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It is challenging to automatically register TLS point clouds with noise, outliers and varying overlap. In this
paper, we propose a new method for pairwise registration of TLS point clouds. We first generate covari-
ance matrix descriptors with an adaptive neighborhood size from point clouds to find candidate corre-
spondences, we then construct a non-cooperative game to isolate mutual compatible correspondences,
which are considered as true positives. The method was tested on three models acquired by two different
TLS systems. Experimental results demonstrate that our proposed adaptive covariance (ACOV) descriptor
is invariant to rigid transformation and robust to noise and varying resolutions. The average registration
errors achieved on three models are 0.46 cm, 0.32 cm and 1.73 cm, respectively. The computational times
cost on these models are about 288 s, 184 s and 903 s, respectively. Besides, our registration framework
using ACOV descriptors and a game theoretic method is superior to the state-of-the-art methods in terms
of both registration error and computational time. The experiment on a large outdoor scene further
demonstrates the feasibility and effectiveness of our proposed pairwise registration framework.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Terrestrial laser scanning (TLS) systems have been commonly
used in many applications such as heritage preserving, 3D model-
ing, and manufacturing because a TLS system can rapidly acquire
dense and accurate 3D point clouds with geometry, color and
intensity information from surfaces. As a preprocessing step for
many TLS point cloud related applications, registration aims to
transform multiple scans in arbitrary initial positions and orienta-
tions into a common coordinate system to align their overlapping
regions. Point cloud registration is indispensable for completing
interest objects or scenes. This paper develops a method for auto-
mated pairwise registration of TLS point clouds.

Registration of TLS point clouds is a challenging task. First, the
arbitrariness in initial positions of scans can affect the performance
of point cloud registration methods and has to be considered in the
operation. Second, the TLS data pose four major challenges as
follows (Tam et al., 2013; Theiler et al., 2015; Yang et al., 2015):
(1) Data size: A TLS system can rapidly acquire a large volume of
point clouds (e.g., up to 300,000 pts/s). That means it needs to effi-
ciently deal with a large amount of data. (2) Noise and outliers:
Noise is presented as a form of random fluctuation of data or
unwanted points close to a surface, and outliers are considered
as those points far from the surface. Both noise and outliers are
common and unavoidable. (3) Uneven density: Uneven distribu-
tion of point density is caused by the mechanism of the TLS system.
That is, the closer the target is to the TLS system, the denser the
acquired points are, and vice versa. (4) Limited overlap: Limited
overlap is caused by different views in each scan. In particular, con-
sidering the efficiency of data acquisition, the number of scans is
expected to be as low as possible, leading to insufficient common
points between successive scans. All of these challenges can seri-
ously affect the robustness of point cloud registration methods.
Other problems may arise due to pattern repetitions in a scene
or symmetries of a surface, which are inevitable and should be
considered when designing a point cloud registration method.

In this paper, we propose a new pairwise registration method
for TLS point clouds. Our method consists of two main stages:
adaptive covariance (ACOV) descriptor generation and non-
cooperative game construction. In the first stage, the method first
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introduces the features to be fused in a covariance matrix and the
keypoint extraction method based on covariance descriptors. Then,
we propose a new ACOV feature descriptor. Finally, we introduce
the distance metric and matching strategy used to find candidate
correspondences between two point clouds. The second stage con-
tains three steps: (1) the concept of game theory used for match-
ing; (2) a non-cooperative matching game; and (3) an optimal
solution for the matching game based on replicator dynamics.
We tested our proposed method on three models and a large out-
door scene acquired by two different static TLS systems. Experi-
mental results have demonstrated the effectiveness of our
pairwise point cloud registration method. The contributions of this
paper are as follows: (1) We propose a covariance-based descriptor
to fuse various information (e.g., geometry, color, and intensity)
acquired by a TLS system; (2) We generate covariance descriptors
over adaptive neighborhood sizes, which are robust to noise, out-
liers, rigid transformations, and uneven density; and (3) We
develop a game-theoretic matching method for pairwise registra-
tion of TLS point clouds. The remainder of the paper is organized
as follows. Section 2 briefly reviews and discusses the representa-
tive works for pairwise point cloud registration. Section 3 intro-
duces the pipeline of our registration method, including adaptive
covariance (ACOV) descriptor generation and non-cooperative
matching game construction. Section 4 presents the experimental
results. Section 5 presents a detailed discussion of the derived
results. Section 6 concludes the paper.
2. Related work on pairwise registration

Pairwise point cloud registration problem can be solved using a
rigid transformation with six degrees of freedom by finding a set of
correspondences (at least three) between two point clouds. A point
cloud registration method usually composes of two steps: coarse
registration and fine registration. Over the past decades, a number
of pairwise point cloud registration methods have been proposed
in different fields, such as computer vision, photogrammetry, and
robotics. We will only review and discuss some representative
works in this section. For a more complete overview, please refer
to the evaluation papers (Salvi et al., 2007; Tam et al., 2013;
Pomerleau et al., 2015; Weinmann, 2016).

The most commonly used fine registration methods include the
Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992; Chen
and Medioni, 1992) and its variants (Bae and Lichti, 2008; Gressin
et al., 2013; Yang et al., 2013). Bae and Lichti (2008) proposed a
Geometric Primitive ICP with Random sample consensus (GPICPR).
It uses the normal vector and geometric curvature of a local surface
for matching and neighborhood search. The GPICPR algorithm pro-
vides an acceptable efficiency and accuracy in finding correspon-
dences for registration. Gressin et al. (2013) demonstrated how
the standard ICP algorithm can be improved by geometric features.
It is noticed that these ICP methods are able to achieve registration
results with high accuracy and efficiency, but they still require a
coarse alignment to avoid a local minimum. Therefore, Yang
et al. (2013) proposed a global optimal solution for ICP-type regis-
tration (Go-ICP) without a coarse alignment by integrating the ICP
algorithm with a branch-and-bound (BnB) scheme. The Go-ICP
algorithm works well on small-scale point clouds, but it still faces
challenges on large-scale point clouds acquired by a TLS system.

Aiger et al. (2008) proposed a method named 4-Points Congru-
ent Sets (4PCS) for coarse registration. This method extracts copla-
nar 4-points sets which are congruent as primitives. The 4PCS
algorithm is demonstrated to be robust to varying degrees of noise,
outliers, and overlaps, but it has a quadratic time complexity.
Mellado et al. (2014) proposed the SUPER-4PCS algorithm with lin-
ear time complexity using a smart indexing for data organization.
Theiler et al. (2014) used keypoints (DoG and Harris detectors) to
down-sample the original point clouds and then adapted the
4PCS algorithm for registration. Their experiments demonstrated
that K-4PCS obtained a sufficiently high registration accuracy for
the subsequent ICP refinement with a linear time complexity. In
addition, these feature descriptors evaluated (Guo et al., 2014)
are commonly used as matching primitives to find correspon-
dences between two point clouds in RANSAC-based methods.
Barnea and Filin (2008) exploited features which are invariant to
3D rigid-body transformation as primitives. Rusu et al. (2009) pro-
posed a Sample Consensus based method for initial alignment
(SAC-IA) using a local feature called Fast Point Feature Histograms
(FPFH) as primitives. Weinmann et al. (2011) proposed an efficient
perspective-n-point (EPnP) algorithm by extracting characteristic
2D points based on SIFT features. Yang and Zang (2014) extracted
crest lines as matching primitives and then proposed a deforma-
tion energy model to find correspondences, they obtained fine reg-
istration results with good accuracy in their experiments. Kelbe
et al. (2016) generated feature descriptors and tested the RMSE
of a blind view-invariant marker-free registration method for TLS
data in forest environments. Yang et al. (2016) proposed a registra-
tion method based on semantic feature points extracted from
large-scale urban scenes.

Albarelli et al. (2009) proposed a game-theoretic perspective for
the matching problem. The matching problem was formulated as a
non-cooperative game where the potential correspondences are
analogous to strategies, while payoffs represent the degree of com-
patibility between any two correspondences. Further, Albarelli
et al. (2010, 2015) cast the selection of correspondences between
two point clouds in a game-theoretic framework and obtained a
fine registration in a single step. Cirujeda et al. (2015) proposed a
covariance descriptor to fuse color and shape information within
several neighborhood radii, called multi-scale covariance (MCOV)
descriptor. The MCOV descriptor was then combined with a game
theoretic framework to find correspondences under global geomet-
ric constraints. These game-theoretic methods can obtain a fine
registration between small-scale point clouds in a linear time
without any initial alignment. However, they cannot handle
large-scale TLS point clouds.

Compared to (Cirujeda et al., 2015), this paper proposes a new
feature descriptor called ACOV to fuse various information (e.g.,
geometry, color, and intensity) over an adaptive neighborhood size
and develops an improved game-theoretic matching method by
adding a Laplacian term for pairwise registration of TLS point
clouds.
3. The proposed registration method

This section introduces a new registration framework for TLS
point clouds, which consists of two stages: adaptive covariance
(ACOV) descriptor generation and non-cooperative game
construction.
3.1. Covariance matrix descriptor

The proposed method is expected to fully use the information
(e.g., geometry, color, and intensity) of data acquired by a TLS sys-
tem, by means of the statistical concept of covariance matrix. The
covariance matrix is generalized to multiple dimensions to com-
bine a set of random variables and to describe statistically how
these variables change in relation to each other. From the descrip-
tor perspective, random variables combined in a covariance matrix
must correspond to a set of features computed at a given point. In
this section, the extracted features and the covariance matrix
(which works as a descriptor) will be introduced firstly. Then,
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keypoint extraction using covariance descriptors will be presented.
Next, a new ACOV descriptor will be proposed. At last, the distance
metric and matching strategy will be presented.

3.1.1. Feature extraction and covariance matrix
For a given point p and its neighborhood within radius r in the

scene, a set of features are computed, including geometry (a; b, and
c) (Cirujeda et al., 2015), dimensionality (a1D; a2D, and a3D) (Gressin
et al., 2013; Lin et al., 2014), color (R;G, and B) and intensity (I)
features.

As shown in Fig. 1, a is the angle between the normal vector at
point p and the vector from point p to point pi, b is the angle
between the normal vector at point pi and the vector from point
p to point pi, and c is the angle between the normal vectors at
points p and pi. These three angular measures are related to the
local surface geometrical structure within the neighborhood of
point p.

The three dimensionality features a1D; a2D and a3D are computed
as follows:

a1D ¼ k1 � k2
k1

; a2D ¼ k2 � k3
k1

; a3D ¼ k3
k1

ð1Þ

where k1; k2, and k3 (k1 P k2 P k3) are eigenvalues obtained by per-
forming a Principal Component Analysis (PCA) on the neighborhood
of point pi. If k1 � k2 and k3; a1D is therefore larger than a2D and a3D,
a linear structure is represented by the neighborhood of point pi. If
k1 ’ k2 � k3; a2D is the largest one, and a planar structure is repre-
sented by the neighborhood of point pi. At last, k1 ’ k2 ’ k3 means
that a3D is larger than a1D and a2D, and a scatter structure is repre-
sented by the neighborhood of point pi.

The intensity entropy HðIÞ is computed using the histogram of
the intensity values of all points within the neighborhood of point
pi:

HðIÞ ¼
X255
g¼0

pg � log pg ð2Þ

where pg is the probability of a gray value g 2 ½0;255� obtained from
the intensity histogram.

The extracted features contain geometry (a; b, and c), dimen-
sionality (a1D; a2D, and a3D), color (R;G, and B) and intensity (HðIÞ)
information. It should be noted that all of these selected features
are invariant to a rigid transformation of the scene, which is impor-
tant for point cloud registration. Finally, these extracted features
are normalized to generalize a statistical distribution of random
variables, such that all features can have an equal range. Specifi-
cally, a is normalized as a ¼ ða� aminÞ=ðamax � aminÞ, where amin

and amax are the minimum and maximum values of fapig, respec-
tively. b; c, and HðIÞ are normalized following the same way as a.
R;G, and B are divided by 255 for normalization.
ppi

np
npi

αβ

γ

Fig. 1. The angular measures a;b, and c for a point pi within the neighborhood of
point p.
For a given point p and its neighborhood size r, a new patch pp

is obtained as follows:

pp ¼ ff pi ; 8 pi s:t: kp� pik 6 rg ð3Þ

where f pi is a 10-dimensional feature vector obtained at each point
pi within the neighborhood of point p, i.e.,

f pi ¼< api ;bpi
; cpi ; a1Dpi

; a2Dpi
; a3Dpi

;Rpi ;Gpi ;Bpi ;HðIÞpi >; ð4Þ

where a;b, and c are the angular measures to represent the surface
geometric information, a1D; a2D and a3D are three dimensionality
features to describe the linear (a1D), planar (a2D) and scatter (a3D)
characteristics, R;G and B represent the color space values, and
HðIÞ is the intensity entropy.

When pp is obtained, a covariance matrix is computed for the
given point p:

CrðppÞ ¼ 1
Np � 1

XNp

i¼1

ðf pi � lÞTðf pi � lÞ ð5Þ

where Np is the cardinality of pp and l ¼ 1
Np

PNp

i¼1f pi . A covariance

matrix descriptor combines these extracted features and describes
their mutual relationship. As discussed in Kaiser et al. (2013), the
variances on the diagonal of a covariance matrix represent the sta-
tistical variations of these features from their own average value.
The variance treats all deviations from the mean equally regardless
of their directions. As a result, the squared deviations cannot sum to
zero. They give the appearance of no variability at all in the feature,
which is already informative. Besides, the covariances between any
two features on the off-diagonal entries provide further informa-
tion, which leads to higher descriptiveness as compared to these
individual features. Fig. 2 shows an example of covariance descrip-
tors. The facial area of a statue is used to compute covariance
descriptors, as presented in Fig. 2(b). Fig. 2(c)–(e) shows the same
facial surface with down-sampling, Gaussian noise, and both
down-sampling and Gaussian noise, respectively. The correspond-
ing covariance descriptors with a scale of 10� 10 are depicted in
Fig. 2(f)–(i), respectively. It can be visually observed that these
covariance descriptors are similar. More details and qualitative per-
formances will be discussed in the following sections.

3.1.2. Covariance descriptor for keypoint extraction
The determinant jCrðppÞj can be considered as a generalized

variance, it is equal to the variance for the one-dimensional case.
Similar to the variance which measures how far a set of numbers
are spread out from their mean, jCrðppÞj measures the variation
extent of random variables (features) computed at point p. That
is, a larger jCrðppÞj means that more random variables are dis-
persed in the feature space. It can be interpreted that jCrðppÞj mea-
sures the degree of homogeneity of point p in the scene (Cirujeda
et al., 2015). Namely, the points with larger determinant values
can be considered as keypoints of the scene, because these points
have more significant variations in shape, color and intensity.

Instead of computing covariance descriptors for each point in
the scene, we use uniform sampling to obtain initial interest points
for covariance descriptor computing. The uniform down-sampling
process can improve the method in two aspects: (1) It can initially
down-sample the point clouds and significantly increase the com-
puting efficiency; (2) It roughly evens out the strong point distribu-
tion variation across TLS point clouds (Theiler et al., 2014).

When the initial keypoint set Si is obtained after uniform sam-
pling, the covariance descriptor and its corresponding determinant
are computed for each p (p 2 Si) over its neighborhood in the scene.
When the determinant of covariance descriptor for each point p
(p 2 Si) is obtained, points with higher determinant are selected



(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 2. An example of covariance descriptors. (a) Original point cloud of a statue. (b) Close-up view of the facial surface. (c) Point cloud after down-sampling (20% of the
original resolution). (d) Point cloud with Gaussian noise (r ¼ 0:1 cm). (e) Point cloud with both down-sampling (20% of the original resolution) and Gaussian noise
(r ¼ 0:1 cm). (f–i) The corresponding covariance descriptors with a scale of 10� 10 for these point clouds shown in (b–e).
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as keypoints as these points have a large variation in shape, color
and intensity.
3.1.3. Adaptive covariance (ACOV) descriptor
For each keypoint, a covariance descriptor CtðpÞ can be com-

puted easily over the neighborhood (t) of the keypoint in the orig-
inal scene. The neighborhood size has an influence not only on the
distinctiveness of the descriptor CtðpÞ, but also on its robustness to
occlusion, noise, and uneven density (Guo et al., 2013). An adaptive
neighborhood size for keypoints can work better than a fixed size,
especially when dealing with point clouds with uneven density. In
Demantké et al. (2011) and Weinmann et al. (2015), the optimal
neighborhood size is selected by computing the dimensionality
features and minimizing a measure of unpredictability defined by
Shannon entropy. Unnikrishnan and Hebert (2008) detected salient
regions to capture shape variation at a point relative to its neigh-
borhood using the Laplace-Beltrami scale-space (LBSS) theory. It
is demonstrated that the selected salient neighborhood regions
were repeatable and performed well for shape descriptor calcula-
tion. Inspired (Unnikrishnan and Hebert, 2008), we propose a
method to adaptively select neighborhood sizes for the generation
of covariance descriptors to capture variation in geometry, color
and intensity.

As our covariance descriptor fuses geometry, color and intensity
information, the corresponding determinant measures the degree
of variation in geometry, color and intensity. We then define the
corresponding determinants of covariance descriptors as the dis-
tinctiveness at a point relative to a selected neighborhood size t
(t 2 ftmg). That is, the neighborhood region corresponding to the
maximum determinant over a set of sizes ftmg is selected. The
set of sizes ftmg for each keypoint is fixed as tm ¼ t0 � bm where t0
is a basic size. The base b is set to 1:3;m is set to f0;1;2;3;4;5g
and t0 is set to 20 times the average resolution of the model in this
paper, as analysed in Section 4.3.
3.1.4. Distance metric and matching strategy
A covariance matrix is symmetric positive definite and it lies on

a Riemannian manifold rather than a Euclidean space. The covari-
ance matrix can be used to define a region as it abstractly repre-
sents the geometrical location of shape and texture distributions
within a region (Cirujeda et al., 2015). Although most of the
distance measures (e.g., Euclidean distance) cannot be applied,
the log-eigenvalue measure (Kaiser et al., 2013) can be used to
measure the similarity of two arbitrary covariance matrices
Ctðp1Þ and Ctðp2Þ, it is defined as:

dðCtðp1Þ;Ctðp2ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

i¼1
ln2 kiðCtðp1Þ;Ctðp2ÞÞ

r
ð6Þ

where kiðCtðp1Þ;Ctðp2ÞÞ is the set of generalized eigenvalues of
Ctðp1Þ and Ctðp2Þ and D is the rank of Ctðp1Þ or Ctðp2Þ (D is 10 in
our case). The generalized eigenvalues of Ctðp1Þ and Ctðp2Þ are
defined by kiCtðp1Þv i ¼ Ctðp2Þv i with v i – bf0. A generalized eigen-
value problem can be converted into a normal eigenvalue problem:

Ctðp1Þ�1Ctðp2Þv i ¼ kiv i (Kaiser et al., 2013).
Finally, the ACOV descriptor is used to match points between

two point clouds P and Q. The keypoints extracted from P are
denoted as Pk and the keypoints in Q for corresponding point
searching are denoted as Qk. We propose a new matching strategy
to generate correspondence using the inclusive ratio strategy. That
is, an arbitrary correspondence fp;qg (p 2 Pk and q 2 Qk) is consid-
ered as a true positive candidate if and only if it satisfies:

dðCtðppÞ;CtðpqÞÞ 6 ratio�min
i2Qk

dðCtðppÞ;CtðpiÞÞ
dðCtðppÞ;CtðpqÞÞ 6 ratio�min

j2Pk
dðCtðpjÞ;CtðpqÞÞ

8<
: ð7Þ

where dðCtðppÞ;CtðpqÞÞ is the log-eigenvalue distance measure
described in Eq. (6). When the parameter ratio equals 1, the above
strategy degenerates into a one-to-one matching. As ratio becomes
larger, the rate of true positive candidates is increased, but false
positives are also increased. Due to pattern repetitions and local
symmetries in a scene, the one-to-one matching is not suitable. In
contrast, the inclusive ratio strategy with a fixed ratio is more
appropriate for a registration procedure as a point can correspond
to several matches as long as they satisfy Eq. (7), at the cost of
requiring a subsequent rejection method to deal with the large
number of false positives.
3.2. Non-cooperative game

This section introduces a new rejection method to remove false
correspondences using a non-cooperative game. The basic ideas for
correspondence estimation using game theory is firstly introduced.
Then, a payoff matrix is defined for a matching game. At last, an
optimal solution to the matching game is evolved using the
replicator dynamics.
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3.2.1. Basic ideas
The concept of game theory used for matching purposes is first

introduced by Albarelli et al. (2009), where correspondences are
discarded in order to obtain the best combination of correspon-
dences by imposing geometric constraints. This matching approach
has been applied successfully to other pairwise registration related
applications (Albarelli et al., 2010, 2012, 2015; Rodola et al., 2012;
Cirujeda et al., 2015).

The underlying idea is to consider all correspondences (denoted
as S) resulted from a descriptor matching stage, and isolate mutu-
ally compatible ones from the outliers by calculating payoffs
(denoted as p) associated to each two selected correspondences.
That is, when S is generated, our goal is to extract the subset
including most correct correspondences from S by imposing con-
straints. Similar to a game G, each point cloud (P or Q) is a player
and these correspondences S form the set of pure strategies. The
game is summarized as a triplet G ¼ fI; S;pg, where I is the player
set fP;Qg; S is the pure-strategy set, and p is the combined payoff
function. At equilibrium, only the mutually compatible correspon-
dences are preserved and considered as inliers. Hence, the best set
of strategies for the game (the registration between two point
clouds) becomes the selection of mutually compatible correspon-
dences. Previous research has demonstrated that by properly
designing the payoff function p, these selected correspondences
are globally optimal for the rigid transformation problem
(Albarelli et al., 2010, 2015).

3.2.2. Definition of a payoff matrix
As a key step of the game theoretic matching framework, the

definition of a payoff function p must consider pairwise interac-
tions between correspondences S, which is denoted as
p: S� S ! Rþ. That is, the payoff function p is materialized in a
symmetric payoff matrix P to represent a degree of compatibility.
Particularly, true positive correspondences conform to some prop-
erty between each other while false correspondences and ran-
domly paired correspondences should not comply with the same
property. Considering that our problem conforms to a rigid trans-
formation, it is natural to impose geometric constraints on those
correspondences to discard false correspondences.

Let si; sj 2 S be two arbitrary correspondences, and
si ¼ fpa; qbg; sj ¼ fpc ; qdg, where pa; pc 2 Pk and qb; qd 2 Qk.
Based on the above considerations, a distance measure d between
si and sj is defined as:

dðsi; sjÞ ¼ minðdðpa;pcÞ;dðqb;qdÞÞ
maxðdðpa;pcÞ; dðqb;qdÞÞ

e
�jdðpa ;pc Þ�dðqb ;qd Þj

c ð8Þ

where dða;bÞ represents the Euclidean distance between points a
and b. The min/max term was originally proposed in Albarelli et al.
(2010) and the Laplacian term is proposed in this paper to enlarge
the distribution range of payoff values. The parameter c is used to
control the strictness of the constraints. Note that, the Laplacian term
plays a significant role in our game theoretic matching method.
Unlike the previous works (Albarelli et al., 2010, 2012, 2015;
Rodola et al., 2012; Cirujeda et al., 2015), our registration problem
focuses on the applications of TLS point clouds. Since a compatibility
is set between each pair of correspondences, the size of a payoff
matrix is jSj � jSj. Such a large memory requirement is intolerable
for TLS point clouds. Fortunately, the payoff matrix can be simplified
into a sparse symmetric matrix by setting those payoff values smaller
than a given threshold (0.1 in our work) to 0. To achieve this, a wide
range of payoff values is necessary and the Laplacian term is used to
find a small number of functional entries in the payoff matrix.

Since the final transformation solution has to be one-to-one, an
additional constraint is imposed on the payoffs: pðsi; sjÞ ¼ 0 if
pa ¼ pc or qb ¼ qd. Thus, the payoff function p is defined as follows:
pðsi; sjÞ ¼
0; if pa ¼ pc or qb ¼ qd or dðsi; sjÞ < 0:1
dðsi; sjÞ; otherwise:

�
ð9Þ

An example of a payoff matrix is shown in Fig. 3. Each corre-
spondence has a zero payoff with itself, correspondences sharing
the same source or destination point also have a zero payoff (e.g.,
pðs1; s2Þ ¼ 0). Correct correspondences have high payoff values
(e.g., pðs1; s3Þ ¼ 1), while less compatible correspondences have
low payoff values (e.g., pðs1; s4Þ ¼ 0:2) or even zero payoff (e.g.,
pðs2; s3Þ ¼ 0), as shown in Fig. 3(b).

3.2.3. Evolution to an optimal solution
When the matching game G is generated, the optimal solutions

for the rigid transformation problem correspond to Evolutionary
Stable Strategies (ESS), a robust population-based generalization
of Nash equilibrium (Albarelli et al., 2010). In the game, the sup-
port vector x is an ESS if it is a Nash equilibrium and satisfies that
xTPy > yTPy; 8y 2 4, where

4 ¼ fx 2 RjSj :
PjSj

i¼1xi ¼ 1 and xi P 0g is a probability distribution
over the strategy set S. Our matching game starts by setting each
strategy an initial probability 1=jSj, which can be evolved itera-
tively by applying the replicator dynamics equation:

xiðnþ 1Þ ¼ xiðnÞ PxðnÞð Þi
xðnÞTPxðnÞ ð10Þ

where n is the number of iterations, and P is the payoff matrix.
When Eq. (10) converges, a correspondence si 2 S is considered as
positive if xi > 0. In contrast, if xj ¼ 0, the correspondence sj 2 S is
considered as negative. Once the plausible correspondences are
obtained, the rigid transformation is computed to align two point
clouds using Singular Value Decomposition (SVD).

4. Experimental results

In this section, several experiments are conducted to demon-
strate the superiority of the proposed ACOV descriptor and the
point cloud registration framework.

4.1. Test data

Our proposed ACOV descriptor and registration method were
evaluated on threemodels containing geometry, color and intensity
information, whichwere acquired by two different TLS systems. For
eachmodel, ground truth for registrationwasobtainedbyfirst align-
ing all of these scansmanually and thenperforming ICPfine registra-
tion. Fig. 4 shows the 3D models for test. The information of the
tested models is summarized in Table 1, the average resolution �r
(the average distance between each two adjacent points on the
model) of eachmodel and the overlap between each two successive
scans of amodel are also given. Ourmethodswere implemented in C
++ and the experiments were conducted on a PC with Windows 7,
Intel Core(TM) i5-4460 3.2 GHz CPU and 48.0 GB RAM.

4.2. Keypoint extraction parameter setting

To obtain an appropriate neighborhood size for initial covari-
ance descriptor calculation, we test the repeatability of keypoints
over Gaussian noise and resolution changes. The keypoints were
first extracted using the initial covariance descriptors with differ-
ent neighborhood sizes from a model and its corresponding model
with down-sampling (50% of the original resolution) and Gaussian
noise (r ¼ 5�r). Then, the overlap was calculated between two cor-
responding keypoints, as shown in Fig. 5. On the three models, we
can obtain the best overlap between corresponding keypoints
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Fig. 3. An example of correspondences and the corresponding payoff matrix. (a) P and Q are two compared surfaces and five correspondences are selected. The blue and red
dotted lines denote correct and wrong correspondences, respectively. (b) Matrix P shows a sparse characteristic and expresses the compatibility between pairs of
correspondences according to Eq. (8). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. An illustration of tested 3D models (shown in color). (a) Statue 1. (b) Statue 2. (c) Church. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 1
Information of the tested models.

Model Number of scans Number of points �r ðcmÞ Overlap (%)

Statue 1a 4 864,451 0.18 50–70
Statue 2a 3 1,205,163 0.26 38–47
Churchb 2 3,028,709 1.34 38

a The data is acquired by RIEGL VZ-1000 system.
b The data is downloaded from Semantic3D (Hackel et al., 2017).

Fig. 5. The overlap of keypoints between one model and its variant with down-
sampling (50% of the original resolution) and Gaussian noise (r ¼ 5�r) using
different neighborhood sizes.
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when the neighborhood size is set to 25�r. It is also observed that a
neighborhood size within the range of ½25�r; 35�r� can still produce
promising results. That is, the initial covariance descriptor is robust
to different neighborhood sizes. Note that, a larger neighborhood
size requires more computational time. Therefore, in the following
experiments, the neighborhood size for initial covariance descrip-
tor calculation is set to 25�r. Fig. 6 shows an example of keypoint
extraction results on model ‘‘Church” and its down-sampled
model.

4.3. ACOV generation parameter setting

As discussed in Section 3.1.3, our ACOV descriptor depends on
three parameters: the basic size t0, the scale m, and the base b.
The performance of ACOV descriptor under different parameter
settings was tested on three models using the Precision-Recall



Fig. 6. An example of keypoint extraction using covariance descriptors with the neighborhood size 25�r. Keypoints are shown in red. (a) Result of keypoint extraction from the
original model ‘‘Church”. (b) Result of keypoint extraction from the variant of model ‘‘Church”. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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(PR) Curve. Given a model and its variant with down-sampling
(50% of the original resolution) and Gaussian noise (r ¼ 5�r), key-
points were first extracted from the model and its variant. Then,
ACOV descriptors were computed for each keypoint. For each fea-
ture on the model, we computed its descriptor similarity against all
features on the down-sampled model using the inclusive ratio (see
Section 3.1.4), where the parameter ratio was set within a range of
½1;5�. Using these matching points, precision and recall can be
computed as:

precision ¼ TP
TPþFP

recall ¼ TP
TPþFN

(
ð11Þ

where TP is the number of true positive correspondences, FP is the
number of false positive correspondences, and FN is the number of
false negative correspondences. The PR Curve can be generated by
tuning the parameter ratio.

The basic size t0 plays an important role in the generation of an
ACOV feature descriptor. A larger value of t0 enables the ACOV
descriptor to encode more information of surface, but it also
increases the sensitivity to occlusion and noise. We tested the per-
formance of the ACOV descriptor with respect to varying basic
sizes while keeping the other two parameters fixed (b ¼ 1:3 and
m ¼ 5). Fig. 7(a)–(c) shows that the performance of the ACOV
descriptor was improved steadily as the basic size was increased
from 10�r to 20�r. As the basic size was increased to 30�r, the perfor-
mance of the ACOV descriptor was further improved slightly on
models ‘‘Statue 2” and ‘‘Church” (Fig. 7(b) and (c)), but the perfor-
mance deteriorated sharply on model ‘‘Statue 1” (Fig. 7(a)). There-
fore, the basic size t0 is set to 20�r in this paper to maintain a
robustness to occlusion and noise.

Similarly, we tested the performance of the ACOV descriptor
with respect to varying base b as shown in Fig. 7(d)–(f). The other
two parameters were set as t0 ¼ 20�r and m ¼ 5. The results show
that the performance of ACOV descriptor was improved as the base
was increased from 1.1 to 1.3. That is because the 6 neighborhoods
are discriminating between each other. However, as the base was
further increased, the performance deteriorated, as shown in
Fig. 7(d)–(e). That is because a larger base increases the sensitivity
to occlusion and noise. The performance of ACOV descriptor was
increased slightly on model ‘‘Church” as the base was further
increased, as shown in Fig. 7(f). That is because the scale of model
‘‘Church” is much larger than the other two models. Since a good
overall performance can be achieved on these three models when
b is 1.3, we set the base b to 1.3 in this paper.
We tested the performance of ACOV descriptor with respect to
different scales while the other two parameters were set to
t0 ¼ 20�r and b ¼ 1:3, the results are shown in Fig. 7(g)–(i). It can
be found that there is no obvious difference in the performance
of ACOV descriptor on model ‘‘Statue 1” for different scales, as
shown in Fig. 7(g), although the performance was increased
slightly as the scale was increased from 3 to 7. Moreover, increas-
ing the scale will cost more computational and memory resources.
Therefore, we set the scale to 5 in this paper.
4.4. Descriptor comparison

To demonstrate the superiority of our ACOV descriptor, we
compared it with three state-of-the-art methods including FPFH
(Rusu et al., 2009), SHOT (Tombari et al., 2010), and MCOV
(Cirujeda et al., 2015). FPFH and SHOT descriptors are available
in the open-source Point Cloud Library (PCL) (Rusu and Cousins,
2011). Therefore, the default parameters in PCL implementations
for FPFH and SHOT are used, except for support radius. Further,
FPFH and SHOT were tested with different support radii
(10�r;15�r;20�r;25�r;30�r) on a model, the support radius with the
best performance was used in this paper. The original implementa-
tion and default parameters was used for MCOV descriptor.

In this paper, we used Precision-Recall (PR) Curve to evaluate the
distinctiveness of these descriptors over Gaussian noise and resolu-
tion changes. For fair comparison, the same inclusive ratio matching
strategy in Section 3.1.4 was used to find candidate correspondences
based on their associated descriptor similarity measures and param-
eter ratio was set within a range of ½1;5�. For each model, a set of
points (we empirically set the number of points to 1000) were ran-
domly selected to evaluate the descriptors. Then, for each selected
point, we computed its descriptor similarity against the same set
of points on the model with noise and down-sampling.

Note that, these three models provide different challenging sce-
narios for the comparison of descriptors in terms of color homo-
geneity, intensity homogeneity, repetitive patterns or identical
local shapes. In order to test the proposed descriptor over Gaussian
noise and varying resolutions, we down-sampled the models to
50% of their original resolution and added three different levels
of Gaussian noise (r ¼ 2�r;5�r and 10�r) to the models. Fig. 8 shows
the variations of a model. The resulting PR Curves are presented in
Fig. 9.

It was observed that on model ‘‘Statue 1”, where its color is
almost homogeneous, our proposed ACOV descriptor achieved
the best performance. Specifically, the performance of ACOV was



Fig. 7. Effect of the ACOV generation parameters. (a–c) Different basic sizes on three models, respectively. (d–f) Different bases on three models, respectively. (g–i) Different
scales on three models, respectively. (We set t0 ¼ 20�r; b ¼ 1:3 and m ¼ 5 in this paper as a tradeoff between effectiveness and efficiency.)
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significantly better than other descriptors under high levels of
noise, e.g., with a noise deviation of 5�r or 10�r, as shown in Fig. 9
(b) and (c). It can be inferred that ACOV is effective and robust to
noise even in the case of a homogeneously colored model.

For model ‘‘Statue 2” where both the color feature and the
intensity feature are homogeneous, our proposed ACOV descriptor
achieved the best performance under Gaussian noise with a stan-
dard deviation of 2�r or 5�r, as shown in Fig. 9(d) and (e). As the stan-
dard deviation of Gaussian noise increased to 10�r, ACOV performed
slightly worse than SHOT, but it was still better than the other two
descriptors, as indicated in Fig. 9(f).

Model ‘‘Church” provides challenging scenarios such as repeti-
tive patterns and local symmetries, our proposed ACOV descriptor
outperformed all the other descriptors by a large margin under all
levels of Gaussian noise, as indicated in Fig. 9(g)–(i). The strong
robustness of ACOV to these challenging scenarios is due to at least
two factors. First, because other methods work on local surface
neighborhoods and rely on the variation of a local shape, their per-
formance will be deteriorated on the data with identical local
shapes. On the contrary, the ACOV descriptor offers a more com-
prehensive representation as it fuses geometry, color and intensity
information. Second, compared to other descriptors using a fixed
support radius, we use a more flexible approach to adaptively esti-
mate the support radius for the calculation of ACOV descriptors,
which further improves the robustness and distinctiveness of
ACOV descriptor.
4.5. Registration parameter setting

Our proposed game theoretical registration method depends on
the number of keypoints and the size of the payoff matrix P. Note
that, if the number of keypoints is too small, it is difficult to cover



Fig. 8. An example of the variations of a model. (a) The original model. (b–d) The models with down-sampling (50% of the original resolution) and different levels of Gaussian
noise (r ¼ 2�r;5�r; and 10�r).
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Fig. 9. PR Curves achieved by four 3D descriptors on three models. Different rows represent the results achieved on different models. Different columns represent the results
on a particular model with down-sampling (50%) and different levels of Gaussian noise (r ¼ 2�r;5�r and 10�r). The red solid point on ACOV PR Curve represents the result with
the inclusive ratio ratio ¼ 1:5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the overlapping region. In contrast, a large size introduces high
time cost. The size of the payoff matrix P is determined by two
parameters ratio and c. Parameter ratio determines the number
of candidate correspondences, i.e., the dimension of the payoff
matrix, while c determines the number of nonzero elements in
the matrix. In Section 4.4, we have discussed the performance of
ACOV on three models where the parameter ratio is set within a
range of ½1;5�. As shown in Fig. 9(a)–(l), a large ratio leads to a high
recall but a low precision, which means that a large number of out-
liers are introduced. In contrast, a small ratio leads to a high preci-
sion but a low recall, which means that few true positive
correspondences are obtained. Considering the tradeoff between
precision and recall, we set ratio to 1.5. In our experiment, we
can achieve a recall within the range of ð0:2; 0:5Þ and a precision
larger than 0:1, as shown in Fig. 9.

Two successive scans with varying overlaps were selected from
these three models to test the performance of the proposed regis-
tration method with different values of c under different numbers
of keypoints. Before keypoint extraction in these point clouds, uni-
form sampling was first used to obtain initial interest points. Then,
three different numbers of keypoints with higher determinants
(i.e., 5%, 10% and 15% with respect to the number of initial interest
points) were selected, where the parameter c was set within the
range of ½0:1t0; t0�, where t0 is the basic size defined in
Section 3.1.3.

The registration results with different parameters were shown
in Fig. 10. It can be observed that with a small number of keypoints
(5%), the proposed method failed to register two point clouds
below 40% overlap, as shown in Fig. 10(a), (b), (d)–(f). However,
with more keypoints and a suitable parameter c, the proposed
method achieved a good result. With a high overlap (e.g., 70%),
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Fig. 10. The RMS Error between corresponding common points under three different nu
number of initial interest points, respectively, are shown in red, yellow and green. With a
40%. (a) ‘‘Statue 1”(25% overlap). (b) ‘‘Statue 1”(40% overlap). (c) ‘‘Statue 1”(70% overlap)
(Overlap is measured as nC=ðnP þ nQ Þ, where nc ;nP and nQ are the numbers of common p
the references to color in this figure legend, the reader is referred to the web version of
our method achieved good result even with a small number of key-
points, as shown in Fig. 10(c). Fig. 10(a) shows with 25% overlap, a
low c lead to a poor result. However, with a large c, our method
still obtained comparable result as point clouds of model ‘‘Statue
1” with 40% or 70% overlap. Meanwhile, on the models ‘‘Statue
2” and ‘‘Church”, our method achieved an acceptable result with
sufficient keypoints. Therefore, it can be concluded that our pro-
posed method is robust to parameter c and the number of
keypoints.
4.6. False correspondence rejection

Compared to commonly used methods for false correspondence
rejection, e.g., geometric consistency (Chen and Bhanu, 2007; Yang
et al., 2016), transformation parameters clustering (Zhong, 2009;
Guo et al., 2013), and RANSAC (Rusu et al., 2009), the procedure
of a game theoretic method converges to a limited set of corre-
spondences by successively removing false correspondences.

Geometric consistency methods segment potential correspon-
dences using geometric constraints and then select the largest geo-
metrically consistent group to estimate the transformation.
Transformation parameters clustering methods calculate all the
plausible transformations using randomly selected correspon-
dences and then group these transformations into several clusters
in the parameter space. A confidence score is calculated for each
cluster and the cluster with the highest score is selected for verifi-
cation. These methods are not robust to large amounts of false cor-
respondences (e.g., 99%). RANSACmethods usually find the optimal
solution using brute-force search through an iterative evaluation.
At each iteration, a subset of candidate correspondences are
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mbers of keypoints. The numbers of keypoints are set to 5%; 10% and 15% of the
small number keypoints (5%), the proposed method failed with an overlap less than
. (d) ‘‘Statue 2”(30% overlap). (e) ‘‘Statue 2”(40% overlap). (f) ‘‘Church”(35% overlap).
oints, source point cloud and target point cloud, respectively.) (For interpretation of
this article.)



Table 2
Average time cost by two false correspondence rejection methods on three models.

Time (s)

Initial positive ratio 75% 50% 25% 10% 5% 1%
Game theory 0.01 0.01 0.02 0.05 0.08 0.11

RANSAC 0.43 0.72 6.61 102.59 346.91 —
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randomly selected. That is, the ratio of inlier candidates changes
randomly during these iterations. In contrast, a game theoretic
method implicitly selects the elements in the payoff matrix, it
can evolve to an optimal solution during iterations.

To test the performance of our game theoretic method, an
experiment was conducted to compare our method with the RAN-
SAC method. Specifically, the computational time needed to obtain
positive correspondences was tested. Given two instances of a
model, 500 candidate correspondences was established. Different
numbers of negative correspondences (from 1% to 75%) were used
to test the performance. The number of iterations in RANSAC was
set to 10,000 in this experiment. The number of iterations for the
game theoretic method was bounded by the number of initial can-
didates (500 in the current experiment) regardless of the initial
positive ratio (Cirujeda et al., 2015). Starting from the initial set
of 500 candidates, the average time for a method to converge to
a sub-set of correspondences with 100% plausible correspondences
on three models was measured, as shown in Table 2. It is observed
that the proposed game theoretic method converged to the optimal
solution within 1 s for any initial positive ratio. In contrast, when
the initial positive ration was decreased to 25%, the RANSAC
method took more time than our game theoretic method by two
orders of magnitude. When the initial positive ratio was further
decreased to 1%, the RANSAC method cannot converge within
10,000 iterations. For real scenes, a limited set of initial correspon-
dences are always corrupted by outliers, the proposed game theo-
retic method is able to provide the optimal solution by isolating
mutually compatible correspondences from many outliers.
Fig. 11. The results achieved by the proposed method under different levels of overlap.
clouds are shown in gray and golden. All results were obtained without any ICP refinem
overlap. (c) 70% overlap. (Overlap is measured as nC=ðnP þ nQ Þ, where nc ;nP and nQ

respectively.) (For interpretation of the references to color in this figure legend, the read
4.7. Registration results

The proposed registration method was tested on a number of
successive scans acquired from the models described in Table 1.
These scans have various amount of noise, outliers, and overlap.
Then, we aligned all scans of tested models using the proposed
method. We compared our method with the state-of-the-art
methods in terms of both RMS Error distance and efficiency
(Aiger et al., 2008; Rusu et al., 2009; Mellado et al., 2014;
Theiler et al., 2014).

Fig. 11 presents the results achieved by the proposed method
under different levels of overlap. Our method achieved a good
result without any ICP refinement even with 25% overlap. Fig. 12
presents the results achieved by the proposed method on the point
clouds with varying levels of Gaussian noise. The proposed method
successfully registered scans even with a high level of Gaussian
noise. Fig. 13 shows the results achieved by the proposed method
on point clouds corrupted with varying number of outliers. The
successfully registered scans have demonstrated the robustness
of our method with respect to outliers. In summary, the proposed
method is robust to low overlap, Gaussian noise and outliers.

To further demonstrate the performance of our method, it is
compared with the state-of-the-art methods (Aiger et al., 2008;
Rusu et al., 2009; Mellado et al., 2014; Theiler et al., 2014). The per-
formance of these registration methods are tested on three models.
Each test was conducted without any assumption about initial
positions or orientations and was run for 10 times over the set of
scans (the initial positions and orientations were randomly
The overlapping regions are shown in blue, the remaining parts of the input point
ent, or assumption about initial positions of the input data. (a) 25% overlap. (b) 40%
are the numbers of common points, source point cloud and target point cloud,
er is referred to the web version of this article.)



Fig. 12. The results achieved by the proposed method under varying levels of Gaussian noise. (a) r ¼ 2�r. (b) r ¼ 5�r. (c) r ¼ 10�r.

Fig. 13. The results achieved by the proposed method under varying amount of outliers. (a) 5% outliers. (b) 10% outliers. (c) 20% outliers. The ratio of outliers is calculated as
the percentage of outliers related to the number of input points.

Table 3
Time cost by each step in our proposed registration framework.

Step Time (s)

Statue 1 Statue 2 Church

Keypoint extraction 28.81 12.49 32.59
Covariance descriptor calculation 45.25 25.5 50.89

Correspondence generation 172.17 108.56 713.54
False correspondence rejection 34.34 32.01 84.16

Total time (s) 280.57 178.56 881.18
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determined for each test). For each set of experiments, we com-
puted the average RMS distance between common points of the
two point clouds, and the average time for aligning all successive
scans of each model. A pair of common points fp;qg
(8p 2 P & 8q 2 Q) is defined if the following two requirements
are satisfied: (a) point p is the closest one in P to point q or vice
versa; (b) the distance between point p and point q is smaller than
a pre-defined threshold (0.1 m in this paper).

Table 3 shows the time cost by each step of our proposed regis-
tration framework. It is observed that the correspondence genera-
tion step took the majority of time. However, this step can be
significantly accelerated by using a data structure (e.g., KD-Tree).

Table 4 shows the comparative performance of these methods
in terms of RMS Error distance and computational time. It is
observed that our method outperforms other methods in terms
of both registration error and computational time. The method
proposed by Rusu et al. (2009) fails to register the scans of model
‘‘Church” and the methods (Aiger et al., 2008; Mellado et al., 2014;
Theiler et al., 2014) are inferior to our method because of the
challenges on model ‘‘Church” (e.g., occlusion and noise), as shown
in Fig. 14(a)–(d).

With the subsequent ICP refinement, our proposed method
achieved ever better registration results, as shown in Table 4 and
Fig. 14(e). The number of iterations for the convergence of ICP
depends on the model and the initial position of point clouds
under registration. In our experiments, the ICP algorithm usually
converged after 20–40 iterations.



Table 4
A comparison of point cloud registration results.

Method Average RMS Error (cm) Total Time (s)

Statue 1 Statue 2 Church Statue 1 Statue 2 Church

FPFH + RANSAC (Rusu et al., 2009) 1.39 1.48 – 438.30 910.05 –
4PCS (Aiger et al., 2008) 1.35 2.04 5.24 3502.24 898.32 9919.17

Super 4PCS (Mellado et al., 2014) 1.60 1.54 4.97 1050.80 302.73 3721.01
3DHarris + 4PCS (Theiler et al., 2014) 1.51 1.34 2.96 485.95 221.56 1847.56

Ours’ 1.33 1.05 2.85 280.57 178.56 881.18
Ours’ + ICP 0.46 0.32 1.73 288.87 184.38 902.68
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4.8. Scene registration results

To further demonstrate the feasibility and effectiveness of our
pairwise registration framework, a data set obtained from a square
in Feldkirch, Austria by a TLS system was used (Hackel et al., 2017).
The data set consists of two successive scans captured from differ-
ent views, it covers a range of approximately 150 m by 15 m and
includes about 46 million points. Note that, most objects in the
scene are buildings.

When keypoints were extracted using initial covariance
descriptors, we added a constraint for each point to reduce compu-
tational resources (memory and time): a1D > 0:5. This constraint
ensures that each extracted keypoint lies on a linear surface
(Demantké et al., 2011). The numbers of keypoints extracted from
these two scans were 5272 and 5755, respectively. 68,339 candi-
date correspondences were obtained successively using ACOV
1cm

(d) (e)

(b)(a)

Fig. 14. Registration results on the point clouds of model ‘‘Church”. (a) Achieved by F
3DHarris + 4PCS. (e) Achieved by the proposed method without ICP refinement. (f) Achi
descriptors. Finally, 21 true correspondences were obtained using
the proposed game theoretic method by setting parameter c to
0.01, as shown in Fig. 15(a). Fig. 15(b) shows the registration result
achieved by our proposed registration framework. The registration
RMS Error distance was 0.055 m, the total computational time was
22,481 s. The correspondence generation step cost 98% of the time,
as discussed in Section 4.7. It can be concluded that our proposed
method can successfully register point clouds of a large scene.
4.9. Limitations

As shown in Fig. 16, our proposed registration method failed to
register the two point clouds of a symmetric building. That is
mainly because only the local information is used in our covariance
descriptor and the game theoretic method depends on the position
10cm

(c)

(f)

PFH + RANSAC. (b) Achieved by 4PCS. (c) Achieved by Super4PCS. (d) Achieved by
eved by the proposed method with ICP refinement.
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Fig. 15. Registration results of a real scene. (a) Correspondences obtained using ACOV descriptors and a game theoretic method. (b) Registration result.

Fig. 16. An error case of the proposed registration framework. (a) Correspondences obtained using ACOV descriptors and a game theoretic method. (b) Registration result.
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information of points. If more semantic or context information of
the model is used, this problem is possible to be addressed.
5. Discussion

The proposed pairwise registration method benefits from two
components: searching candidate correspondences using ACOV
descriptor and rejecting false correspondences using a game theo-
retic method. For each component, we briefly discuss the main
conclusions derived from the experiments.

Keypoint extraction plays an important role in candidate corre-
spondence searching. The extracted keypoints should be repeat-
able. In this paper, keypoints are extracted through the
distinctiveness of initial covariance descriptors. The neighborhood
size for initial covariance descriptor determines the amount of sur-
face that is encoded, it has a great impact on the keypoint extrac-
tion. Experiments on three models reveal that a neighborhood size
of 25�r is appropriate to achieve high repeatability and efficiency
(Fig. 5). For each detected keypoint, an ACOV descriptor is com-
puted using an adaptive neighborhood size. Since the optimal
neighborhood size may be different for these keypoints, the pro-
posed method determines the neighborhood size by the highest
salient variation in the feature space. The experiments demon-
strate that the selected salient neighborhood size is repeatable
and distinct (Fig. 9).

For the second component of false correspondences rejection,
the proposed game theoretic method outperforms the RANSAC
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method by a large margin in terms of robustness and efficiency
(Table 2). Although a small value of parameter cmay lead to a poor
registration result, our game theory method is insensitive to
parameter c (Fig. 10). Experiments on three models demonstrate
that our registration method is robust to low overlap, noise and
outliers, which are the major challenges posed by the TLS data
(Figs. 11–13). For symmetric models, it is very challenging for
our proposed method (Fig. 16). However, the surrounding environ-
ments of an object can be used to handle symmetric structures. The
experiment on a real scene further demonstrates the feasibility and
effectiveness of our registration method (Fig. 15).

In summary, the good performance of our pairwise registration
framework is attributed to at least two factors: (1) The proposed
ACOV descriptor is distinctive, repeatable and robust to noise and
varying resolutions. (2) The game-theoretic technique can isolate
mutually compatible correspondences from large outliers.
6. Conclusion

In this paper, we have presented a new method for pairwise
registration of TLS point clouds. Our method was tested on three
models and a large outdoor scene acquired by two different TLS
systems. Our proposed method has several advantages over the
state-of-the-art: (1) it performs point cloud registration accurately
and efficiently without any initial position estimation; (2) it is
robust to large noise, outliers and varying levels of overlap; (3) it
can deal with very challenging scenes, such as pattern repetitions
and local symmetries. Comparative experiments clearly demon-
strate that our proposed method outperforms the other three
methods by a large margin in terms of both registration error
and computational time. It can be concluded that the proposed
method can register TLS point clouds more accurately and
efficiently.
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