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Object Detection in Terrestrial Laser Scanning
Point Clouds Based on Hough Forest
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Abstract—This letter presents a novel rotation-invariant
method for object detection from terrestrial 3-D laser scanning
point clouds acquired in complex urban environments. We utilize
the Implicit Shape Model to describe object categories, and extend
the Hough Forest framework for object detection in 3-D point
clouds. A 3-D local patch is described by structure and reflectance
features and then mapped to the probabilistic vote about the
possible location of the object center. Objects are detected at
the peak points in the 3-D Hough voting space. To deal with
the arbitrary azimuths of objects in real world, circular voting
strategy is introduced by rotating the offset vector. To deal with
the interference of adjacent objects, distance weighted voting is
proposed. Large-scale real-world point cloud data collected by
terrestrial mobile laser scanning systems are used to evaluate
the performance. Experimental results demonstrate that the pro-
posed method outperforms the state-of-the-art 3-D object detec-
tion methods.

Index Terms—Hough forest, implicit shape model (ISM), object
detection, point clouds, terrestrial laser scanning (TLS).

I. INTRODUCTION

R ECENT advances in terrestrial laser scanning (TLS) pro-
vide abilities to quickly collect 3-D point clouds with high

density and high accuracy over large areas. Such detailed point
clouds enable us to detect not only the common large structures
(e.g., road and building), but also the small objects (e.g., street
lamp, tree, and car) in cluttered scenes. However, class-specific
object detection from cluttered laser scanning point clouds is
an essential but challenging task. Object detection from point
clouds is limited by the following factors: intra-class shape
variation, incompleteness of object caused by occlusion, over-
lapping between neighboring objects, point-density variance,
and orientation variance.
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Nowadays, much work [1]–[6] has been proposed on extract-
ing objects, such as buildings, doors, mailboxes, street lamps,
and trees, from 3-D laser scanning point clouds in cluttered
urban environments. However, most of the existing work is
based on prior knowledge or invariant feature descriptors of the
specified object categories, and is difficult to extend from the
specific object categories to more generic object categories.
The emerging demands on automatic extraction of a large
number of object categories require more robust and easy-to-
expand object detection methods. Aleksey et al. [7] proposed
an extensible framework for recognizing small objects in large-
scale 3-D laser scanning point clouds in urban environments.
However, the performance of this method is restricted by the
performance of segmentation, and the segmentation errors, i.e.,
under-segmentation and over-segmentation will contaminate
the performance of this method. Although some point cloud
segmentation algorithms are proposed in [8], [9], accurate seg-
mentation in complex environment is still an unsettled problem.

Hough forest was proposed as a promising discriminative
approach based on implicit shape model (ISM) to detect ob-
jects in cluttered images [10]. Hough forest combines the
generalized Hough voting framework with the random forest
classifier. Through ISM instead of explicit codebook, Hough
forest describes objects and learns a direct mapping between
the local appearance and its Hough vote [10]–[13]. ISM is
essentially a codebook for object category and only depends
on object’s local patches. This attribute makes ISM robust to
occlusion and overlapping which commonly exist in complex
urban environment.

However, Hough forest cannot effectively handle the rota-
tions of objects [14]. This is not an issue in the normal image
applications [10] because objects such as cars and pedestri-
ans are typically in an upright direction in the images. But
in real-world 3-D scenes, the same categorical objects are
commonly placed in varying azimuth directions. Therefore,
for object detection in 3-D laser scanning point clouds of
complex urban environment, a critical requirement is rotation
invariance in azimuth direction. Many papers have discussed
rotation invariance. In [14] rotation invariance was achieved
by incorporating rotation into split function and rotating the
offset vector according to the dominant gradient orientation.
However, the dominant gradient orientations are difficult to be
calculated in unorganized 3-D point clouds.

This letter presents a novel approach to object detection
from 3-D point clouds based on Hough forest. The state-of-
the-art Hough forest object detection framework [10] for 2-D
images is extended to deal with 3-D point clouds. Compared to
imagery, TLS points are in real world coordinates thus there is
no effect from scale factors. In the training stage, the 3-D local
patches are extracted from labeled samples and described by
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Fig. 1. Training procedure of the proposed algorithm.

rotation-invariant features, then Hough forest is learned base
on a rotation-invariant split function; in the testing stage, the
extracted local patches are used to establish a Hough space
voting accumulation and the object are detected at the vot-
ing peaks. The feature description, the Hough forest learning,
and the Hough voting strategy steps are adapted to meet the
requirement of rotation invariance for terrestrial mobile laser
scanning data processing. The experimental results demonstrate
the robustness and effectiveness of the proposed algorithm on
large-scale mobile laser scanning point clouds, especially the
robustness to the cluttered situation of occlusion and over-
lapping between neighboring objects. Compared to existing
methods, our method is more robust and easily extended to
detect different categorical objects.

The rest of this letter is organized as follows: Section II
describes the proposed method. Section III presents extensive
experimental results and evaluates the performance of the
proposed method. Finally, Section IV states the concluding
remarks.

II. METHOD

In the next few sections, we first introduce an overview of the
proposed algorithm in Section II-A. Section II-B details 3-D lo-
cal patch extraction and feature description. Circular voting and
distance weighted voting are introduced in Section II-C and D,
respectively.

A. Overview of the Algorithm

Our algorithm is divided into two stages: the training and the
detection. As shown in Fig. 1, the training procedure starts with
densely extracting and describing a set of 3-D local patches
(to be described in Section II-B) from training samples. Each
patch appearance Pi is composed of three components {Pi =
(Ii, ci, di)}, where Ii is the feature description, ci is the class
label with 1 for positive samples and 0 for negative samples,
and di is the offset vector which starts from the object center
to the 3-D local patch center. Negative samples have a pseudo
offset, i.e., di = 0. Based on these local patch appearances, the
optimal parameters of the split function on each branch node are
determined [10].To meet the requirement of rotation invariance,
instead of using only the appearances at two selected different

Fig. 2. Detection procedure of the proposed algorithm. The red cross repre-
sents the real object center, and the light blue cross represents the estimated
object center.

positions within a local patch, we use the entire local patch’s
appearance to learn the split function. Afterwards, according
to the split function, the training patches reaching a branch
node are split into two subsets. The aforementioned splitting
step is repeated until the depth of the node reaches a maximum
or the number of samples is smaller than a given threshold.
Each branch node of the trained trees stores the selected feature
channel and the corresponding feature threshold, and each leaf
node stores the proportion and the offset vectors of the positive
training patches reaching this node in the training stage.

The complete object detection procedure is shown in Fig. 2.
First, the ground points are removed from the test scene [15].
Then, a segmentation method is used to partition the scene into
individual segments [7]. The 3-D local patches of each segment
are extracted based on the method used in the training stage
(to be described in Section II-B) and described by the same
features as those of the training patches. Each 3-D local patch is
then passed through the trained trees downwards to a leaf node
in each tree according to the information stored in the branch
nodes. Next, the spatial offsets stored in the leaf nodes are used
to cast votes to the object center. Finally, all votes create a
Hough voting space, and the object center is determined by a
traditional non-maximum suppression process.

B. Three-Dimensional Local Patch Extraction and
Feature Description

We define a 3-D local patch as a 3-D box with fixed size.
The octree partitioning is applied to the entire point cloud for
extracting the 3-D local patches. The 3-D space of the point
cloud data is recursively subdivided into eight octants until
each octant node is of the given size. Each 3-D local patch that
contains 27 (3 by 3 by 3) leaf nodes is centered at one randomly
selected non-empty leaf node of the constructed octree, as
shown in Fig. 3. Fig. 3(a) shows the constructed octree with
a resolution of 0.1 m for a sample. Fig. 3(b) shows one of the
extracted 3-D local patches with the size of 0.3 m and Fig. 3(c)
shows a close-up view of the local patch. The size of extracted
local patches is three times of the size of octree leaf nodes. As
a result, the local patches are densely extracted and overlapped
with the neighboring local patches. Through treating all points
in the local patch as a unit, rather than the individual points,
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Fig. 3. Three-dimensional local patch extraction based on octree. (a) shows
the constructed octree for an unorganized point cloud; (b) shows an extracted
3-D local patch; and (c) shows the close-up view of the extracted patch in (b).

Fig. 4. Circular voting. (a) Illustration of direct voting for a rotated object;
(b) illustration of circular voting; and (c) false peaks caused by circular voting
for adjacent objects.

makes the local patch robust to noise and outliers. In the training
stage, a fixed number of 3-D local patches are extracted. In the
detection stage, each non-empty leaf node of the octree serves
as the center of 3-D local patch.

The local patch is described by both the structure and re-
flectance features, such as spectral features [16], eigenvalues
of covariance matrix, 3-D invariant moments, fast point feature
histograms (FPFH) [17], and median of reflectance intensities.
In addition, we also use other features such as the height of the
local patch center relative to the lowest point in the point cloud
and the occupied area of the local patch in the horizontal plane.

C. Circular Voting

A key component of our method is a generalized Hough
voting procedure. To detect 3-D objects in real world scenes,
the voting step needs to be rotation-invariant. The voting is
based on the offset vectors learned in the training stage. If the
offset vector is directly used in Hough voting, the votes for
rotated objects will be cast to some wrong positions because
each offset vector only represents a candidate object center
with a certain orientation, which may not be consistent with
the object of interest in the test scene. Fig. 4(a) illustrates the
direct voting for an object which is rotated by an angle of α
along the counter-clockwise direction in the horizontal plane
from training samples. In Fig. 4(a), vT is a local patch which
originates from the training sample centered at oT , and vD is a
local patch which originates from the object of interest centered
at oD in the test scene. The two corresponding offset vectors of
these two local patches are dT and dD. We assume that these
two patches are the same except that they are originated from
two rotated samples. If the offset vector dT is directly used to
vote for object center, the voted center position is at a wrong
position oT rather than the true position oD.

In urban environments, the objects of interest such as trees,
cars, traffic signs, and street lamps, are usually rotated only
in the azimuth direction. Thus, in this letter we only consider
rotations in the azimuth direction in the entire 3-D geometric

transformation space. To handle rotation invariance, the offset
vector is rotated for all orientations in the azimuth direction,
which essentially defines a circular voting field, as shown in
Fig. 4(b). All positions with a certain distance dh to v in
the horizontal plane and dz to v in Z direction are potential
positions of the object center. By using the circular voting, we
can achieve rotation invariance in the azimuth direction. For a
3-D local patch v, the object center is estimated by{

ox = vx + dh cos(θ)
oy = vy + dh sin(θ)
oz = vz − dz

(1)

dh =
√

d2x + d2y. (2)

The voting process is computationally efficient because the
rotation operation of offset vectors can be implemented through
defining a discrete lookup table. However, the rotation invari-
ance is obtained at the cost of a low false positive rate because
some irrelevant locations are also voted by circular voting.
After summing all votes, some meaningless locations may be
peaks with high scores in the Hough voting space. This false
voting phenomenon is especially obvious for the areas with
concentrated objects, such as adjacent trees. In order to improve
the detection accuracy and suppress false peaks, a distance
weighted voting strategy is introduced, which will be discussed
in the next subsection.

D. Distance Weighted Voting

As illustrated in Fig. 4(c), oc and o′c denote two adjacent
object centers, respectively. v, v′, and v′′ represent three 3-D
local patches centered at these two adjacent objects. v′ and
v′′ originate from the same object, and v originates from the
other one. Through circular voting, the right object center is
voted. However, some false locations are also voted, such as of1
and of2. In our method, a distance weighted voting strategy is
proposed to improve the detection accuracy and suppress false
peaks. For an offset vector d in the trained forest, the weight for
the vote is defined as

w = exp

(
−
(
d2x + d2y

)
σ2

)
(3)

where dx and dy are horizontal components of offset vector d
in horizontal plane, σ is a smoothing parameter.

III. EXPERIMENT

The proposed method was evaluated on three data sets con-
taining four different categorical objects: street lamp, palm tree,
car, and traffic sign. All of these data sets were collected by the
RIEGL VMX-450 system (400 lines per second, 1.1 million
measurements per second, and 8 mm accuracy) in Xiamen,
China. We manually labeled the target objects in all training
and testing point clouds as the ground truth. A detection to
be marked as true positive must meet the condition that the
estimated center falls into the certain distance thresholds in
both horizontal and vertical directions relative to the labeled
object center. Each target object can only match one detection.
When there are multiple detections for an object, only the
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one closest to the labeled center is labeled as true detection,
and the others are labeled as false positives. The detection
performance is shown by the ROC curve. In addition, our
algorithm was compared with the original Hough forest and the
method proposed in [7].

A. Comparison

The first data set covering about 188 150 m2 and containing
about 480 million points was used to evaluate the detection
performances of street lamps and palm trees. Samples with
various azimuths were selected to train lamp-specific forest
through dense sampling patches. The intersection point of lamp
pole and lamp header is considered as the object center. The test
scene contains 183 street lamps and their azimuths vary from 0
to 360 degrees. 159 street lamps were completely segmented
from the scene and the rest 24 street lamps were failed to be
segmented because of the overlapping with other objects in
the scene. For palm trees, the geometric center of palm tree
is considered as the object center. The test scene contains 198
palm trees. 91 palm trees were segmented from the scene and
the rest 107 palm trees were failed to be segmented because the
palm trees in the scene are much dense and overlap with each
other.

The second data set covering about 8700 m2 and containing
about 61 million points was used for the evaluation of car
detection. Samples with various azimuths were selected to
train car-specific forest through dense sampling patches. The
data set contains 134 cars and their azimuths vary from 0 to
360 degrees. Moreover, nearly half of the cars are seriously
occluded when scanning. The third data set containing about
24 million points selected from the raw point clouds was used
for the evaluation of traffic sign detection. This data set covers
a distance of about 10 km along the surveyed road. It contains
73 traffic signs with various azimuths and sizes. Thirty-eight
traffic signs were completely segmented from the scene, and
35 traffic signs were failed to be segmented.

For all the four categorical objects, we have selected features
from the following 28 feature channels: three spectral features,
three eigenvalues of covariance matrix, three 3-D invariant
moments, median of reflectance intensity, sixteen FPFH feature
channels, height, and occupied area of a local patch in the
horizontal plane. For street lamps, all the 28 features were
used for both training and detection. For palm trees, the FPFH
feature channels were not used because the FPFH is described
based on the normal vector of each point in the local patch,
however the normal vector is unstable on the leaves of the palm
trees. For cars and traffic signs, the same feature channels as
street lamps were selected except the median of reflectance
intensity because that the variety of the colors of these two
categories may cause large variety in the reflection intensity.

The performance of different methods including ours is
shown in Fig. 5. As seen from Fig. 5, our method outperforms
other methods considerably. The method in [7] is essentially
based on an object’s global shape features, and its detec-
tion performance is seriously dependent on the completeness
of an object. As a result, for the test scenes where objects
cannot be segmented from the background because of the
overlapping between neighboring objects or objects occluded
seriously when scanning, the performance of this method will

Fig. 5. The proposed method (red curve) is compared with original Hough
forest (green curve) and the state-of-the-art method (blue curve) on four
different categorical objects: (a) street lamp; (b) palm tree; (c) car; (d) traffic
sign.

Fig. 6. Results of the proposed detection algorithm. Red 3-D bounding boxes
represent the true correct detection results, and blue 3-D bounding boxes
represent the false positive detection results.

degrade. On the contrary, our method is based on the object
part appearance and can deal with occlusion and overlapping.
Through the comparison results, we conclude that our method
has the ability of dealing with overlapping, occlusion, and
rotation in cluttered nature scenes. Fig. 6 shows the detection
results for four different categorical objects. Fig. 6(a) shows the
detection results of palm trees, Fig. 6(b) shows the detection
results of street lamps, Fig. 6(c) shows the detection results
of cars, and Fig. 6(d) shows the detection results of traffic
signs. All experiments were finished on a machine with Intel
Core i3 3.3 GHz processor and 16 GB RAM. The running time
of training and detection on these four categorical objects is
showed in Table I.

B. Sensitivity to Parameters

We also run experiments to evaluate the proposed method
under different parameter settings. In particular, we test two
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TABLE I
RUNNING TIME OF TRAINING AND DETECTION

Fig. 7. (a) Sensitivity of octree resolution for car detection. (b) Sensitivity of
distance weighted parameter σ for palm tree detection.

parameters: resolution of octree and distance weighted smooth-
ing parameter σ. The resolution of octree decides the size
of local patch. Fig. 7(a) shows the detection performance
under different octree resolutions for car detection. From the
Fig. 7(a), we can observe that setting the resolution of octree to
0.1–0.3 m achieves better performance than other values for car
detection.

This distance weighted strategy pays more attention to the
patches closer to the object center, compared to the further
ones. Although the distance weighted technique can reject false
detections caused by circular voting, it lessens the contributions
of long range patches. Sometimes this may cause degradation
of detection performance, especially for such objects, whose
long range patches play important roles in distinguishing from
others. To evaluate the sensitivity to the parameter σ, several
experiments have been carried out with different values of σ
for palm trees detection because of their serious overlapping.
From Fig. 7(b), we can observe that the detection performance
decreases when σ is too big or too small. This is because a small
σ decreases the importance of patches on voting for object
center while a large σ increases false detections.

IV. CONCLUSION

In this letter, we proposed a novel rotation-invariant method
for object detection from TLS point clouds of complex urban
environments. The main contributions of this letter include:
firstly, the extension of the Hough forest method from 2-D im-
ages to 3-D point clouds, and secondly, the detection of objects
with rotations in azimuth direction through a novel distance
weighted circular voting strategy. The comparative experiments
showed that our 3-D object detection method is robust to
overlapping, occlusion and rotation, and is easily extended to
various object categories. Tested on four different categorical

real-world objects, our method achieves better performances
compared to the original Hough forest and the state-of-the-art
3-D object detection method. The experimental results demon-
strate the robustness and effectiveness of ISM on category-level
object description and the Hough forest framework on object
detection in 3-D laser scanning point clouds of complex urban
environments.
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