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d�etection d’objets g�eospatiaux �a partir d’mages de t�el�ed�etection
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Fenfen Lia, and Jonathan Lid
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Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, China; cState Key Laboratory of
Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan, China; dDepartment of Geography
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ABSTRACT
Object detection from remote sensing images serves as an important prerequisite to many
applications. However, caused by scale and orientation variations, appearance and distribution
diversities, occlusion and shadow contaminations, and complex environmental scenarios of
the objects in remote sensing images, it brings great challenges to realize highly accurate rec-
ognition of geospatial objects. This paper proposes a novel one-stage anchor-free capsule net-
work (OA-CapsNet) for detecting geospatial objects from remote sensing images. By
employing a capsule feature pyramid network architecture as the backbone, a pyramid of
high-quality, semantically strong feature representations are generated at multiple scales for
object detection. Integrated with two types of capsule feature attention modules, the feature
quality is further enhanced by emphasizing channel-wise informative features and class-spe-
cific spatial features. By designing a centreness-assisted one-stage anchor-free object detection
strategy, the proposed OA-CapsNet performs effectively in recognizing arbitrarily-orientated
and diverse-scale geospatial objects. Quantitative evaluations on two large remote sensing
datasets show that a competitive overall accuracy with a precision, a recall, and an Fscore of
0.9625, 0.9228, and 0.9423, respectively, is achieved. Comparative studies also confirm the
feasibility and superiority of the proposed OA-CapsNet in geospatial object detection tasks.

RÉSUMÉ

La d�etection d’objets �a partir d’images de t�el�ed�etection constitue une condition pr�ealable
importante �a de nombreuses applications. Cependant, les variations d’�echelle et d’orienta-
tion, les diversit�es d’apparence et de distribution, les contaminations de l’occlusion et de
l’ombre, et des sc�enarios environnementaux complexes des objets dans les images appor-
tent de grands d�efis pour r�ealiser la reconnaissance tr�es pr�ecise des objets g�eospatiaux. Cet
article propose un nouveau r�eseau capsule sans ancrage en une seule �etape (OA-CapsNet)
pour d�etecter les objets g�eospatiaux �a partir d’images de t�el�ed�etection. En utilisant une
architecture de r�eseau pyramidal �a capsules comme colonne vert�ebrale, une pyramide de
repr�esentations de fonctionnalit�es de haute qualit�e et s�emantiquement fortes sont g�en�er�ees
�a plusieurs �echelles pour la d�etection d’objets. Int�egr�ee �a deux types de modules �a capsules,
la qualit�e des fonctionnalit�es est encore am�elior�ee en mettant l’accent sur les fonctionnalit�es
informatives du côt�e des canaux et des caract�eristiques spatiales sp�ecifiques �a la classe. En
concevant une strat�egie de d�etection d’objets sans ancrage �a un �etage assist�ee par la cen-
tralit�e, l’OA-CapsNet propos�e fonctionne efficacement dans la reconnaissance d’objets
g�eospatiaux arbitrairement orient�es et diversifi�es. Les �evaluations quantitatives sur deux
grands ensembles de donn�ees de t�el�ed�etection montrent qu’une exactitude concurrentielle
globale est atteinte avec une pr�ecision, un recall et un Fscore de 0,9625, 0,9228 et 0,9423
respectivement, Des �etudes comparatives confirment �egalement la faisabilit�e et la
sup�eriorit�e de l’OA-CapsNet dans les tâches de d�etection d’objets g�eospatiaux.
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Introduction

With the increasing advancement of optical remote
sensing sensors in flexibility, cost-efficiency, reso-
lution, and quality, remote sensing images have
become an important data source for many applica-
tions, such as land cover mapping, landmark recogni-
tion, environmental analysis, and intelligent
transportation systems. As a typical research topic,
geospatial object detection targets to correctly identify
the objects of interest and accurately locate their posi-
tions in the remote sensing image. To date, a number
of techniques with continuously improving perform-
ances have been developed for geospatial object detec-
tion tasks in the literature. However, it is still a
challenging issue to fulfill highly accurate and fully
automated detection of geospatial objects due to the
complicated scenarios of the geospatial objects in the
bird-view remote sensing images, such as scale and
orientation variations, texture and distribution diver-
sities, occlusion and shadow contaminations, illumin-
ation condition changes, and complex environmental
conditions. Thus, exploiting advanced techniques to
further enhance the accuracy and automation level of
geospatial object detection is greatly meaningful and
positively favorable to a wide range of applications.

Recent increasing development of deep learning
techniques has attracted great attentions on geospatial
object detection by using deep learning models (Li,
Wan, et al. 2020). Specifically, the existing deep learn-
ing based geospatial object detection methods can be
roughly categorized into one-stage methods and two-
stage methods. The two-stage methods comprise two
cascaded processing modules for, respectively, region
proposal generation and object recognition. Usually, a
region proposal subnetwork is designed to generate a
set of dense object region proposals, which are further
verified by a classification subnetwork for recognizing
the objects of interest (Gong et al. 2020; Li et al. 2019;
Liu et al. 2021; Yu et al. 2020; Zheng et al. 2020). In
contrast, the one-stage methods accomplish feature
extraction and object detection with a single network
without the pre-generation of object region proposals.
Hu et al. (2019) proposed a convolutional neural net-
work (CNN), which was trained with a sample updat-
ing strategy, to detect objects in large-area remote
sensing images. The updated artificial composite sam-
ples were used to fine-tune the object detector. Based
on the YOLOv2 architecture, Liu et al. (2019)
designed a multilayer feature concatenation and fea-
ture introducing strategy aiming to improve the
adaptability of the network to multiscale objects, espe-
cially the small-size objects. By extracting multiscale

features and learning visual attentions at each feature
scale, Wang et al. (2019) developed a multiscale visual
attention network (MS-VAN) to detect multiscale
objects. The multiscale features were extracted and
properly fused through a skip-connected encoder-
decoder backbone. To upgrade the detection accuracy
of small-size objects, Qin et al. (2021) proposed a spe-
cially optimized one-stage network (SOON), which
comprised three parts of feature enhancement, multi-
scale detection, and feature fusion. In this network,
the spatial information of small-size objects was con-
centrated on by incorporating a receptive field
enhancement module. Similarly, a one-stage network
integrated with residual blocks at multiple scales was
constructed by Mandal et al. (2020) for detecting
small-size vehicles. The residual blocks, alongside the
enlarged output feature map, enhanced the representa-
tion robustness of the feature saliencies for small-size
objects. Tang et al. (2017) proposed an orientated sin-
gle-shot multi-box detector (SSD) for detecting arbi-
trarily-orientated vehicles. This model deployed a set
of default orientated anchors with varying scales at
each position of the feature map to produce detection
bounding boxes. Zhang, Liu, et al. (2020) designed a
depthwise-separable attention-guided network
(DAGN) to detect vehicles by integrating a feature
concatenation and attention block into the YOLOv3
architecture. With the combination of the multi-level
feature concatenation and channel feature attention
mechanisms, the feature representation capability of
the network was dramatically enhanced to serve for
the small-size vehicles. In addition, YOLO-fine (Pham
et al. 2020) and H-YOLO (Tang et al. 2020) models
were also developed based on the YOLOv3 architec-
ture to detect geospatial objects. Specifically, the
YOLO-fine model performed successfully in detecting
small-size objects with both high accuracy and high
speed, which was applicable for real-time applications;
whereas, the H-YOLO model combined the region of
interest preselected network and textural properties to
effectively improve the object detection accuracy.

Yao et al. (2021) proposed a multiscale CNN
(MSCNN) based on an EssNet backbone and a dilated
bottleneck block for extracting multiscale high-quality
features. The EssNet backbone functioned to maintain
the resolution of deep feature levels and improve the
feature encoding of the multiscale objects. To effect-
ively handle arbitrarily-orientated objects, Zhou,
Zhang, Gao, et al. (2020a) developed a rotated feature
network (RFN), which generated rotation-aware fea-
tures to delineate orientated objects and rotation-
invariant features to conduct object recognition.
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Bao et al. (2019) designed a single-shot anchor refine-
ment network (S2ARN) for detecting orientated
objects with the assistance of orientated bounding
boxes. In this model, two types of regressions were
applied to, respectively, generate refined anchors and
accurate bounding boxes. Differently, Shi et al. (2020)
constructed a one-stage anchor-free network to detect
arbitrarily-orientated vehicles. In this network, a fea-
ture pyramid fusion strategy was applied to concaten-
ate the multi-stage features for the direct regression
and identification of vehicles. Similarly, Zhang, Wang,
et al. (2020) proposed an anchor-free network for
detecting rotated ships. This network consisted of a
feature extraction backbone integrated with a selective
concatenation module, a rotation Gaussian-mask
module for modeling the geometric features of ships,
and a detection module for ship detection and rotated
bounding box regression. Li, Pei, et al. (2020) also
presented a single-stage anchor-free detector based on
a multiscale dense path aggregation feature pyramid
network (DPAFPN). The DPAFPN performed promis-
ingly in comprehensively considering high-level
semantic information and low-level location informa-
tion and avoiding information loss during shallow fea-
ture transfer. Wu et al. (2018) learned a regularized
CNN to extract multiscale and rotation-insensitive
convolutional channel features. These features were
finally fed into an outlier removal assisted AdaBoost
classifier for object recognition. To effectively tackle
small-size objects, Courtrai et al. (2020) designed a
generative adversarial network (GAN). Specifically, a
super-resolution technique with an object-focused
strategy was applied to highlight the details of the
small-size objects. Likewise, by combining super-
resolution and edge enhancement techniques, Rabbi
et al. (2020) proposed an edge-enhanced super-
resolution GAN (EESRGAN) and used varying
detector networks in an end-to-end manner for object
detection. Mekhalfi et al. (2019) designed a capsule
network for detecting objects in unmanned aerial
vehicle (UAV) images. The capsule network com-
prised a conventional convolutional layer and a
capsule convolutional layer for capsule feature extrac-
tion, and a fully-connected capsule layer for object
recognition. In addition, Siamese graph embedding
network (SGEN) (Tian et al. 2020), feature-merged
single-shot detection network (FMSSD) (Wang et al.
2020), single-shot multiscale feature fusion network
(Zhuang et al. 2019), single-shot recurrent network
with activated semantics (Chen et al. 2018), fully con-
volutional network (FCN) (Cozzolino et al. 2017),
region-enhanced CNN (RECNN) (Lei et al. 2020), and

Bayesian transfer learning (Zhou, Zhang, Liu et al.
2020b) were also leveraged to detect geospa-
tial objects.

In this paper, we develop a novel one-stage anchor-
free capsule network for detecting geospatial objects
from remote sensing images. With the formulation of
a capsule feature pyramid network architecture as the
backbone for extracting multiscale high-order capsule
features, the integration of the capsule-based channel
and spatial feature attention modules for obtaining
informative feature encodings, and the design of an
effective anchor-free object detection strategy, the pro-
posed network performs promisingly in handling geo-
spatial objects of different scales, orientations,
distributions, and surface conditions in diverse com-
plicated scenarios. The contributions of this paper
include the following: (1) two types of capsule feature
attention modules are proposed to emphasize chan-
nel-wise informative features and class-specific spatial
features to produce high-quality object-orientated fea-
ture representations; (2) an effective centreness-
assisted one-stage anchor-free object detection strategy
is designed to recognize arbitrarily-orientated and
varying-scale geospatial objects.

Methodology

Capsule network

Traditional deep learning models are generally
designed with scalar neurons for encoding the feature
saliencies and probabilities. In contrast, constructed
with vectorial capsules, capsule networks use the cap-
sule length to encode the feature probability of an
entity and the instantiation parameters of a capsule to
depict the inherent features of the entity (Sabour et al.
2017). An advantageous property of the capsule for-
mulation is that the vectorial representation allows a
capsule not only to detect a feature but also to learn
and identify its variants. That is, a category of entity
features can be encoded by using capsules rather than
a single feature encoding pattern like that in the
CNN. Capsule convolutions operate quite differently
from traditional convolutions. Specifically, for a cap-
sule j, the input to the capsule is a weighted aggrega-
tion over all the predictions from the capsules within
the convolution kernel in the previous layer as fol-
lows:

Cj ¼
X

i
ai, j � Ui, j (1)

where Cj is the aggregated input to capsule j; ai,j is a
coupling coefficient reflecting the contribution of cap-
sule i to capsule j, which is dynamically determined
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by the improved dynamic routing process
(Rajasegaran et al. 2019); Ui,j is the prediction from
capsule i to capsule j, which is computed as follows:

Ui, j ¼ Wi, jUi (2)

where Ui is the output of capsule i and Wi,j is a trans-
formation matrix acting as a feature map-
ping function.

As for the capsule length-based feature probability
encoding pattern in the capsule networks, the longer
the capsules are, the higher the probability predictions
should be. To this end, a squashing function (Sabour
et al. 2017) is designed as the activation function to
normalize the output of a capsule. The squashing
function is formulated as follows:

Uj ¼
kCjk2

1þ kCjk2
� Cj

kCjk (3)

where Cj and Uj are, respectively, the input and the
output of capsule j. The modulus of a vector is calcu-
lated by the operator k � k for representing the capsule
length. Through the above normalization process, long
capsules are shrunk to a length close to one to cast
high predictions; whereas short capsules are suppressed
to almost a zero length to provide few contributions.

One-stage anchor-free capsule network

As shown in Figure 1, based on capsule representa-
tions, we construct a fully convolutional one-stage
anchor-free capsule network (OA-CapsNet) for detect-
ing geospatial objects. The architecture of the OA-
CapsNet involves a feature extraction backbone and a
set of parallel multiscale object detection heads. By
employing a feature pyramid network architecture, the
feature extraction backbone serves to extract high-
quality, multiscale capsule features. The object detec-
tion head is designed with a one-stage anchor-free
strategy for directly detecting and regressing objects,
which avoids the tedious work in anchor determin-
ation and proposal generation, as well as improving
the detection efficiency.

The feature extraction backbone comprises two
traditional convolutional layers for extracting low-level
image features, and a pyramid of capsule convolu-
tional layers for extracting multiscale high-level entity
features. For the traditional convolutional layers, the
rectified linear unit (ReLU) is adopted as the activa-
tion function. The scalar features output by the
second traditional convolutional layer are transformed
into vectorial capsule representations to constitute the
primary capsule layer for further characterizing entity

features. This can be achieved through traditional
convolution operations, followed by feature channel
grouping and capsule vectoring. The capsule convolu-
tional layers are split into four network stages by three
capsule max-pooling layers to extract capsule features
at different scales with a scaling step of two.
Specifically, within each stage, the feature maps main-
tain the same spatial resolution and size. The spatial
size of feature maps is gradually scaled down stage by
stage to produce lower-resolution, but semantically
higher-level, feature maps. For each stage, the feature
map of the top layer, which encodes the strongest and
the most representative feature semantics, is selected
and modulated with a 1� 1 capsule convolution to
form a reference feature map for further feature
fusion and augmentation. As shown in Figure 1, the
set of reference feature maps obtained from the four
stages is denoted by {G1, G2, G3, G4}. Then, through a
series of operations, including capsule deconvolutions
to upsample a high-level reference feature map to its
twice spatial size, capsule feature concatenations to
concatenate the upsampled high-level reference feature
map with a low-level reference feature map from the
previous stage, and capsule convolutions to conduct
feature fusion, these multiscale reference feature maps
are gradually fused in a top-down manner to generate
a set of multiscale fused feature maps {D1, D2, D3}. For
instance, feature map G4 is first upsampled to its twice
spatial size to hallucinate a higher-resolution feature
map through capsule deconvolution operations. Then,
the upsampled feature map is concatenated with feature
map G3 through the lateral connection. Afterward, a
3� 3 capsule convolution is performed on the con-
catenated feature maps to conduct feature fusion,
resulting in the multiscale fused feature map D3. This
process repeats downward to gradually fuze all the fea-
ture maps {G1, G2, G3, G4}. Finally, a 3� 3 capsule
convolution is applied to {D1, D2, D3, G4} to further
smooth the fused features to obtain the multiscale fea-
ture maps {P1, P2, P3, P4}, which have scales of {1, 1/2,
1/4, 1/8} with regard to the input image and encode
strong feature semantics at each scale. In this way, the
high-resolution features in the lower stages are effect-
ively augmented by the semantically strong features in
the higher stages to provide a set of high-quality feature
maps at multiple scales.

Specifically, to enhance the feature representation
capability at each scale, we design a capsule-based
channel feature attention (CFA) module and integrate
it at the end of each stage to boost the quality of the
reference feature map. The architecture of the CFA
module is inspired by the squeeze-and-excitation
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network (Hu et al. 2018) and leverages a capsule-
based formulation. The CFA module aims to upgrade
the input features by exploiting the channel-wise
interdependencies to increase the ability of the net-
work to highlight informative feature channels associ-
ated with the foreground and suppress the impacts of
the helpless or less informative feature channels. To

this end, as shown in Figure 2, first, the input multi-
dimensional capsule feature map is converted into a
one-dimensional capsule feature map A, which main-
tains the same number of feature channels, as well as
the same spatial size, and mainly encodes the feature
saliencies of the input feature map, through a 1� 1
capsule convolution. Then, a channel descriptor C is

Figure 1. Architecture of the proposed one-stage anchor-free capsule network (OA-CapsNet). The dimension of a capsule is config-
ured as 16.
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obtained by performing a global average pooling on
feature map A in a channel-wise manner. That is, a
scalar value reflecting the global feature statistics in a
feature channel is generated by spatially averaging the
features in this channel. Finally, two fully-connected
layers are connected to exploit channel-wise interde-
pendencies. These two fully-connected layers are,
respectively, activated by the ReLU and the sigmoid
function. The output of the second fully-connected
layer produces a channel-wise attention descriptor R,
whose length equals to the number of channels of the
input feature map and each of whose entries encodes
the importance of the associated channel of the input
feature map. That is, the larger the value of an entry,
the more important the associated channel of the
input feature map. Whereas, the smaller the value of
an entry, the less informative the associated channel
of the input feature map. The attention descriptor R
is used as weight factors to recalibrate the input fea-
ture map to emphasize the informative and salient
features and weaken the contributions of the less
important ones. This is achieved by multiplying R
with the input feature map in a channel-wise and
element-wise manner as follows:

�Ui
j ¼ ri � Ui

j , i ¼ 1, 2, :::, 64 (4)

where ri represents the i-th entry of the attention

descriptor R; Ui
j and �Ui

j are, respectively, the output
of the original capsule and the output of the recali-
brated capsule in the i-th channel. In this way, the
informative feature channels are significantly high-
lighted and the less informative feature channels are
rationally suppressed, thereby boosting the feature
representation robustness.

In addition, to further enhance the feature seman-
tics at each scale, we design a capsule-based spatial
feature attention (SFA) module and mount it over the
multiscale feature maps {P1, P2, P3, P4}. The architec-
ture of the SFA module is inspired by the dual
attention network (Fu et al. 2019) and adopts a cap-
sule-based formulation. The SFA module functions to
enforce the network to focus on the spatial features
associated with the object regions and adequately sup-
press the influences of the background features. As
shown in Figure 3, first, two 1� 1 capsule convolu-
tions are, respectively, performed on the input multi-
dimensional capsule feature map to convert it into
two one-dimensional identical-size feature maps
B2RH�W�64 and E2RH�W�64, where H and W are,
respectively, the height and width of the input feature
map. Then, feature maps B and E are reshaped along
different dimensions to obtain two feature matrices
X2RN�64 and Y2R64�N, where N¼W�H denotes
the number of positions in the input feature map.
Next, we multiply X with Y (i.e. XY) and activate
each element of the product matrix by a softmax
function in a column manner to constitute a spatial
attention matrix S2RN�N. The element si,j at row i,
column j of the spatial attention matrix S encodes the
impact of position i on position j in the input feature
map. The computation of the element si,j is as follows:

si, j ¼
exp ðP64

k¼1 xi, k � yk, jÞPN
m¼1 exp ðP64

k¼1 xm, k � yk, jÞ
(5)

Figure 3. Architecture of the spatial feature attention (SFA) module.

Figure 2. Architecture of the channel feature attention
(CFA) module.
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where xi,k denotes the element at row i, column k of
the feature matrix X and yk,j denotes the element at
row k, column j of the feature matrix Y. Finally, the
input feature map is reshaped to a capsule feature
matrix T2RN� 64� 16 and multiplied with the spatial
attention matrix S (i.e. ST), followed by a reshaping
operation to reshape the product matrix to the dimen-
sion RH�W� 64� 16, to produce a high-quality spatial
feature highlighted feature map. In this way, the spa-
tial features associated with the object regions are
positively concentrated on and the background fea-
tures are effectively weakened, thereby improving the
object-level feature characterization quality. As shown
in Figure 1, the multiscale class-specific feature maps
{F1, F2, F3, F4} output by the SFA modules are fed
into the object detection head to conduct object infer-
ence. This set of feature maps comprehensively take
into account both the channel and spatial feature
informativeness, as well as the multiscale feature
semantics, to provide semantically strong feature rep-
resentations at multiple scales.

As shown in Figure 1, the object detection head
employs a shallow capsule convolutional network with
three parallel output branches for, respectively, identi-
fying the presence of an object, inferring the centre-
ness of a position, and regressing the orientated
bounding box of an object. The classification branch
outputs a (Cþ 1)-dimensional softmax vector at each
position for recognizing the C categories of objects
and the background. That is, the outputs at each pos-
ition of the classification branch are activated by the
softmax function to generate a one-hot prediction. As
a result, the category corresponding to the maximum
softmax output is assigned as the predicted category
label at a position. Specifically, to effectively handle
arbitrarily-orientated objects, we use a five-tuple rep-
resentation {d1, d2, d3, d4, h} to characterize an object
at a position. As shown in Figure 4a, {d1, d2, d3, d4}
represent the distances from a position inside the
object region to the four sides of the object’s bound-
ing box, and h2 [0,p) represents the orientation of the

object, which is defined as the included angle from
the positive direction of the x-axis to the direction
parallel to the long side of the object’s bounding box
along the anticlockwise direction. Based on such rep-
resentation, the regression branch outputs a five-
dimensional vector at each position for encoding the
orientated bounding box of an object. Note that, since
the object scales vary greatly in the multiscale feature
maps, thus, rather than directly regressing the large-
range parameters {d1, d2, d3, d4}, we adopt the follow-
ing transformations to restrain them to a small range:

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

F þ H2
F

p
2

ebi , i ¼ 1, 2, 3, 4 (6)

where WF and HF are, respectively, the width and
height of a feature map used for regression. As a result,
the regression branch only requires to output the small-
range values bi,i¼ 1, 2, 3, 4 in the feature map domain.
The predicted regression parameters in the image
domain can be computed using Equation (6). In add-
ition, to effectively focus on the high-quality bounding
boxes near the object center and suppress the low-qual-
ity bounding boxes at the positions far away from the
object center, we add an indicator to depict the centre-
ness of a position, which measures the proximity of a
position to the object center. That is, the higher the
centreness measure at a position, the closer the position
to the object center. Thus, the centreness branch out-
puts a scalar value (activated by the sigmoid function)
at each position for inferring the centreness of the pos-
ition, which is used to weight the corresponding object-
ness score of the classification branch. Concretely, the
certainty of the existence of an object at a position is
reflected by the product of the softmax output from the
classification branch and the centreness indicator from
the centreness branch.

To construct a high-quality object detection model,
at the training stage, the positive samples are selected
as the positions located at the central area surrounded
by the object’s bounding box with a ratio of d¼ 0.8
(Figure 4b). The remaining marginal area containing

Figure 4. Illustrations of (a) the five-tuple representation of an arbitrarily-orientated object at a position, and (b) the positive and
negative regions used for training.
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low-quality object information is directly ignored. The
background area is used as the negative samples.
Based on the multi-branch prediction architecture of
the OA-CapsNet, the loss function used for directing
the training process is designed as a multitask loss
function as follows:

L ¼ k1Lcls þ k2Lreg þ k3Lcnt (7)

where Lcls, Lreg, and Lcnt are, respectively, the classifi-
cation, regression, and centreness loss terms of the
three prediction branches; k1, k2, and k3 are the regu-
larization factors for balancing the contributions of
the three loss terms. To effectively handle orientated
bounding boxes, the Lreg is formulated as the general-
ized intersection over union (GIoU) loss (Rezatofighi
et al. 2019) between the regressed bounding boxes
and the target bounding boxes. The Lcls and Lcnt are
formulated as the focal loss (Lin et al. 2017) between
the predictions and the ground truths. Specifically,
given the distance regression targets {d�1, d�2, d�3, d�4}
for a position, the corresponding centreness target is
calculated accordingly as follows:

c� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðd�1, d�3Þ
maxðd�1, d�3Þ

� minðd�2, d�4Þ
maxðd�2, d�4Þ

s
(8)

Results and discussion

Datasets

We evaluated the geospatial object detection perform-
ance of the proposed OA-CapsNet on the following
two large-scale remote sensing image datasets:
GOD218 (Yu et al. 2020) and DOTA (Xia et al. 2018)
datasets. The GOD218 dataset contains 22,000 images
covering four categories of geospatial objects, includ-
ing airplane, ship, vehicle, and ground track field.
This dataset involves 69,207 annotated instances
labeled with orientated bounding boxes. All the
images have the same image size of 800� 600 pixels.
The DOTA dataset comprises 2086 images covering
fifteen categories of geospatial objects, including
vehicle, airplane, ship, harbor, bridge, tennis court,
etc. This dataset involves 188,282 annotated instances
labeled with arbitrary quadrilaterals. The image sizes
range from about 800� 800 pixels to 4000� 4000 pix-
els. These two datasets are remarkably challenging,
since the images were captured using different sensors
and platforms and the geospatial objects exhibit with
varying scales and orientations, diverse appearances
and distributions, different-level occlusion and shadow
contaminations, and complicated environmental scen-
arios. At the training stage, the training sets of these

two datasets were applied to construct the proposed
OA-CapsNet.

Network training

The proposed OA-CapsNet was trained in an end-to-
end manner by backpropagation and stochastic gradi-
ent descent on a cloud computing platform with ten
16-GB GPU, one 16-core CPU, and a memory size of
64GB. Before training, we randomly initialized all
layers of the OA-CapsNet by drawing parameters
from a zero-mean Gaussian distribution with a stand-
ard deviation of 0.01. Each training batch contained
two images per GPU and was trained for 1000 epochs.
During training, we configured the initial learning
rate as 0.001 for the first 800 epochs and decreased it
to 0.0001 for the rest 200 epochs. The momentum
and weight decay were configured as 0.9 and 0.0005,
respectively. To trade off the computational efficiency
and the feature representation capability, as well as
the object detection accuracy, we configured the
dimension of a capsule as 16 for all capsule layers and
the regularization factors k1¼1, k2¼1, and k3¼1.

Geospatial object detection

At the test stage, we applied the OA-CapsNet to the
test sets of the GOD218 and the DOTA datasets to
evaluate its object detection performance. To provide
quantitative evaluations on the object detection
results, we adopted the following three commonly
used evaluation metrics: precision (P), recall (R), and
Fscore. Precision and recall, respectively, evaluate the
performance of an object detection model in distin-
guishing false alarms and identifying true targets.
Fscore provides an overall performance evaluation by
taking into account both the precision and recall
measures. These three quantitative evaluation metrics
are formally defined as follows:

P ¼ ðTPÞ
ðTPÞ þ ðFPÞ (9)

R ¼ ðTPÞ
ðTPÞ þ ðFNÞ (10)

Fscore ¼ 2� P � R
P þ R

(11)

where TP, FP, and FN are the numbers of true posi-
tives, false positives, and false negatives, respectively.
The geospatial object detection results obtained by the
proposed OA-CapsNet on the two test datasets are
reported in Table 1 by using the above three quantita-
tive evaluation metrics. In Table 1, “Average” denotes
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the average performance obtained on the two test
datasets. It includes the average precision, average
recall, and average Fscore.

As reported in Table 1, the proposed OA-CapsNet
achieved quite promising performances on the two
test datasets. An object detection accuracy with a pre-
cision, a recall, and an Fscore of 0.9687, 0.9276, and
0.9477, respectively, was obtained on the GOD218
dataset. For the DOTA dataset, an accuracy with a
precision, a recall, and an Fscore of 0.9563, 0.9180, and
0.9368, respectively, was achieved in detecting geospa-
tial objects. Comparatively, the DOTA dataset
involved more categories of geospatial objects with
more varying and complicated conditions, thus, a rela-
tively better performance was obtained on the
GOD218 dataset. Specifically, for each dataset, the pre-
cision metric was better than the recall metric. It
means that the proposed OA-CapsNet behaved prom-
isingly in distinguishing the true targets and the false
alarms, thereby resulting in a low false recognition
rate. Overall, the object detection performance was
quite competitive in processing the two remarkably
challenging datasets. An average object detection
accuracy with a precision, a recall, and an Fscore of
0.9625, 0.9228, and 0.9423, respectively, was achieved
on the two test datasets.

The challenging scenarios of these two datasets
cover the following aspects: (1) objects with varying
scales and orientations, (2) objects with diverse texture
properties and spatial distributions, (3) objects with
different levels of occlusions, (4) objects contaminated
by different levels of shadows, (5) similarities between
the objects of interest and the non-targets, (6) illumin-
ation condition variations, and (7) complicated envir-
onmental conditions. These challenging scenarios
impeded the highly accurate recognition of the geo-
spatial objects, and required that the object detection
model should be self-adaptive, robust, effective, and
transferable enough to correctly identify the existence
of objects, accurately locate the positions of objects,
effectively distinguish the true targets and false alarms,
and applicably handle different image sources.
Fortunately, the proposed OA-CapsNet still performed
promisingly with a high detection accuracy in process-
ing the geospatial objects of varying conditions in
diverse scenarios. The advantageous performance of
the proposed OA-CapsNet benefited from the follow-
ing aspects. First, by employing a capsule feature
pyramid network architecture as the backbone, the
proposed OA-CapsNet can extract and fuze multiscale
and multilevel high-order capsule features to provide
a semantically strong feature representation at each
scale. Second, by integrating the two types of capsule-
based feature attention modules, the proposed
OA-CapsNet can highlight channel-wise informative
features and focus on class-specific spatial features to
further enhance the feature representation quality and
robustness. Last but not least, by designing a centre-
ness-assisted anchor-free object detection network, the
proposed OA-CapsNet can detect arbitrarily-orien-
tated and varying-scale objects.

For visual inspections, Figure 5 also presents a sub-
set of geospatial object detection results from the two
test datasets. As observed by the object detection
results in Figure 5, the objects of different scales, arbi-
trary orientations, diverse densities, and varying distri-
butions in different environmental scenarios were
effectively recognized. Specifically, for the images con-
taining very high-density and parallel-distributed
vehicles and ships, the proposed OA-CapsNet still
achieved a competitive detection performance owing
to the design of the five-tuple based orientated bound-
ing box representation. In addition, for the images
containing different-scale objects, especially the small-
size objects (e.g. ships, vehicles, airplanes, storage
tanks, etc.), the proposed OA-CapsNet still performed
promisingly in correctly identifying and locating these
objects due to the semantically strong pyramidal

Table 1. Geospatial object detection results obtained by dif-
ferent methods.

Method Dataset

Quantitative evaluation

Precision Recall Fscore
OA-CapsNet GOD218 0.9687 0.9276 0.9477

DOTA 0.9563 0.9180 0.9368
Average 0.9625 0.9228 0.9423

OA-CapsNet-CFA GOD218 0.9522 0.9213 0.9365
DOTA 0.9457 0.9121 0.9286
Average 0.9490 0.9167 0.9326

OA-CapsNet-SFA GOD218 0.9486 0.9192 0.9337
DOTA 0.9391 0.9105 0.9246
Average 0.9439 0.9149 0.9292

OA-CapsNet-Light GOD218 0.9259 0.8977 0.9116
DOTA 0.9168 0.8913 0.9039
Average 0.9214 0.8945 0.9078

MS-VAN GOD218 0.9036 0.8769 0.8900
DOTA 0.8931 0.8724 0.8826
Average 0.8984 0.8747 0.8863

SOON GOD218 0.9127 0.8857 0.8990
DOTA 0.9032 0.8816 0.8923
Average 0.9080 0.8837 0.8957

MSCNN GOD218 0.9459 0.9173 0.9314
DOTA 0.9362 0.9081 0.9219
Average 0.9411 0.9127 0.9267

RFN GOD218 0.9398 0.9118 0.9256
DOTA 0.9315 0.9044 0.9177
Average 0.9357 0.9081 0.9217

FMSSD GOD218 0.9315 0.9052 0.9182
DOTA 0.9238 0.8963 0.9098
Average 0.9277 0.9008 0.9140

RECNN GOD218 0.9223 0.8946 0.9082
DOTA 0.9131 0.8875 0.9001
Average 0.9177 0.8911 0.9042
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feature representations used for object detection at
multiple scales. Moreover, benefited from the high-
quality, informative, and object-orientated feature
encodings upgraded by the capsule-based channel and
spatial feature attention modules at each scale, some
geospatial objects partially occluded by the nearby
high-rise objects or covered with dark shadows were
also effectively detected with a quite low misidentifica-
tion rate. However, as shown by the green boxes in
Figure 6, some geospatial objects were severely
occluded by the nearby objects, leading to the extreme
incompleteness in the remote sensing images and
quite few feature presences in the feature maps. As a
result, these objects were failed to be correctly identi-
fied. In addition, some land covers exhibited quite
similar geometric and textural properties to the geo-
spatial objects. Consequently, they were falsely recog-
nized as the true targets. Moreover, some objects were
covered with large-area heavy dark shadows or of

extremely small sizes, making the objects hide into the
background. Unfortunately, these objects were treated
as the background and failed to be correctly detected.
On the whole, the proposed OA-CapsNet achieved an
acceptable performance in detecting geospatial objects
of different conditions in diverse scenarios.

Ablation studies

As ablation studies, we further examined the perform-
ance improvement achieved by integrating the CFA
and SFA modules into the pyramidal feature extrac-
tion backbone for enhancing the feature representa-
tion robustness and informativeness at multiple scales.
Specifically, the CFA module functioned to exploit
and highlight the channel-wise informative features
related to the foreground and weaken the contribu-
tions of the background features. The SFA module
served to concentrate on the class-specific spatial

Figure 6. Illustration of some special challenging scenarios of the geospatial objects.

Figure 5. Illustration of a subset of geospatial object detection results from the GOD218 and DOTA datasets.
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features associated with the object regions and sup-
press the impacts of the background areas. To this
end, we constructed three modified networks on the
basis of the OA-CapsNet. First, we removed all
the SFA modules from the OA-CapsNet, leaving only
the CFA modules, and named the resultant network
as OA-CapsNet-CFA. Then, we removed all the CFA
modules from the OA-CapsNet, leaving only the SFA
modules, and named the resultant network as OA-
CapsNet-SFA. Finally, we removed all the CFA and
SFA modules from the OA-CapsNet, and named the
resultant network as OA-CapsNet-Light.

For fair comparisons, the same training sets of the
GOD218 and DOTA datasets and the same training
strategy were leveraged to train these three networks.
Once the network parameters of these three networks
were fine-tuned, we applied them to the test sets of
the GOD218 and DOTA datasets to evaluate their
object detection performances. The detailed object
detection results measured using the precision, recall,
and Fscore metrics are reported in Table 1. Obviously,
without the integration of the CFA and SFA modules,
the object detection accuracies of the OA-CapsNet-
Light were dramatically degraded on both of the two
test datasets. The accuracy degradation with regard to
the average Fscore on the two test datasets was about
0.0345. In contrast, by integrating the CFA or the
SFA modules into the multiscale feature extraction
backbone, the quality of the output features was sig-
nificantly upgraded to positively support the objects
of interest, therefore, with the high-quality feature
representations fed into the object detection heads,
the object detection performance was improved by
the OA-CapsNet-CFA and OA-CapsNet-SFA.
Comparatively, the OA-CapsNet-CFA behaved rela-
tively better than the OA-CapsNet-SFA with a

performance upgradation of about 0.0034 with regard
to the average Fscore. As a conclusion, both of the
CFA and SFA modules contributed positively and
effectively to the enhancement of the feature represen-
tation quality and the improvement of the object
detection performance. Therefore, with the integration
of the CFA and SFA modules to highlight both the
channel-wise informative features and the class-spe-
cific spatial features associated with the foreground,
the OA-CapsNet showed advantageous performance
in processing geospatial objects of varying conditions
in diverse scenarios.

Comparative studies

To further evaluate the feasibility and performance of
the proposed OA-CapsNet, we conducted a set of
comparative studies with the following six recently
developed one-stage object detection methods: MS-
VAN (Wang et al. 2019), SOON (Qin et al. 2021),
MSCNN (Yao et al. 2021), RFN (Zhou, Zhang, Gao,
et al. 2020a), FMSSD (Wang et al. 2020), and RECNN
(Lei et al. 2020). Specifically, the MS-VAN leveraged
multiscale features and attention mechanisms to pro-
duce high-quality feature encodings used for object
detection. The SOON exploited spatial properties via a
receptive field enhancement module to protrude the
feature semantics of small-size objects. The MSCNN
designed an effective feature extraction backbone to
obtain strong feature representations at multiple
scales. The RFN focused on the extraction of orienta-
tion-aware feature maps to boost the recognition of
arbitrarily-orientated objects. The FMSSD extracted
and fused spatial contextual features in both multiple
scales and the same scales to well handle varying-size
geospatial objects. The RECNN introduced a saliency

Figure 7. Illustration of ship detection results obtained by different models. (a) Test image, (b) the proposed OA-CapsNet, (c) MS-
VAN, (d) SOON, (e) MSCNN, (f) RFN, (g) FMSSD, and (h) RECNN.
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constraint and multilayer fusion strategy to strengthen
the feature saliencies of the object regions.

In our experiments, for fair comparisons, the same
training sets of the GOD218 and the DOTA datasets
were used to train these models. Once the models
were constructed, we applied them to the test sets of
these two datasets to evaluate their object detection
performances. The quantitative evaluations obtained
by these models on the object detection results are
reported in Table 1. As reflected in Table 1, the
MSCNN, RFN, and FMSSD showed superior perform-
ances than the RECNN, MS-VAN and SOON.
Specifically, the object detection performance of the
MSCNN was higher than that of the MS-VAN by
about 0.0404 with regard to the average Fscore. The
advantageous performances of the MSCNN, RFN, and
FMSSD benefited from the exploitation of effective
mechanisms to take advantage of multiscale or multi-
orientated features to improve the feature representa-
tion informativeness and robustness. Thus, they
performed promisingly in correctly recognizing the
geospatial objects of varying conditions in diverse
scenarios. Comparatively, by designing a capsule fea-
ture pyramid network architecture as the feature
extraction backbone and integrating the two types of
capsule feature attention modules to provide multi-
scale semantically strong and informative features, as
well as the effective centreness-assisted anchor-free
object detection strategy, the proposed OA-CapsNet
showed competitive and superior performance over
the six compared methods. For visual inspections and
comparisons, Figure 7 presents some examples of ship
detection results obtained by using these models. As
shown by Figures 7c–7h, some ships of extremely
small sizes and some ships distributed parallelly and
closely were not correctly recognized. In contrast, all
the ships of varying conditions were successfully
detected by the proposed OA-CapsNet. Thus, through
contrastive analysis, we concluded that the proposed
OA-CapsNet provided a feasible and effective solution
to geospatial object detection tasks.

Conclusion

This paper has presented a novel one-stage anchor-
free capsule network, named OA-CapsNet, for geospa-
tial object detection from remote sensing images.
Formulated with a capsule feature pyramid network
architecture as the backbone, the proposed OA-
CapsNet can extract and fuze multilevel and
multiscale high-order capsule features to provide a
high-quality, semantically strong feature encoding at

each scale. Integrated with two types of capsule fea-
ture attention modules, the proposed OA-CapsNet
performed effectively in highlighting the channel-wise
informative features and focusing on the class-specific
spatial features to further enhance the feature repre-
sentation quality and robustness. Designed with a cen-
treness-assisted anchor-free object detection strategy,
the proposed OA-CapsNet served to effectively recog-
nize arbitrarily-orientated and diverse-scale geospatial
objects. The proposed OA-CapsNet has been inten-
sively evaluated on two large remote sensing image
datasets toward geospatial object detection.
Quantitative evaluations showed that a competitive
overall performance with a precision, a recall, and an
Fscore of 0.9625, 0.9228, and 0.9423, respectively, was
achieved in handling geospatial objects of varying
conditions in diverse environmental scenarios.
Comparative studies with a set of recently developed
deep learning methods also confirmed the applicabil-
ity and effectiveness of the proposed OA-CapsNet in
geospatial object detection tasks. However, due to
severe occlusions, poor illumination conditions, and
extremely small sizes of some geospatial objects, it is
still challengeable to fulfill high-performance geospa-
tial object detection. In our future work, we will
develop part-based models to improve the detection
of occluded objects, design more powerful feature
attention mechanisms to highlight the low-contrast
objects, and exploit high-resolution network architec-
tures or super-resolution techniques to effectively han-
dle small-size objects.
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