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This paper presents a new algorithm for the detection of oil spill from SAR intensity images. The proposed
algorithm combines the marked point process, Bayesian inference and Markov Chain Monte Carlo (MCMC)
technique. In this paper, the candidates of oil spills or dark spots in a SAR intensity image are characterized
by a Poisson marked point process. The marked point process is formed by a group of random points (as a
point process modelling the locations of oil spills) and a set of parameters including geometric parameters of
windows centred at the random points and gamma distribution parameters (as the marks attaching to each
point). As a result, the candidates of oil spills are represented by a group of windows, in which the intensities
of pixels follow independent and identical gamma distribution with lower mean than that for the identical
gamma distribution of the pixels out of windows. Following the Bayesian paradigm, the posterior
distribution, which characterizes the locations and statistical distributions of oil spills, can be obtained up to
a normalizing constant. In order to simulate from the posterior distribution and to estimate the parameters
of the posterior distribution, the Revisable Jump MCMC (RJMCMC) algorithm is used. The optimal locations
and sizes of dark spots are obtained by a maximum a posteriori (MAP) algorithm. The proposed approach is
tested using Radarsat-1 SAR images with oil spills indicated by human analysts. The results show that the
proposed approach works well and is very promising.

Crown Copyright © 2010 Published by Elsevier Inc. All rights reserved.
1. Introduction

The ocean plays an important role in regulating the Earth's
environment and the global climate, as well as providing resources for
mankind. Human activities are increasingly changing the ocean and its
delicate balance. Oil pollution belongs to the most widespread man-
caused emergency situations considerably harming ocean ecosystems
and different types of economic activities. Earth observation satellite
sensors have proved to be a cost-effective, all-weather and all-day early
warning way to help identify and monitor oil-spills before they cause
widespread damage. Currently, there are many space-borne remote
sensing sensors that have been used for oil spill monitoring, examples
including microwave sensors such as synthetic aperture radar (SAR),
Infrared (IR) sensors (Fingas & Brown, 1997), and ultraviolet (UV)
sensors (Fingas & Brown, 1997). Among of them, SAR sensors with all
weather, day and night, large area observation capabilities are a
convenient and effective tool for oil spill monitoring. The commonly
used SAR sensors for this purpose include RADARSAT-1, ENVISAT, ERS-1
and ERS-2 (Brekke & Solberg, 2005; Topouzelis, 2008).

The detectability of oil spill by SAR sensors is based on the fact that
oil slicks dampen the Braggwaves on the ocean surface and reduce the
radar backscatter coefficient. This results in dark regions or spots in
4; fax: +1 519 7460658.
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SAR images. However, other physical phenomena, for example, low-
wind areas, areas of wind-shadow near coasts, rain cells, currents,
zones of upwelling, biogenic films, internal waves, and oceanic or
atmospheric fronts, can also generate dark areas, knownas look-alikes,
in SAR images (Brekke & Solberg, 2005; Topouzelis, 2008). Another
factor which influences the backscatter level and the visibility of slicks
on the sea surface is the wind level. Oil slicks are visible only for a
limited range of wind speeds (Brekke & Solberg, 2005; Topouzelis,
2008).

Generally speaking, the procedure of detecting oil spills from SAR
images can be summarized three steps (Solberg, Storvik, Solberg &
Volden, 1999): (1) dark spot detection which identifies all dark spots
presented in a SAR image as candidates of potential oil spills; (2) feature
extraction which obtains geometric and statistical features for each oil
spill candidate, such as area and perimeter and physical behaviour for
examplemean and variance of backscatter values; and (3) classification
which recognizes the oil spills from look-alikes according to the features
extracted above.Dark spot detection is a critical and fundamental step as
a prelude for further feature extraction and classification of oil spills.
Many dark spot detection algorithms have been developed. The
commonly used approaches to dark spot detection are so called
threshold based algorithms. The thresholds can be simply selected by
taking the half of the average Normalized Radar Cross Section (NRCS) of
the image (Fiscella, Giancaspro, Nirchio, Pavese & Trivero, 2000), or
NRCS minus the standard deviation (Nirchio et al., 2005), or analyzing
bimodal histograms (Skϕelv & Wahl, 1993; Manore, Vachon,
hts reserved.
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Fig. 1. Realization of a binomial point process in R2.
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Bjerkelund, Edel & Ramsay, 1998; Vachon et al., 1998). The adaptive
threshold algorithm is proposed by Solberg et al. (1999);Solberg,
Dokken and Solberg (2003), inwhich the threshold is set k dBbelow the
mean value estimated in a moving window and is calculated using a
multiscale pyramid approach and a clustering step. The hysteresis
thresholding is used by Kanaa et al. (2003) for detecting oil spill in ERS
amplitude images. Other techniques used for detecting dark spots
include edge detection techniques such as the Laplace of Gaussian (LoG)
andDifference of Gaussian (DoG) operators (Chang, Chen, Chen & Chen,
1996; Chen, Chen, Chang& Chen, 1997), wavelet technique (Liu, Peng &
Chang, 1997; Wu & Liu, 2003; Derrode & Mercier, 2007), fractal
dimension estimation (Benelli & Garzelli, 1999; Marghany, Hashim &
Cracknell, 2007), and neural network (Topouzelis, Karathanassi,
Pavlakis & Rokos, 2008).

SAR images are highly speckled due to coherent processing (Lee,
Jurkevich, Dewaele,Wambacq &Oosterlinck, 1994). The analysis of SAR
data is usually required to region and statistics based in order to reduce
the speckle effect. Following this idea, a new algorithm for the detection
of dark spots from SAR intensity images is studied. Under Bayesian
paradigm, the proposed algorithm is based on Poisson marked point
process (Stoyan, Kendall & Mecke, 1995) and Reversible Jump Markov
chain Monte Carlo (RJMCMC) (Green, 1995). In order to detect dark
spots in SAR intensity images, the dark spots are located by a group of
random points and their areas are represented by a series of rectangle
windows centred at the points. The number of points in the point
process is assumed to be random variable which follows a Poisson
distribution with fixed mean given by user. In practice, selecting the
mean is not very reliable as it depends on the experience of human
operators and sometimes is impossible since the ground true is always
unknown in advance. The intensities of pixels in and out of thewindows
aremodelledby two strict stationary randomfields, respectively. That is,
both of them satisfy independent and identical gamma distributions
(Lee, Hoppel, Mango & Miller, 1994) but the means for the former are
less than that for the latter. Following the Bayesian paradigm, the
mathematical form for the posterior distribution is obtained up to a
normalizing constant. A RJMCMC algorithm is introduced for simulation
from the posterior distribution. And the optimal locations and sizes of
dark spots can be obtained by maximum a posteriori (MAP) scheme.

The paper is organized as follows. Section 2 gives the concept of
marked point process. Section 3 describes the proposed algorithm.
Section 4 shows some results of oil spill detection from RADARSAT-1
images. Section 5 concludes and gives some perspectives.

2. Marked point process

Marked point process models are useful tools to analyze
irregularly space data. Generally speaking, a random point process
in Rd is a random set in Rd, each realization of which consists of a finite
or countable number of points (Stoyan et al., 1995). For simplicity, the
following discussion on random point process will be limited on two-
dimension case, that is, d=2.

When the locations of k random points are independently and
uniformly distributed over a domain, a binomial point process can be
formed by the k random points. For example, in two dimension case,
suchaprocess is formedby k independentpointsG={(uj, vj); j=1, 2,…,
k, (uj, vj)∈D⊂R2} uniformly distributed on D. Fig. 1 shows a realization
of a binomial point process in R2 (Stoyan et al., 1995).

A marked point process can be constructed from a random point
process by attaching a characteristic (or mark) to each point of the
process. Thus, a marked point process on R2 is a random sequence {(uj,
vj,Mj), j=1, 2,…, k}, fromwhich the points (uj, vj) together constitute
a point process (not mark) in R2 while the mark Mj corresponding to
(uj, vj) may have a complicated structure (Schabenberger & Gotway,
2005). They belong to a given space of marks which are assumed to be
a Polish space (Stoyan et al., 1995).

Several studies on considering the marked point processes
framework for image analysis can be found in the literature. Rue and
Hurn (1999) presented an algorithm for locating and identifying an
unknown number of objects in an image by combining marked point
processes as objects priors and deformable template models. Des-
combes and Zerubia (2002) showed that marked point processes are
more adapted than Markov random field and proposed some
applications in remote sensing: road network extraction, building
extraction, and image segmentation. Hartvig (2002) presented a
marked point process based approach to estimating spatial activation
patterns in functional magnetic resonance imaging, in which points
are considered as centers of activation and the marks as parameters
describing the shape and area of the surrounding cluster. Al-Awadhi,
Jennison and Hurn (2004) considered a model for the analysis of
confocal fluorescencemicroscope images of cells in an area of cartilage
growth. In theirmodel of the imaging process, the true scene is treated
as a realization of marked point process, incorporating this as the high
level prior model in a Bayesian analysis. Quartulli and Datcu (2004)
proposed amodel-based algorithm for the automatic reconstruction of
building areas from single-observationmeter-resolution SAR intensity
data, which is based on the MAP estimation for obtaining optimal
scene that is modeled as a set of mutually interacting Poisson marked
points describing building objects.
3. Description of proposed algorithm

3.1. Bayesian model for dark spots

Consider a SAR intensity image Z={Zi=Z(xi, yi); i=1, …, n, (xi, yi)∈D} where i is the index of pixel, (xi, yi) is the location of pixel i, Zi is a
sample of random variable Z at (xi, yi) representing the intensity of pixel i, n is the number of pixels in Z, and D is the domain of Z. Assume that Z
contains an unknown but bounded number k of dark spots corresponding to the candidate of oil spills and k has a prior distribution with
probability function p(k). The j'th dark spot is modeled by a windowWjwith length lj, widthwj, direction aj, and centred at pixel (uj, vj)∈D called
the central point ofWjwhich is randomly distributed on Dwith a prior density p(uj, vj). Let G={(uj, vj); j=1,…, k} andΦ={(lj,wj, aj); j=1,…, k}
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be the sets of central points and the geometric parameters of windows, respectively. The Fig. 2 shows the structure. In order to distinguish dark
spots from their background,D can be divided into two regions, that is,D={Dd,Db} whereDd={Wj; j=1,…, k} andDb=D\Dd correspond to dark
spot and sea regions, respectively. In this paper, assume that the intensities of pixels in these regions are characterized by gamma distribution
(Lee, Hoppel, et al., 1994b), that is,

p Zið Þ =

Z
αj−1
i

βαj

j Γ αj

� � e−
Zi
βj if xi; yið Þ∈Wj

Zα0−1
i

βα0
0 Γ α0ð Þ e

−
Zi
β0 if xi; yið Þ∈Db

8>>>>>>>><
>>>>>>>>:

ð1Þ

where Γ(·) is the gamma function,αj and βj are the shape and scale parameters of gamma distribution for the intensities of the pixels inWj, α0 and
β0 are the shape and scale parameters of gamma distribution for the intensities of the pixels in Db. Under the above assumption, the dark spots
can be identified by the constrain on the distribution parameters, that is,

α0β0 N αjβj forall j = 1;…;k ð2Þ

Assume that all intensities are independent. Then the joint distributions of intensities in Wj and Db can be expressed as follows

p ZWj jθj;Wj

� �
= ∏

xi ;yið Þ∈Wj

Z
αj−1
i

βαj

j Γ αj

� � e−Zi
βj ð3Þ

p ZDb jθ0;Dbð Þ = ∏
xi ;yið Þ∈Db

Zα0−1
i

βα0
0 Γ α0ð Þ e

− Zi
β0 ð4Þ

where ZWj={Zi; (xi, yi)∈Wj}, ZDb={Zi; (xi, yi)∈Db}, θj=(αj, βj) and θ0=(α0, β0). Let θ=(θj′=(αj′, βj′); j′=0, 1, …, k) be the distribution
parameter vector. The likelihood can be defined as

p Z jθ;G;Φ; kð Þ = p ZDb jθ0;Dbð Þ × ∏
j∈ 1;:::;kf g

p ZWj jθj;Wj

� �
ð5Þ

In order to detect dark spots, the posterior distribution of distribution parameter vector θ, geometric parameter vectorΦ, the position vector G
as well as the number of windows k is primarily considered. By Bayesian paradigm, the posterior distribution conditional on Z can be written as,

p θ;G;Φ; k jZð Þ∝p Z jθ;G;Φ; kð Þp θð Þp G jkð Þp Φ jkð Þp kð Þ ð6Þ

3.2. Prior distributions and the likelihood

The prior distributions of shape and scale parameters α and parameter β are assumed to be normal distribution, but with different means and
standard deviations for dark spot class and background class, that is, αj=1, …, k∼N(μα, σα

2), βj=1, …, k∼N(μβ, σβ
2), α0∼N(μα0, σα0

2 ), β0∼N(μβ0, σβ0
2 ),
Fig. 2. The Structure of window with length lj, width wj and direction aj centered at points (uj, vj).
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respectively. The independent, weakly informative normal distributions assumed for prior structures are maintained for simplicity. Their
probability density functions can be expressed as

p αj

� �
=

1ffiffiffiffiffiffi
2π

p
σα

e
−

αj−μαð Þ2
2σ2α ð7Þ

p βj

� �
=

1ffiffiffiffiffiffi
2π

p
σβ

e
−

βj−μβð Þ2
2σ2

β ð8Þ

p α0ð Þ = 1ffiffiffiffiffiffi
2π

p
σα0

e
− α0−μα0ð Þ2

2σ2
α0 ð9Þ

p β0ð Þ = 1ffiffiffiffiffiffi
2π

p
σβ0

e
−

β0−μβ0ð Þ2
2σ2

β0 ð10Þ

Assume that all distribution parameters are independent each other, the prior distribution of θ={α0, α1,…, αk, β0, β1,…, βk} can be written as
follows

p θ jkð Þ = 1
2πσα0σβ0

e
− α0−μα0ð Þ2

2σ2
α0 e

−
β0−μβ0ð Þ2

2σ2
β0 ∏

k

j=1

1
2πσασβ

e
−

αj−μαð Þ2
2σ2α e

−
βj−μβð Þ2
2σ2

β ð11Þ

Assume that the central points are uniformly distributed on the image domain D, then the prior distribution of G can be written as

p G jkð Þ = 1
jD j

� �k

ð12Þ

where |D| is the area of image domain D.
The lengths and widths of windows are assumed to be normal distributions, that is, lj∼N(μl, σl

2), wj∼N(μw, σw
2 ), while the directions of

windows are the uniform distribution on [−π/2, π/2], that is, aj∼U(−π/2, π/2). Assume that the geometric parameters are independent. As a
result, the prior distribution of Φ can be written as

p Φ jkð Þ = ∏
k

j=1

1
2π2σlσw

e
−

lj−μlð Þ2
2σ2

l e
−

wj−μwð Þ2
2σ2w ð13Þ

The number of windows k is assumed to have a prior truncated Poisson distribution with mean λ (Green, 1995)

p kð Þ = λke−λ

k!
ð14Þ

where the k is truncated with minimum k=1 and maximum k=kmax where kmax is set by user. km has a maximum around min{n1/min(μl, μw),
n2/min(μl, μw)} where n1 and n2 are the dimensions of an image.

The posterior distribution in Eq. (6) can be rewritten as

p θ;G;Φ; k jZð Þ = ∏ xi ;yið Þ∈Db
Zα0−1
i

e−Zi =β0

βα0
0 Γ α0ð Þ × ∏

k

j=1
∏

xi ;yið Þ∈Wj

Z
αj−1
i

e−Zi =βj

βαj

j Γ αj

� � ×
1

2πσα0σβ0
e
−

α0−μα0ð Þ2
2σ2

α0 e
−

β0−μβ0ð Þ2
2σ2

β0

∏
k

j=1

1
2πσασβ

e
−

αj−μαð Þ2
2σ2α e

−
βj−μβð Þ2
2σ2

β × ∏
k

j=1

1
2π2σlσw

e
−

lj−μlð Þ2
2σ2

l e
−

wj−μwð Þ2
2σ2w ×

1
jD j

� �k

×
λke−λ

k!

ð15Þ

3.3. Estimation and simulation algorithms

In order to detect dark spots from a SAR image, it is necessary to simulate from the posterior distribution defined in Eq. (15) and estimate
parameters. Let Θ=(θ, G,Φ, k) be a parameter vector. It is worthy to note when k is varied, the dimension of the parameter vector Θ is varied. In
this paper, the Metropolis–Hastings (Gilks, Richardson & Spiegelhalter, 1996) and RJMCMC algorithms (Green, 1995) are used to simulate
dependent samples from the posterior distribution of Θwhile the parameter space is variable during sampling. According to Green (1995), a new
candidate Θ⁎ for Θ is proposed at each iteration by an invertible deterministic function Θ⁎=Θ⁎(Θ, s) (assume that the dimension of Θ⁎ is higher
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than that of Θ), where s is a random vector defined for accomplishing a transition from (Θ, s) to Θ⁎with the dimension satisfying the dimension
matching condition, that is, |Θ|+|s|=|Θ⁎| (Green, 1995). The appropriate acceptance probability for the proposed transition from Θ to Θ⁎ is
given by

α Θ;Θ*ð Þ = min 1;
p Θ* jZð Þr Θ*ð Þ
p Θ jZð Þr Θð Þq sð Þ j ∂Θ*

∂ Θ; sð Þ j
( )

ð16Þ

where q(s) is the density function of s and r(Θ⁎) and r(Θ) are the probabilities of a given move type in the states Θ⁎ and Θ, respectively. The joint
probability densitymeasures r(Θ⁎) and r(Θ) ensure that ‘detailed balance’ is maintainedwith any change of dimension in the state space variable
(Green, 1995). The Jacobian |∂Θ⁎/∂(Θ, s)| is due to the change of variable from (Θ, s) to Θ⁎. If a type of move is proposed that does not involve a
change in dimension of the random variable Θ, then Eq. (16) reduces to usual Metropolis–Hastings acceptance probability.

In developing a RJMCMC sampler for marked point process based oil-spill detection, it is necessary to design different types of move between
the parameter subspaces at each iteration, in order to traverse freely across the combined parameters space of Θ. Themove types designed in this
paper include: (1) updating the geometric parameters of windows: the length, width and direction; (2) updating gamma distribution
parameters; (3) updating the positions of central points; and (4) birth or death of windows.

3.3.1. Move 1: updating the geometric parameters of windows
The geometric parameters can be rearranged asΦ={(lj,wj, aj); j=1,…, k}={Φj′; j′=1,…, 3k}. At t'th iteration the proposalΦj′⁎ is drawn from

a Gaussian distribution with mean Φj′
(t−1) and variance ε which is equal to εl, εw, and εa as Φj′= lj, wj, aj, respectively. That is, Φj′

⁎∼N(Φj′
(t−1), ε).

Fig. 3 shows the change of window structures in terms of its length lj, width wj and direction aj, respectively.
The acceptance probability for the proposal Φj′

⁎ is given by

rl = min 1;
p ZWj�
� �

p ZDb�ð Þp l*j

� �

p ZWj

� �
p ZDbð Þp lj

� �
8>><
>>:

9>>=
>>;=

(
min 1;

∏
xi ;yið Þ∈Wj*5 Wj

Z
αj−1
i

e−Zi =βj

β
αj

j Γ αj

� �
∏

xi ;yið Þ∈Wj*5 Wj

Zα0−1
i

e−Zi =β0

βα0
0 Γ α0ð Þ

×
e
−

l*
j
−μl

� �2

2σ2
l

e
−

lj−μlð Þ2
2σ2

l

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; if l*j N lj

min 1;

∏
xi ;yið Þ∈Wj 5 Wj*

Zα0−1
i

e−Zi =β0

βα0
0 Γ α0ð Þ

∏
xi ;yið Þ∈Wj*5 Wj

Z
αj−1
i

e−Zi =βj

βαj

j Γ αj

� �
×

e
−

l*
j
−μl

� �2

2σ2
l

e
−

lj−μlð Þ2
2σ2

l

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; if l*j b lj

ð17Þ

rw = min 1;
p ZWj�
� �

p ZDb�ð Þp w*
j

� �

p ZWj

� �
p ZDbð Þp wj

� �
8>><
>>:

9>>=
>>;=

(
min 1;

∏
xi ;yið Þ∈Wj*5 Wj

Z
αj−1
i

e−Zi =βj

β
αj

j Γ αj

� �
∏

xi ;yið Þ∈Wj*5 Wj

Zα0−1
i

e−Zi =β0

βα0
0 Γ α0ð Þ

×
e
−

w*
j
−μl

� �2

2σ2
l

e
−

wj−μlð Þ2
2σ2

l

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; if w*

j N wj

min 1;

∏
xi ;yið Þ∈Wj 5 W

*
j

Zα0−1
i

e−Zi =β0

βα0
0 Γ α0ð Þ

∏
xi ;yið Þ∈Wj*5 Wj

Z
αj−1
i

e−Zi =βj

β
αj

j Γ αj

� �
×

e
−

w*
j
−μl

� �2

2σ2
l

e
−

wj−μlð Þ2
2σ2

l

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; if w*

j bwj

ð18Þ

ra = min 1;
p ZWj�
� �

p ZDb�ð Þp a*j

� �

p ZWj

� �
p ZDbð Þp aj

� �
8>><
>>:

9>>=
>>;

= min 1;

∏
xi ;yið Þ∈Wj*5 Wj

Z
αj−1
i

e−Zi =βj

β
αj

j Γ αj

� �
∏

xi ;yið Þ∈Wj*5 Wj

Zα0−1
i

e−Zi =β0

βα0
0 Γ α0ð Þ

×

∏
xi ;yið Þ∈Wj 5 W

*
j

Zα0−1
i

e−Zi =β0

βα0
0 Γ α0ð Þ

∏
xi ;yið Þ∈Wj*5 Wj

Z
αj−1
i

e−Zi =βj

β
αj

j Γ αj

� �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð19Þ

where Wj⁎ and Wj are the windows constructed by (lj⁎, wj⁎, aj⁎) and (lj, wj, aj), respectively.
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3.3.2. Move 2: updating gamma distribution parameters
Rewrite the distribution parameter vector as θ={θj′, j′=0, 1, …, k} where θj′=(αj′, βj′). Assume that the probability distributions for

the proposal αj′
⁎ and βj′

⁎ at t'th iteration are Gaussian distributions with means αj′
(t− 1) and βj′

(t− 1), and standard difference εα and εβ, that is,
αj′
⁎∼N(αj′

(t−1), εα) and βj′
⁎∼N(βj′

(t− 1), εβ). The acceptance probability for the proposal αj′
⁎ and βj′

⁎ can be obtained as

rα;β = min 1;

∏
xi ;yið Þ∈Wj

p Zi jθ*j
� �

× p θ*j
� �

∏
xi ;yjð Þ∈Wj

p Zi jθj
� �

× p θj
� �

8>>>><
>>>>:

9>>>>=
>>>>;

ð20Þ
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rα0 ;β0
= min 1;

∏
xi ;yið Þ∈Db

p Zi jθ*0
� �

× p θ*0
� �

∏
ðxi ;yjÞ∈Bb

p Zi jθ0ð Þ × p θ0ð Þ

8>>><
>>>:

9>>>=
>>>;

ð21Þ

3.3.3. Move 3: moving the position of central points
At t'th iteration, one of central points in G={(uj

(t−1), vj
(t−1)), j=1,…, k} is drawn at random, say (uj

(t−1), vj
(t−1)). A proposed position is (uj⁎,

vj⁎) by drawing uniformly in the window Wj. The new position of the central point gives rise to the local changes of Wj to Wj
⁎. Fig. 4 shows the

example for the change.
The acceptance probability for the move turns out to be

rc = min 1;
p ZWj�
� �

p ZDb�ð Þp u*j ;v
*
j

� �

p ZWj

� �
p ZDbð Þp uj;uvj

� �
8>><
>>:

9>>=
>>;

= min 1;

∏
xi ;yið Þ∈Wj*5 Wj

β
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 !
× ∏
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*
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0 exp − Zi

β0

� �

∏
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βα0
0 exp − Zi

β0

� �
× ∏
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j

β
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j exp − Zi
βj

 !
8>>>>><
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ð22Þ

3.3.4. Move 4: birth or death of generating points
Suppose that the current number of central points is k and let the probabilities of proposing a birth or death operation be bk or dk, respectively.

Consider a birth operationwhich increases the number of central points from k to k+1 and assume that the new central point is labelledwith k+
1 and its location (uk+1, vk+1) is drawn uniformly from D\Dd. Let the window induced by (uk+1, vk+1) be Wk+1. The proposal position vector
becomes G⁎={(u1, v1), …, (uk, vk), (uk+1, vk+1)}. As a result, the parameter vector for the birth operation becomes Θ⁎=(θ, G⁎,Φ k+1). The
acceptance probability for the birth can be written as

rb Θ;Θ*ð Þ = min 1;Rbf g ð23Þ

where

Rb =
p Z jθ;G*; k + 1ð Þp k + 1ð Þp G* jk + 1ð Þrbk Θ*ð Þ

p Z jθ;G; kð Þp kð Þp G jkð Þrdk + 1
Θð Þq sð Þ

∂ Θ*ð Þ
∂ Θ; sð Þ ð24Þ

where rbk=bk, rdk+1=dk+1/(k+1), s=(uk+1, vk+1) and other terms in Eq. (24) can be expressed as follows

p Z jθ;G*;Φ; k + 1ð Þ
p Z jθ;G;Φ; kð Þ =

∏
xi ;yið Þ∈Wk + 1

βαk + 1
k + 1 exp − Zi

βk + 1

� �

∏
xi ;yið Þ∈Wk + 1

βα0
0 exp − Zi

β0

� � ð25Þ
Fig. 4. The change of windows by moving central point.
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where αk+1 and βk+1 are drawn from their prior distribution functions, respectively.

p k + 1ð Þ
p kð Þ =

λ
k + 1

ð26Þ

j ∂ Θ*ð Þ
∂ Θ; sð Þ j = 1 ð27Þ

q sð Þ = 1
jWk + 1 j

ð28Þ

where |Wk+1| is the area of the window Wk+1. The acceptance probability for a death of central point is

rd Θ;Θ*ð Þ = min 1;Rdf g;andRd = R−1
b ð29Þ

For any given proposal with acceptance probability r, it is accepted if and only if r≥ξ, where ξ is drawn from [0, 1] uniformly, that is, ξ∼U(0, 1).
Assume that a set of approximate and dependent samples {Θ(t), t=1,… , T}, where T is the number of predefined iterations, is drawn from the

joint posterior density p(Θ|Z) by the RJMCMC algorithm. The MAP estimation is used to obtain optimal parameters defined in the joint posterior
distribution. The optimal estimation ΦMAP under MAP estimate can be written as

ΘMAP = argmax p θ;G;Φ; k jZð Þf g ð30Þ
4. Experiment and results

The proposed algorithm is applied to SAR intensity images
containing oil spills indicated by human analyst. Fig. 5 shows four-
look Radarsat-1 SAR intensity images with size 512×512 pixels.
Fig. 5. The Radarsat-1 SA
Table 1 lists the constants used in the proposed algorithm for the
experiment where λ is the mean of Poisson distribution for the
number of dark spots, which is set as 3 to encourage a low number of
windows since oil spills are fewer. μl (μw) and σl (σw) are the mean
and standard deviation of length (width) of window. μα (μα0) and σα
R intensity images.



Table 1
The constants.

λ μ l, μw σl, σw μα, μα0 σα μβ σβ

3 50 10 4 0.5 16 2
μβ0 εl, w εa εα εβ Tm
32 2 π/36 0.25 1 10000

Table 2
Estimated parameters.

Image Window l (pixel) w (pixel) a(o) u (pixel) v (pixel) α β

a W1 64 28 −59.1 235 428 3.47 12.32
W2 59 17 −67.4 266 375 3.85 11.90
W3 66 18 −52.2 203 431 3.79 11.82
W4 49 7 65.7 388 133 3.86 12.07

b W1 157 45 −74.7 248 334 3.87 15.33
W2 162 27 −87.7 273 125 3.43 13.94

c W1 91 12 59.1 203 107 4.07 11.28
W2 129 8 51.1 302 238 4.10 13.08

d W1 27 31 10.2 396 392 4.21 13.62
W2 58 39 −83.4 187 96 4.42 13.35
W3 51 22 11.7 290 274 4.16 16.95
W4 28 25 13.9 166 194 4.00 15.34
W5 65 20 24.5 140 55 4.14 14.00
W6 19 55 −33.6 340 271 3.41 16.83
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(σα0) are the mean and standard deviation of the shape parameter of
the gamma distributions defined for the dark spots and their
background. For a multi-look SAR intensity image in which the
intensities of pixels are characterized by gamma distribution, the
shape parameter α is equal to the number of its looks. In this paper,
since the shape parameters α's are considered as random variables,
the values μα and μα0 are set as the number of looks. For a gamma
distribution with shape parameter α and scale parameter β, the
product of the two parameters α×β is equal to its mean. Then assume
the value μα0×μβ0 is taken 128=256/2 (i.e. the midpoint of 256 gray
levels) since the pixel intensities in a gray-scale image vary in the
range 0–255. The constants εl,w,a,α,β are the proposal variances for l,w,
a, α, α0, β and β0, respectively, which affect the sampling and
convergence of the algorithm under theMCMC scheme (Dryden, Scarr
& Taylor, 2003). Though Besag, Green, Higdon and Mengersen (1995)
suggested, through their experience, choosing the proposal variances
so that the acceptance probability lies in the interval (30–70%).
However we have found that the proposal variances causing the
acceptance probability around 30% still make the algorithmworkwell.
Fig. 6. The outlines of detected windo
The constant Tm is themaximum iterations of the algorithm. Usually, it
depends on the complexity of the scene revealed in a SAR image and
requirement of segmentation accuracy. The Tm used in this experi-
ment is uninformative and larger than practically used ones, in order
to show the convergence of the proposed algorithm.

The numbers of initial window are drawn from the Poisson
distribution with the mean 3. From our experience the number have
no significant impact on the final results. The geometric parameters of
the initialwindoware drawn from their distributions. The initial gamma
distribution parameters are also drawn from their distributions.
ws for the candidates of oil spills.



Table 3
Acceptance rates.

Image rl (%) rw (%) ra (%) rc (%) rα (%) rβ (%) rb (%) rd (%)

a 9.13 14.87 2.25 29.75 70.47 0.49 0.1 0.02
b 23.43 22.49 4.21 29.81 71.25 1.36 1.91 1.95
c 20.97 2.95 1.13 29.04 84.5 0.23 0.01 0.05
d 16.44 17.68 5.13 28.79 91.84 1.05 0.54 0.61
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Fig. 6 gives the distribution offinalwindows after 10,000 iterations,
which correspond to the detected dark spots. The numbers of the
detected dark spots are 4, 2, 2 and 6 for testing images (a)–(d),
respectively.

Table 2 gives the estimated parameters for windows including
their lengths, widths, directions, locations of central point and the
gamma distribution parameters. The unit of geometric parameters l,
w, u, v is pixel.

Table 3 lists the acceptance rate for each type of moves, where rl,
rw, ra, rc, rα, rβ, rb and rd are the acceptance rates of moves for updating
length, width, direction, central point of window, shape parameter,
Fig. 7. The acceptance rates (a)–(g) and the change
scale parameter, moving central point, birth and death of windows,
respectively.

Fig. 7 shows the acceptances of proposals (indicated by the value 1)
during 10,000 iterations for the SAR image shown in Fig. 5(c). From
Fig. 7 (g)–(h) and Table 3, it can be observed that the operations of
birth and dead of central point have theminimumacceptance rate and
their acceptances are happened within first 6000 iterations. The
phenomenon implies that the proposed algorithm can quickly decided
the numbers of windows which represent the candidates of oil spills.
Since the computation burdens for both of the two moves are very
heavy, it is necessary to find a more efficient way to control them,
though they have lowest acceptance rates. By contrast, the operation
of updating the shape parameter α has the maximum acceptance rate,
which is caused by the small εα. The more acceptances for moving
central points can be explained that the algorithm needs much more
changes on the locations ofwindows to fit the details of dark spots. The
updating length ofwindowsoperates throughout all iterations, though
with middle acceptance rates.

In order to evaluate the accuracy of the proposed algorithm for the
detection of dark spots visually, the detected windows (in black) are
of the number of windows (i) during iterations.



Fig. 8. The overlaying of detected dark spots on the test SAR images.
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overlaid on the SAR images, see Fig. 8. From Fig. 8, it can be observed
that the algorithm can detect the dark spots well.

5. Conclusions

In this paper, a new algorithm for the detection of dark spots as the
candidates of oil spills based on Poisson point process, Bayesian
inference and Reversible Jump Markov Chain Monte Carlo algorithm
have been presented. More precisely, in the proposed algorithm,
the dark spots are modeled as marked point process which is created
by a group of points uniformly drawing on the domain of a given
image and attached a window with length, width and direction, and
a gamma distribution with scale and shape parameters to each gen-
erating points.

Results from Radarsat-1 SAR intensity image show that the
proposed algorithm can detect the dark spots very well. Instead of
processing image pixel by pixel for the purpose of dark spot detection,
the proposed algorithm processes the pixels in and out of windows
simultaneously. Therefore, it is suitable for searching the oil spills on
huge area. On the other hand, the proposed algorithm is a statistical
region-based algorithm that can reduces the affect from speckle noise
on the detection of dark spots.

In this paper we assume that the intensities of pixels on background
(sea) follow identical independent gamma distributions with signal
distribution parameters (α0, β0). Unfortunately, it is not always true due
to the complicity of SAR imaging. The further work on improving the
proposed algorithm will focuses on improving the proposed algorithm
suitable for the scenes with non-uniform background.
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