. . .

An ¼ 0 0 0 . . .
f ðnÞffiffiffiffiffiffiffiffiffi
dðnÞ

p �
f ðNÞffiffiffiffiffiffiffiffiffiffi
dðNÞ

p
" #

ð7Þ

Eq. (5) could be rewritten as

1

2
BT

1Hu,e
O
De

Hu,eB1þBT
2Hu,e

O
De

Hu,eB2þ � � � þBT
NHu,e

O
De

Hu,eBN

� �
ð8Þ
In this equation, Bn is

B1 ¼ 0
f ð1Þffiffiffiffiffiffiffiffiffi
dð1Þ

p �
f ð2Þffiffiffiffiffiffiffiffiffi
dð2Þ

p f ð1Þffiffiffiffiffiffiffiffiffi
dð1Þ

p �
f ð3Þffiffiffiffiffiffiffiffiffi
dð3Þ

p � � �
f ð1Þffiffiffiffiffiffiffiffiffi
dð1Þ

p �
f ðNÞffiffiffiffiffiffiffiffiffiffi
dðNÞ

p
" #

B2 ¼
f ð2Þffiffiffiffiffiffiffiffiffi
dð2Þ

p �
f ð1Þffiffiffiffiffiffiffiffiffi
dð1Þ

p 0
f ð2Þffiffiffiffiffiffiffiffiffi
dð2Þ

p �
f ð3Þffiffiffiffiffiffiffiffiffi
dð3Þ

p � � �
f ð2Þffiffiffiffiffiffiffiffiffi
dð2Þ

p �
f ðNÞffiffiffiffiffiffiffiffiffiffi
dðNÞ

p
" #

. . .

Bn ¼
f ðnÞffiffiffiffiffiffiffiffiffi
dðnÞ

p �
f ð1Þffiffiffiffiffiffiffiffiffi
dð1Þ

p f ðnÞffiffiffiffiffiffiffiffiffi
dðnÞ

p �
f ð2Þffiffiffiffiffiffiffiffiffi
dð2Þ

p � � �
f ðnÞffiffiffiffiffiffiffiffiffi
dðnÞ

p �
f ðNÞffiffiffiffiffiffiffiffiffiffi
dðNÞ

p
" #

ð9Þ

Finally, the patch optimization for each hyperedge is defined by

1

2

X F

DV1=2
EH0e

O
DE

HeE0
F

DV1=2
ð10Þ
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Matrix E is

� e
!T

I

" #
ð11Þ

where e
!
¼ ½1, . . . ,1�T , I is an n�n identity matrix.

4.2. Whole alignment

In the whole alignment stage of the proposed dimensionality
reduction method for multi-view data, we compute the hyperedge for
each view. All the hyperedges are used to construct a whole
hypergraph. In this way, the optimizations described in the previous
subsection will be unified together as a whole one. The optimization
for each part are weighted by the weight of the corresponding
hyperedge, which is put in the weighting matrix O. The computation
of the weights is inspired by Huang et al.’s work [27]. In the
hypergraph, the weight of a hyperedge is computed by summing
the similarity scores of all the pairs of vertices contained in this
hyperedge. The similarity score of any pair of vertices is defined by

Sðu,vÞ ¼ exp �
1

b
distðfeatðuÞ,featðvÞÞ

� �
ð12Þ

In this equation, feat(u) is some type of feature representing
vertex u, distðfeatðuÞ,featðvÞÞ is the distance between two features
and b is the standard deviation of all distances.

With the hyperedge weighting matrix, the multi-view hyper-
graph Laplacian can be computed by summing the patch optimi-
zation defined in Eq. (10) of all the hyperedges

1

2

X
eAE

X
vA e

F

DV1=2
v

EH0e
O
DE

HeE0
F

DV1=2
v

ð13Þ

4.3. Algorithm details

The proposed dimensionality reduction method is semi-
supervised for multi-view data. The procedure of MHL is listed
as following:
1.
 For each labeled sample in any view, search k1 neighbor samples
from an identical class and k2 neighbor samples from different
classes. They are used to construct a hyperedge and a patch is built
according to Eq. (10).
2.
 For each unlabeled sample in any view, search k neighbor
samples in the whole dataset. They are used to construct a
hyperedge and a patch is built according to Eq. (10).
Table 3
The space consumption of each matrix.

Matrix Size

Dv 9V9� 9V9
De 9E9� 9E9
H 9E9� 9V9
O 9E9� 9E9
L 9E9� 9E9

Table 4
The parameters used in the proposed method.

Name Meaning

ki The number o

kd The number o

ku The number o
3.
f ne

f ne

f ne
The processes in Step 1 and 2 are repeated for all the views.

4.
 All the hyperedges from different views are used to construct a

whole hypergraph. The multiview hypergraph Laplacian
matrix is computed according to Eq. (13).
5.
 Solve the standard eigen-decomposition to obtain the projec-
tion matrix, whose vectors are the eigenvectors corresponding
to the d smallest eigenvalues. Then we get the dimensionality-
reduced data with d dimensions.
4.4. Analysis

We look into MHL in two aspects: space complexity and time
complexity. The space consumption of MHL mainly consists of the
matrices representing the hypergraph. They are Dv, De, H and O. They
are variable according to the number of images or views. The number
of images is equal to the number of vertices 9V9. According to the
constructing procedure of MHL, the number of edges in each view is
equal to the number of vertices. Then, the total number of edges is
9E9¼ 9V9� m, where m is the number of views. Including the final
Laplacian matrix, their sizes are listed in Table 3.

The time complexity of MHL contains three parts. The first part
is for the constructions of the matrices by combining different
views, i.e., the computation of O. The computation of O is
influenced by the number of nearest neighbors. There are 3 para-
meters in hypergraph construction to find nearest neighbors.
They are listed in Table 4. The time complexity of constructing
O is

Oðki � Nlabeledþkd � Nlabeledþku � NunlabeledÞ ð14Þ

In this equation, Nlabeled is the number of labeled images while
Nunlabeled is the number of unlabeled images. The second part is
for the computation of Laplacian matrix. This part of time
complexity is

O
X

vAVlabeled

ððkiþkdÞ � N2
labeledÞþ

X
vAVunlabeled

ðku � 9V92
Þ

 !
ð15Þ

The third part is for eigenvalue decomposition. It is Oð9V93
Þ.
5. Experimental results

5.1. Datasets

We test the proposed method on PASCAL VOC2007 database [46].
PASCAL VOC2007 is challenging for its class variations and cluttered
backgrounds. To decrease the difficulty, we choose around 1200
images from six easier classes (person, airplane, train, boat, motor-
bike, and horse) of the VOC2007 for our experimental comparison.
Since in the VOC2007 one image may contain multiple objects, we
classify each image to one specific class according to the largest object
it contains. The dimensionality-reduced data are divided into two
sets, one for training and the other for testing. Support Vector
Machine is used for classification. The dimensionality of the low-
dimensional embedding d is from 10 to 360. We compute the correct
ratios of classification for every 10 values in this rage. With the
arest neighbors for labeled samples from the identical class

arest neighbors for labeled samples from the different class

arest neighbors for unlabeled samples
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accuracy, we compare the proposed method with MSE [45] in our
experiments.
5.2. Parameter optimization

In this subsection, we aim at optimizing the combination of
parameters, which have been listed in Table 4. For the consistency
of the weighting process, we should make the number of nearest
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Fig. 3. The changes of average correct ratio with different ki.
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Fig. 4. The changes of average correct ratio with different kd.

Table 5
The best combination of parameters used in the proposed method.

Name Value

ki 6

kd 3

ku 9
neighbors for labeled samples equal to the number of nearest
neighbors for unlabeled samples. In this way, we set the following
prerequisite:

ku ¼ kiþkd ð16Þ

To clearly compare the accuracy, we show the average correct
ratio of all dimensionality for each ki and kd. First, we fix the value
of kd¼5. The average correct ratio is shown in Fig. 3. We could see
that the best performance is achieved when ki¼6.

Second, we fix the value of ki¼6. The average correct ratio is
shown in Fig. 4. We easily point out that the accuracy is the
highest when kd¼3.

With the above experiment, we could set the best combination
of MHL as Table 5.

5.3. Comparison with previous methods

In this subsection, we compare MHL with MSE and PCA on
classification accuracy. The settings of parameter for MSE is the same
as the setting of MHL in Table 5. To make PCA work on multi-view
data, we use two tricks. One is linking features from different views to
form a long vector, the other one is computing the classification
accuracy with different views and averaging the performance. The
result is shown in Fig. 5. Although the correct ratios of previous
methods are sometimes higher than the proposed MHL, MHL is the
best of all in most of the cases. Especially when the reduced
dimension is lower than 100, MHL is much better than all the
existing methods. It indicates that MHL works well in low dimension.
However, the performance of MHL significantly decreases when the
dimension is set as 100. The average correct ratio of MHL is 37.4%,
while the average correct ratio of MSE is 28.9%. The average correct
ratio is %31.3 for PCA with long vectors and %28.5 for PCA with
average performance. It indicates that the performance of MHL is
higher than previous methods.
6. Conclusions

In this paper, we propose a novel dimensionality reduction
method for multi-view data, which is called Multi-view Hypergraph
Learning (MHL). It is based on patch alignment framework. First, our
method use hypergraph to represent the relationships among images
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in the data set. The hyperedges in the hypergraph are considered as
patches in part optimization of patch alignment framework. Second,
with the hypergraph and distances between neighboring pairs, we
compute the weights of hyperedges. The hyperedges from different
views could be integrated to construct Laplacian Matrix for standard
eigen-decomposition. Experimental results on VOC2007 image data
set show that the proposed method outperforms previous method on
both retrieval performance.
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