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Abstract: The paper presents a multiview matching algorithm for processing sequence images acquired by a mobile mapping system
(MMS). The workflow of the multiview matching algorithm is designed, and the algorithm is based on motion analysis of sequence images in
computer vision. To achieve a high multiview matching accuracy, camera lens distortion in sequence images is first corrected, and images can
then be resampled. Image points on sequence images are extracted using the Harris operator. The homologous image points are then matched
based on correlation coefficients and used to make a robust estimation for a fundamental matrix F between the two adjacent images using the
random sample consensus (RANSAC) algorithm. The fundamental matrix F is calculated under the condition of epipolar line constraints.
Finally, the trifocal tensor T of the three-view images is calculated to achieve highly accurate triplet image points. These triplet image points
are then provided as the initial value for bundle adjustment. The algorithm was tested using a set of sequence images. The results demonstrate
that the designed workflow is available and the algorithm is promising in terms of both accuracy and feasibility. DOI: 10.1061/(ASCE)
SU.1943-5428.0000235. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, http://
creativecommons.org/licenses/by/4.0/.
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Introduction

Photogrammetry and geometric computer vision are closely related
disciplines. Many studies have shared interest in these two disci-
plines for many similar goals, such as point feature detection
(Forstner and Gulch 1987), relative orientation (Philip 1996; Nister
2004), perspective n-point (PnP) problems (Masry 1981; Lepetit et
al. 2009), and bundle adjustment (Triggs et al. 2000). The mathe-
matical fundamentals of photogrammetry and computer vision can
both be derived from the central projection of the common mathe-
matical model. Photogrammetry uses the collinearity equations of
Cartesian coordinate representation of the central projection in
Euclidean geometry, and computer vision applies the projection
equations of homogeneous coordinate representation of the central
projection in projective geometry. Homogenous coordinates have
the advantage that the points, lines, and planes at infinity can be rep-
resented using finite coordinates. In photogrammetry, the

nonlinearity of the collinearity equations requires linearity and iter-
ative optimization and good initial values of exterior orientation
(EO) parameters from a global navigation satellite system and iner-
tial measuring unit (GNSS/IMU) system. In addition, all the param-
eters in collinearity equations have physical meanings. In computer
vision, the linearity of the projection equation permits linear matrix
operations using linear algebra, the linearity of the camera matrix or
fundamental matrix does not require the initial values, and those pa-
rameters of the matrix are not physically interpretable.

Multiview image matching has been addressed by several
researchers in photogrammetric and computer vision. Maas (1996)
presented a multi-image matching algorithm using discrete points
extracted by an interest operator and epipolar line intersection.
Brown et al. (2005) presented a method of multi-image matching in
which image features are first located as interest points using a
Harris corner detector, followed by matching using a fast nearest
neighbor algorithm that indexes features based on their low-
frequency Haar wavelet coefficients, followed by refining feature
matches using the random sample consensus (RANSAC) method.
Gruen (1985) presented a method of multiphoto correlation based
on the geometrically constrained adaptive least-squares matching
algorithm. Elaksher (2008) presented a method of using forward
neural networks to solve multi-image correspondence and using the
photogrammetric collinearity condition to validate the outputs of
the neural network and to compute the three-dimensional (3D) coor-
dinates of the matched points.

With the rapid development of mobile mapping system (MMS)
technology in recent years, real-time sequence images of motion
can be collected by digital cameras mounted on a platform of the
vehicle-based mobile mapping system. The sequence images
acquired from a mobile mapping system can be matched using mul-
tiple views based on the methods of computer vision. This paper
presents a multiview matching algorithm based on motion analysis
of sequence images that uses the well-known algorithms of
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computer vision to process sequence images rapidly and get highly
accurate image point coordinates.

Design Ideas andWorkflow

Fig. 1 presents the workflow diagram of the proposed method. The
method is based on motion analysis of sequence images using the
well-known algorithms of computer vision. To achieve higher
matching accuracy, camera lens distortions in sequence images are
first corrected, and images can then be resampled. Image points on
each nondistortion sequence image are extracted using the Harris
operator. Then, the homologous image points are matched based on
correlation coefficients. The matched homologous points are then
used to fit the fundamental matrix F between the two adjacent
images using the RANSAC algorithm for robust estimation. A fun-
damental matrix F of two views is calculated under the condition of
epipolar line constraints. Then, the trifocal tensor T of the three-
view images is calculated to achieve highly accurate triplet image
points. To test the algorithm, a set of sequence images was captured
using a Sony (Tokyo, Japan) DFW-SX910 camera in a MMS, and
the experimental results were analyzed.

Sequence-Image Matching Algorithm

The Applanix (Richmond Hill, Ontario, Canada) Landmark MMS
used in this study consisted of charge-coupled device (CCD) digital
cameras, laser scanner sensors, a GNSS/IMU positioning and orien-
tation system, and an odometer. The CCD digital cameras and laser
scanners were mounted on the top of the land vehicle. The CCD
cameras pointed in different directions to acquire different digital
images. The front-view sequence images were used as test samples
in this study. The proposed algorithm of sequence-image matching
consists of camera lens distortions correction, use of Harris operator
to extract interest points, two-view image matching based on corre-
lation coefficient, fitting of fundamental matrix F of two views by
RANSAC, and estimate of trifocal tensor T of three views. The
algorithm is detailed in the following sections.

Camera Lens Distortions Correction

Camera lens distortions cause the imaged positions to be displaced
from their ideal location. Lens distortions are the origin for system-
atic errors in sequence-image coordinates. The metric digital

camera sensors mounted on the MMS were rigorously calibrated to
effectively correct systematic errors in image points. Camera cali-
bration parameters are provided to the user in camera calibration
report, including focal length f, principal point shift x0; y0ð Þ parame-
ters, radial distortion parameters k1; k2; k3ð Þ and tangential distor-
tion parameters p1; p2ð Þ.

With known camera lens distortion parameters, the sequence-
image coordinates may be refined more effectively with the Brown
distortion model (Brown 1971, 1976). The corrected coordinates
x; yð Þ are computed with Eqs. (1)–(4).

x ¼ x� x0 þ Dx
y ¼ y� y0 þ Dy (1)

where
Dx ¼ Dx1 þ Dx2
Dy ¼ Dy1 þ Dy2 (2)

Radial distortion:

Dx1 ¼ x� x0ð Þ k1r2 þ k2r4 þ k3r6
� �

Dy1 ¼ y� y0ð Þ k1r2 þ k2r4 þ k3r6
� �

(3)

Tangential distortion:

Dx2 ¼ p1 r2 þ 2 x� x0ð Þ2
h i

þ 2p2 x� x0ð Þ y� y0ð Þ

Dy2 ¼ p2 r2 þ 2 y� y0ð Þ2
h i

þ 2p1 x� x0ð Þ y� y0ð Þ (4)

where x; yð Þ = corrected image coordinate; x; yð Þ = raw image coor-
dinate; Dx;Dyð Þ = correction terms for formulating the camera’s
systematic error; and r2 ¼ x� x0ð Þ2 þ y� y0ð Þ2.

The image coordinates of the sequence images from the MMS
are corrected with the Brown distortion model. Raw sequence
images are resampled, and new nondistortion images are formed for
multiviewmatching.

Harris Operator

The Harris operator (Harris and Stephens 1988) is a combined cor-
ner and edge detector with geometric stability. It defines interest
points that have locally maximal self-matching precision under
translational least-squares template matching. The authors applied
the Harris operator to extract interest points in the sequence images
from the MMS. The Harris operator results from shifting a local
window in the image by a small amount in various directions.

Denoting the image intensities with I in the x- and y-directions,
the change E (Harris and Stephens 1988) produced by a shift (x, y)
is given as

Ex;y ¼
X
u;v

Wu;v Ixþu;yþv � Iu;vð Þ2

¼
X
u;v

Wu;v xX þ yY þ O x2; y2
� �� �2

(5)

whereWu;v is weighted by a Gaussian and denotes

Wu;v ¼ exp� u2 þ v2ð Þ=2s2 (6)

The first gradients are approximated as

X ¼ I � �1; 0; 1ð Þ � ∂I=∂x

Y ¼ I � �1; 0; 1ð ÞT � ∂I=∂y

(
(7)

For the small shift (x, y), the change E can be written as

Raw Sequence Images from
MMS

Correcting Camera Lens
Distortions in Images

Harris Operator
Point Feature Extraction

Image Matching based on
Correlation Coefficient

Compute Fundamental Matrix
of Two Images

Epipolar Constraint

Robust Estimation by
RANSAC

Trifocal Tensor based on
Three Images

High Accuracy Triplet Points

Normalized

Fig. 1. Workflow diagram of multiviews matching algorithm
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E x; yð Þ ¼ x; yð ÞM x; yð ÞT ¼ Ax2 þ 2Cxyþ By2 (8)

Where the 2� 2 symmetric matrixM is rewritten in Eq. (9) and
the parameters denoted in Eq. (10), as follows:

M ¼
A C

C B

" #
(9)

A ¼ X2 �W

B ¼ Y2 �W

C ¼ XY �W (10)

where E is closely related to the local autocorrelation function; and
M describes its shape at the origin. Let λ1, λ2 be the eigenvalues of
M. λ1 and λ2 will be proportional to the principal curvatures of the
local autocorrelation function and form a rotationally invariant
description of M. The Harris corner region (Harris and Stephens
1988) is defined as shown in Eq. (11), with Det(M) and Tr(M) as
shown in Eqs. (12) and (13), respectively, as follows:

R ¼ Det Mð Þ � K � Tr Mð Þ2 (11)

Det Mð Þ ¼ λ1λ2 ¼ AB� C2 (12)

Tr Mð Þ ¼ λ1 þ λ2 ¼ Aþ B (13)

R is positive in the corner region, negative in edge regions, and
small in the flat region. The parameter K is usually set to 0.04–0.06.
In Eqs. (12) and (13), an ideal edge is λ1 large, λ2 zero; a corner will
be indicated by both λ1 and λ2 large; and a flat image region will be
indicated by both λ1 and λ2 small. If λ1 � λ2, an edge is a horizontal
edge; if λ1 � λ2, an edge is a vertical edge. Interest feature points
are extracted in every sequence image using the Harris operator.

Sequence-Image Matching by Correlation Coefficient

Next, an image matching algorithm based on the correlation coeffi-
cient is applied to acquire homologous feature points. Image match-
ing is implemented between previously detected interest feature
points in two sequence images by finding points that are maximally
correlated with each other within windows surrounding each point.
Only interest points that correlate most strongly with each other in
both the left–right and right–left directions are recorded as homolo-
gous matching points. The validity of homologous matching points
can be checked in both directions.

The implementation step of image matching is as follows. First,
the initial point sets detected by the Harris operator are divided into
adjacent sequence images to form multipoint sets. Then, by correla-
tion coefficient computation between a characteristic point in the
match window and the candidate matching points within the search
window point by point, the points with maximal correlation coeffi-
cients in both directions are regarded as homologous pairs of points.
The correlation coefficient is used to estimate the similarity of gray
vector linear correction and is an important similar-measurement
method. The correlation coefficient between point p x; yð Þ in the A
frame image and point q x0; y0ð Þ in Aþ 1 frame image is defined as

r ¼ 1
s 1s2

Xn
j¼�n

Xn
i¼�n

IA xþ i; yþ jð Þ � l1½ 	 IAþ1 x0 þ i; y0 þ j
� �� m 2

� �
(14)

where IA x; yð Þ and IAþ1 x0; y0ð Þ = gray intensities in the matching
window and research window of the A frame image or the Aþ 1
frame image, respectively; m 1, m 2, s1 and s 2 = mean and stand-
ard deviation of the match windows and research windows,
respectively; n = an arrange within small region. Of course, the
right window size must be chosen to improve the speed and time
of matching. Window size w should be odd, such as 11� 11,
13� 13. The radius of matching window is (w – 1)/2. Finally, the
correlation coefficient between sequence images is calculated
according to Eq. (14), and the homologous pairs of points with
maximal correlation in both directions are recorded.

Fit Fundamental Matrix of Two Views by RANSAC

For a given point in one sequence image, a corresponding point in
the other sequence image may not exist. As a result of missing parts
in images, mismatching, or lack of a sufficiently textured image, the
matching algorithm may fail to find the homologous point and pro-
duce outliers. Thus, these outliers must be removed using the funda-
mental matrix F by estimating the epipolar geometry and RANSAC
strategy to fit the fundamental matrix according to the matched
points. The proposed method applies the epipolar geometry con-
straint and the well-known normalized 8-point algorithm to calcu-
late the fundamental matrix F and fit the fundamental matrix of two
views with the RANSAC algorithm.

Epipolar Geometry Constraint
The epipolar geometry is the intrinsic projective geometry between
two views. Epipolar geometry is independent of scene structure and
only depends on the camera’s internal parameters and relative pose
(Hartley and Zisserman 2000). In computer vision, the most com-
monway to represent this intrinsic geometry is the fundamental ma-
trix F, which is a 3� 3 matrix of rank 2. A 3D-space point
M X; Y; Zð Þ is imaged as m x; y; 1ð ÞT in the first frame view and
m0 x0; y0; 1ð ÞT in the second frame view, and then the image points
satisfy the relation m0TFm ¼ 0; that is, the camera center, 3D-
space pointM, and its image pointsm andm0 lie in a common plane.

The fundamental matrix F can be derived from the mapping
between a point and its epipolar line. For a given pointm in the first
frame image, the projective representation of the epipolar line in the
second frame image l0 is given by l0 ¼ Fm; the pointm0 correspond-
ing to m belongs to the line l0, and therefore, m0T l0 ¼ m0TFm ¼ 0.
Thus, the fundamental matrix F satisfies the condition that for any
pair of corresponding points m $ m0 in those two frame images,
m0TFm ¼ 0.

Normalized 8-Point Algorithm
The simplest method of computing the fundamental matrix is an 8-
point algorithm, as presented by Longuet-Higgins (1981). Given
sufficiently many point matches m $ m0 (at least 8 points), the
equation m0TFm ¼ 0 can be used to compute the unknown matrix
F. Each point and its corresponding matched point give rise to one
linear equation in the unknown entries of F. According to the
known coordinates m and m0, the equation corresponding to a pair
of point m and point m0 can be expressed as a vector inner product
by

x0x; x0y; x0; y0x; y0y; y0; x; y; 1
� �

f ¼ 0 (15)

where f ¼ F1 F2 F3 F4 F5 F6 F7 F8 F9
� �

is a 9-
point vector made up of the entries of fundamental matrix F in row-
major order. For a set of n 
 8 matched points, a set of linear
equations of the following form is obtained:

© ASCE 04017020-3 J. Surv. Eng.
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Bf ¼

x01x1 x01y1 x01 y01x1 y01y1 y01 x1 y1 1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

x0nxn x0nyn x0n y0nxn y0nyn y0n xn yn 1

266664
377775f ¼ 0

(16)

For a solution to exist, matrix B must have ranked at most 8.
But the rank of B may be greater than 8 because of noise in the
point coordinates and a lack of exact data. In this case, the least-
squares solution must be found. The least-squares solution for f is
the singular vector corresponding to the smallest singular value
of B, that is, the last column of V in the SVD B ¼ UDVT

. The

solution vector f found in this way minimizes jjBf jj subject to the
condition f jj ¼ 1jj .

The key to success with the 8-point algorithm is proper careful
normalization of input data before constructing the equation. A sim-
ple transformation of the points in the image before formulating the
linear equations leads to an enormous improvement in the condi-
tioning of the problem and hence in the stability of the result.
Normalization is a translation and scaling of each set of points in
the image so that the origin of the reference points is at centroid, the
mean distance of the points from the origin is equal to

ffiffiffi
2

p
; and the

scale parameter is 1. The normalized 8-point algorithm is a method
for enforcing the singularity constraint on the fundamental matrix

F. The initial estimate F is replaced by the singular matrix bF that

minimizes the difference jjbF � Fjj subject to the condition

det bF ¼ 0. This is done using the SVD, and has the advantage of
being simple and rapid.

Detailed implementation of the step is as follows. First, trans-
form the image coordinates according to bxi ¼ Txi and bx0i ¼ T 0x0i,
where T and T 0 are normalizing transformations. Second, compose
matrix B from the pairs of matched homologous points x; yð Þ $
x0; y0ð Þ as defined in Bf ¼ 0. Third, obtain a solution F from the
vector f corresponding to the smallest singular value of B. Replace
F with bF; using the SVD for correction. Finally, set F ¼ T 0TbFT for
denormalization. Matrix F is the fundamental matrix corresponding
to the original data.

Fit Fundamental Matrix by RANSAC
The RANSAC algorithm is used for the robust fitting of models in
the presence of many data outliers (Fishler and Boles 1981). The

Table 1. DFW-SX910 9833406 Camera Parameters

Parameter Value

Focal (mm) −6.092963
xo (mm) −0.001046
yo (mm) −0.005866
k1 0.002551
k2 0.00
k3 0.00
p1 −0.000066
p2 0.00
CCD width (pixel) 1,280.00
CCD height (pixel) 960.00
X pixel size (mm) 4.65
Y pixel size (mm) 4.65

Fig. 2. (a) Raw front-view sequence image in Frame 149; (b) nondistortion sequence image in Frame 149; (c) difference image between (a) and
(b) (images courtesy of Applanix Corporation)

© ASCE 04017020-4 J. Surv. Eng.
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algorithm is used to robustly fit a fundamental matrix to a set of
putatively matched image points and obtain subset inliers (valid
points). Given N matched pairs of the homologous point, the
RANSAC algorithm is used to perform the iterative computations,
as follows: (1) randomly select s sample correspondences as an ini-
tial data set. A minimum of s pairs of point numbers is required to
form a fundamental matrix F and compute the fundamental matrix.
Random sample s and the number of samples N creates the follow-
ing relationship (Hartley and Zisserman 2000):

N ¼ log 1� pð Þ=log 1� 1� ɛð Þs� �
(17)

Eq. (17) gives the number of samples N required to ensure, with
a probability p ¼ 0:99, that at least one sample has no outliers for a
given size of sample s and proportion of outliers ɛ. (2) Compute the
distance measure. Given a current estimate of F from the RANSAC
sample, the distance dmeasures how closely a matched pair of points
satisfies the epipolar geometry. (3) Compute the number of inliers
consistent with F by the number of correspondences for which d< t.
Value t is a distance threshold of Fmodel for a 95% probability that
the point is an inlier. Then, the solution for F with the most inliers is
retained. (4) Choose the F with the largest number of inliers and re-
estimateF for all correspondences classified as inliers. Thus, the best

optimization of fundamental matrix F is fitted using the RANSAC
robust estimation algorithm to remove the outliers.

Estimate Trifocal Tensor of Three Views

The trifocal tensor (Hartley and Zisserman 2003) encapsulates all the
projective geometric relations between three views that are independ-
ent of scene structure. It only depends on the motion between views
and the internal parameters of the camera. The trifocal tensor captures
point–point–point correspondence between the three images.
Corresponding points backprojected from each image all intersect in
a single 3D point in space. A point in 3D-space is imaged as the corre-
sponding triplet x $ x0 $ x00 in three images. Because the three fun-
damental matrices F12, F23, and F34 relating the three views in
sequence images are computed and homogeneous points between
two views are matched, it is possible to determine the trifocal tensor
given the three fundamental matrices and homogeneous points.

The methods of estimating trifocal tensor T are as follows: (1)
Search three sets of corresponding image points from the matched
homogeneous pairs among two views, and form the homogeneous
point sets x $ x0 $ x00 in three images. (2) Normalize each set of
points so that the origin is at centroid, mean distance from origin isffiffiffiffi
2;

p
and scale parameter is 1. (3) Randomly select more than 7

Fig. 3. Feature points in subplots: (a) Frame 686; (b) Frame 687; (c) Frame 688; (d) Frame 689

© ASCE 04017020-5 J. Surv. Eng.
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image point correspondences in the matched pairs of homologous
points across the three images and form a fundamental matrix. (4)
Compute the trifocal tensor T (Hartley and Zisserman 2003) using
Eq. (18). On the condition of error constraints based on minimizing
algebra and the homologous matched points of the three views, the
trifocal tensor over the three images is estimated through the funda-
mental matrix using the RANSAC algorithm. Ensure the trifocal
tensor is geometrically valid by retrieving its epipoles. (5) Perform
denormalization and compute the trifocal tensor T to the original
data.

xix0jx00ke jqse krtT
qr
i ¼ 0st (18)

where xi $ x0j $ x00k = a set of corresponding points across three
frame views; e = algebraic error vector and is the norm of the
error vector that is minimized; Tqr

i = trifocal tensor; and 0st = two-
dimensional (2D) tensor with all zero entries.

The estimated trifocal tensor together with a set of correspond-
ing triplet points x $ x0 $ x00 across the three images is deter-
mined. The trifocal tensor is used to determine the exact image posi-
tions of three homologous points in three images. There are fewer
mismatches over three views than there are over two views. There

is only the weaker geometric constraint of an epipolar line against
which to verify a possible match in the two views. Thus, the highly
accurate and reliable results of the corresponding triplet points can
be obtained. In future work, the authors will use image point coordi-
nates from a set of triplet points in three views and EO parameters
of the projection center from GNSS/IMU data postprocessing to
solve a set of 3D pointsX by bundle adjustment over three views.

Results and Analysis

Data Set Description

The Sony DFW-SX910 9833406 camera is a front-view digital
camera and was mounted in an Applanix Landmark MMS. The
camera contains a digital CCD sensor with 1,280� 960 pixels with
a 4.65-mm pixel size, and the lens focal is 6.09mm. The camera pa-
rameters are shown in Table 1. In this study, the authors chose the
continuous adjacent four-frame sequence images from Frames 686,
687, 688, and 689 collected by the Sony DFW-SX910 9833406
camera as test samples.

Fig. 4. Subplots (a) through (c) show homologous pairs of points, and (d) shows the original image: (a) between Frames 686 and 687 shown in Frame
686; (b) between Frames 687 and 688 shown in Frame 687; (c) between Frames 687 and 688 shown in Frame 688; (d) original image in Frame 689
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Data Processing and Results

Image data processing mainly included camera lens distortion cor-
rection, Harris feature point extraction, image matching based on
correlation coefficient, fundamental matrix fitting by RANSAC,
and estimation of the trifocal tensor.

In camera lens distortions correction, the authors chose Frame
149 images for lens correction. The results of distortion correction
are presented in Figs. 2(a–c), where Fig. 2(a) is the raw front view
sequence image, Fig. 2(b) is the nondistortion image processed
using the Brown model, and Fig. 2(c) is a difference image between
the raw image and the nondistortion image. Fig. 2(c) shows that
there is a small distortion in the center area of the image and a large
distortion at the image edge and surrounding area that is the primary
source of systematic error.

For the Harris feature point extraction, the authors chose the con-
tinuous four-frame nondistortion image sequence from Frame 686 to
Frame 689 to extract feature points using the Harris corner detector
operator. For parameters, the standard deviation (s ) of the Gaussian
was 1, the search radium of the small shift was set to 3 pixels, and the
number of corner points was 500. The extraction of feature points
resulted in 3,024 points on Frame 686, 3,287 points on Frame 687,

3,348 points on Frame 688, and 2,541 points on Frame 689. The
results are shown in the subplots in Figs. 3(a–d). The extracted feature
points are shown in the corresponding images, respectively.

In the sequence image matching based on correlation coefficient,
the window size for correlation matching was set as 11 � 11, the
match radium was 5, the maximum search distance for matching
was 50� 50, and the value of the correlation coefficient was set as
0.99. The matching results in the sequence of four adjacent images
are shown in subplots Figs. 4(a–c). The matched homologous pairs
of points between Frames 686 and 687 are shown in Frame 686 in
Fig. 4(a). The homologous pairs of points between Frames 687 and
688 are shown in Frame 687 in Fig. 4(b). The homologous pairs of
points between Frames 688 and 689 are shown in Frame 688 in Fig.
4(c). The original image of Frame 689 is shown in Fig. 4(d).

In fitting the fundamental matrix of two views with the
RANSAC algorithm, the authors chose the parameters s = 8, p =
0.99, ɛ = 5%, and t = 0.002. The inlier matched results in the ad-
jacent four-image sequence are shown in the subplots in Figs.
5(a–c). The result of inlier point fitting by RANSAC for Frames
686 and 687 is shown in Frame 686 in Fig. 5(a), that for Frames
687 and 688 is shown in Frame 687 in Fig. 5(b), and that for

Fig. 5. Subplots (a) through (c) show inlier points fitted by RANSAC, and (d) shows the original image: (a) between Frames 686 and 687 shown in
Frame 686; (b) between Frames 687 and 688 shown in Frame 687; (c) between frames 688 and 689 shown in frame 688; (d) original image in Frame 689
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Frames 688 and 689 is shown in Frame 688 in Fig. 5(c). The origi-
nal image of Frame 689 is shown in Fig. 5(d).

In computing the trifocal tensor, the triplet points were found from
matched pairs of points between Frames 686 and 687 and Frames 687
and 688, and the triplet points were obtained from the matched pairs

of points between Frames 687 and 688 and Frames 688 and 689.
Then, the triplet points were estimated using the RANSAC algorithm,
and the trifocal tensor was computed. The trifocal tensor T686 7 8 in
Frames 686, 687 and 688 was computed as follows; the result of the
number of triplet points was 507 in those three images, respectively:

T686 7 8 ¼

�242:796742537499 �308:3119278271618 �0:168649231801065

83:98159742299697 0:63647443276779 �0:0007727850778

0:053243152720731 0:003388789008461 0:000001174601933

�12:492666496867255 96:96361502455825 �0:003774280617473

�359:74694098738854 �233:03056978126986 �0:170093451162632

0:053243152720731 0:003388789008461 0:000002819043955

13989:89991922595 19639:11457849911 1156195430323927

�4468:773116527736 1742:9776543351472 82:35843484120251

�350:0665863770545 �304:8744643696752 �0:117043925213603

266666666666666666664

377777777777777777775

Fig. 6. Subplots (a) through (c) show triplet pairs of points, and (d) shows the original image: (a) between Frames 686 and 687 of three views shown in
Frame 686; (b) between Frames 687 and 688 shown in Frame 687; (c) between Frames 688 and 689 shown in Frame 688; (d) original image in Frame 689
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The results of the matched triplet points in the sequence of
three adjacent images by trifocal tensor are shown in the subplots
in Figs. 6(a–c). The triplet pairs of points between Frames 686
and 687 in the three images of Frames 686, 687, and 688 found by
computing the trifocal tensor are shown in Frame 686 in Fig. 6(a);
the triplet pairs of points between Frames 687 and 688 in the three
images of Frames 687, 688, and 689 are shown in Frame 687 in
Fig. 6(b); and the triplet pairs of points between Frames 688 and
689 in the three images of Frames 687, 688, and 689 are shown in
Frame 688 in Fig. 6(c). The original image of Frame 689 is shown
in Fig. 6(d).

Conclusions

This paper presents an approach to acquiring highly accurate
matched points of sequence images from a MMS. Sequence
images of motion with short baseline and overlapping are col-
lected, and an image scale of front-view images is changed in
accordance with the speed of the MMS. The approach applies
the algorithms of computer vision to correct the camera lens
distortion, to extract feature points using the Harris operator,
and to produce many matched homologous points with higher
matching effectiveness and many mistakenly matched points.
The fundamental matrix of two views is computed by using
the epipolar geometric constraint and RANSAC strategy to
robustly estimate and effectively eliminate outliers. The accu-
racy and reliability of the matched points are thus improved.
On the condition of error constraints based on minimizing
algebra and homologous matched points of multiviews, the
trifocal tensor is computed through the fundamental matrix
and RANSAC algorithm. The high-precision public triplet
points in three views are found. At the same time, the number
of matched points in three views of sequence images is
reduced to satisfy the trifocal tensor. The results of applica-
tion of the method demonstrate that the proposed algorithm is
very promising in terms of both accuracy and feasibility. In
future work, the authors will solve the 3D point coordinates
by bundle adjustment over three views using triplet pairs of
points and EO parameters from GNSS/IMU data.
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