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Although spatial and spectral resolutions of remotely sensed data have been improved,
the usage of multispectral imagery is not sufficient for urban feature classification. This
article addresses the problem of automated classification by integrating airborne lidar
range data and aerial imagery. In this study, the classification procedure is divided into
three phases. We first use the lidar range data to obtain the coarse lidar-based clas-
sification results, by which a lidar-driven labelled image and a lidar-driven high-rise
object mask are acquired in this phase. Then, at the image-based classification level, we
train samples based on the lidar-driven labelled image and conduct maximum likelihood
classification experience with the lidar-driven normalized digital surface model as a
high-rise object mask. Finally, we propose a knowledge-based cross-validation (KBCV)
for misclassification between the lidar-based classification results and the image-based
classification results. Experimental results are presented to demonstrate the benefits of
the training sample selection of the lidar-driven labelled image, using the lidar-driven
high-rise object mask, and the greater classification accuracy of the KBCV.

1. Introduction

Land-use classification is one of the fundamental tasks in the analysis and modelling of
spatial data acquired from lidar systems. Classified ground points are used to generate
digital terrain models (DTMs) that provide basic geographical data for a wide range of
applications, including topographical mapping, engineering surveying, and environmental
planning, whereas other lidar points, classified as building or vegetation, assist in DTM
accuracy enhancement, three-dimensional (3D) digital city reconstruction, building model
update in the geographical information system (GIS) database, and urban green space
study. Therefore, many previous studies have shown the potential of lidar data for urban fea-
ture identification, classification, and reconstruction (Miliaresis and Kokkas 2007; Huang
et al. 2008; Wang et al. 2009).

However, point data are unstructured, irregular and short of spectral information, lead-
ing to classification confusion between man-made and natural objects. On the other hand,
it is difficult to directly obtain land-use information only from remotely sensed data, due
to the complexity of landscapes, spectrally identical objects, and abundance of spatial and
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spectral information. Being aware of the limitations of a single data source, the majority
of researchers have focused on fusing multi-source data, such as lidar data with QuickBird
imagery (Ke, Quackenbush, and Im 2010), lidar data with IKONOS satellite imagery (Shan
and Lee 2003), and lidar data with aerial imagery (Huang et al. 2008; Carlberg et al. 2009;
Goodwin et al. 2009; Khoshelham et al. 2010). Because the latest lidar systems carry both
laser scanners and high-performance charge-coupled device cameras, integrating lidar data
with the aerial imagery is a preferred means for object identification and classification.

Researchers use many classification algorithms to convert 3D lidar data into two-
dimensional (2D) range images for integration with aerial images in classification tasks.
Once the data are in 2D form, conventional image-based classification algorithms can be
applied to achieve urban feature classification. A host of classification methods are broadly
divided into two categories: unsupervised and supervised classifiers. Unsupervised classifi-
cation, an analytical procedure, is based on clustering, which separates the image data into
a series of spectral classes. Then, all pixels of interest are labelled as one of these spectral
classes. But the labels are unrelated to ground types and required to explicitly attach to
particular ground types. Unlike prior knowledge from training samples in the supervised
method, the unsupervised classification is a posterior identification; in other words, it is a
segmentation of data without any known information, and then feature information is used
to assign ground types to the segments established by a variety of clustering algorithms.
Due to time demands for the clustering, unsupervised classification is a computationally
time-consuming procedure. Thus, it is often carried out with small imagery data.

In contrast to the unsupervised classification algorithm, the supervised method requires
training samples to obtain class attributes. The supervised classifiers range from traditional
maximum likelihood classification (MLC) (Mesev, Gorte, and Longley 2001; Khoshelham
et al. 2010) to machine learning algorithms (e.g. support vector machine (Dalponte,
Bruzzone, and Gianelle 2008; Koetz et al. 2008; Jones, Coops, and Sharma 2010; Guan
et al. 2011; Trinder and Salah 2011) and random forest (Pal 2005; Gislason, Benediktsson,
and Sveinsson 2006; Smith 2010; Guo et al. 2011)). Both of them rely on discrimina-
tion functions using representative image attributes acquired from training samples. Such
discrimination functions are then implemented in the whole image to obtain the desired
ground types by one or more particular classifiers (Richards and Jia 2006). In the super-
vised manner, a prior knowledge about the ground types to be classified is required through
a combination of field work, image interpretation, map analysis, and personal experience
(Hodgson et al. 2003). However, supervised algorithms might fail if training samples are
not representative of the true distribution of classes to be labelled, owing to a lack of avail-
able information and acquisition costs of ground-truth information. Meanwhile, with an
increase in sensor performance such as the spatial extent, training a large amount of exten-
sive remotely sensed data is hard and time-consuming (Tuia, Pasolli, and Emery 2011).
A hybrid supervised/unsupervised classification algorithm that applies the MLC after the
implementation of clustering has been studied to solve the multi-modality problem; how-
ever, researchers have seldom used this method due to the complex and time-consuming
procedure (South, Oi, and Lusch 2004).

To overcome classification noises caused by individual classification of each pixel
as a certain group, object-based classification (OBC) has been widely studied for high-
resolution multispectral images in urban environments (Lu, Hetrick, and Moran 2010).
According to Blaschke (2010), over 800 articles are related to object-based image analy-
sis. However, critical problems have emerged along with the development of a variety of
OBC techniques. An analyst must have sufficient prior knowledge of objects of interest,
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and then select optimum segmentation parameters by building up a hierarchical image
classification network for classification. Thus, classification accuracy is influenced by the
quality of segmentation (Repake et al. 2004). Currently, the selection of segmentation para-
meters is based on analysts’ empirical studies, which lead to uncertain classification results.
In addition, the complexity of urban landscapes and the abundance of intensity and spectral
information can encumber the interpretation and segmentation of aerial imagery. However,
the statistical MLC, one of the most widely used supervised classification algorithms, is
easy to implement and analyse with its effective computation (He and Wang 1992). It is
recognized as a stable and robust classification method, and the most accurate classification
scheme in standard digital image processing. In MLC, two parameters, the mean vector and
the covariance matrix, are used to characterize each class of interest; therefore, an unbiased
and efficient estimate of these parameters would largely depend on the determination of the
sample sizes and schemes.

According to Jeon and Landgrebe (2002), sampling or training all of the classes in a
given data set is labour- and time-intensive by collecting ground truth. In general, three
methods are applied to collect of training data, including the collection of in situ infor-
mation, on-screen selection of polygon training data, and on-screen seeding of training
data (Jensen 2005). In most cases, the analyst uses a ‘rubber band’ tool to select poly-
gon areas of interest (AOIs) by viewing imagery on the computer screen. However, this
selection of AOIs requires the analyst’s empirical expertise and proficiency. Volpi, Tuia,
and Kanevski (2010) also mentioned that the difficulty of manually selecting samples was
to keep the number of labelled training patterns small for covering intra-class variance of
the image. Unlike on-screen selection of polygon training data, the on-screen seeding of
training data is similar to a region-growing method. First, the analyst seeds a specific point
in the image using a cursor, and then the seed expands to find more pixels with similar
spectral characteristics by a given criteria. However, for high-resolution aerial imagery,
spectral variation in one ground object is dramatic, which leads to generation of a number
of homogenous regions. According to Tso and Mather (2001), the use of large region sam-
ples is not recommended since pixels or points in a group are not mutually independent.
In other words, each region describes a part of the spectral characteristics of the objects
so that statistical information of the objects from the training data might not be compre-
hensively representative for the following classification procedure. Congalton, Oderwald,
and Mead (1983) suggested that the number of pixels in such a group should not be larger
than 10.

However, people usually are interested in one or a small number of classes (Foody
et al. 2006). For example, urban land-use classification focuses on four main urban fea-
tures of interest: grass, high vegetation, building, and ground (Secord and Zakhor 2007;
Huang et al. 2008; Guo et al. 2011). Each class can be distinguished from a given data
set based on its available prior information derived from known training samples. Jeon and
Landgrebe (2002) call this method partially supervised classification. Therefore, we design
a partially supervised classifier as the main classifier followed by a knowledge-based cross-
validation (KBCV). Unlike conventional classification methods of fusing lidar data with
imagery, we first extract four coarse classes of interest from lidar data to form a lidar-driven
labelled image and a lidar-driven high-rise object mask. According to the locations of each
class in the lidar-driven labelled image, corresponding training samples in the calibrated
aerial images can be randomly and automatically selected to obtain statistic information
for performing statistical MLC. Meanwhile, the use of a lidar-driven high-rise object mask
simplifies the image-based classification processing. Next, a KBCV strategy is developed
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to analyse the two classification results – the lidar-based and image-based classification
results – and to adjust misclassified points by constructing rules.

In the following section, we detail the proposed partially supervised hierarchical clas-
sification method for urban feature classification tasks in three steps: the lidar-based coarse
classification for the selection of training samples and lidar-driven high-rise object mask
generation, the image-based MLC, and the KBCV for final classification results. Then,
two urban scenes are used to test the proposed algorithm, and the classification accu-
racy assessment is reported and discussed. Finally, conclusions are drawn in the last
section.

2. Methodology

Figure 1 illustrates the workflow of the major components and their subsequent processes
in the partially supervised hierarchical classification (PSHC) system proposed in this study.
Lidar point clouds with intensity information and a colour aerial image covering the same
area are used as the input. Spatial registration of lidar point clouds and aerial imagery is
performed as data pre-processing, but is not discussed in this article.

The proposed PSHC actually comprises three stages, which classify unstructured lidar
points into four classes (grass, bare ground, high vegetation, and building) by combining
lidar point data and aerial imagery. The lidar-based and image-based classification stages
provide their classification results mainly based on their single data sources. However,
there are some interactions between these two classification stages. For example, in the
lidar-based stage, the Red band of the aerial image is used to combine with the intensity
information for the separation of grass and ground. In the image-based stage, the lidar-
based classification results are applied to the training sample selection and a high-rise object
mask generation. Finally, the knowledge-based rules constructed from lidar data are imple-
mented to obtain final classification results by comprehensively analysing the discrepancy
of the image-based and lidar-based classification results.

2.1. Lidar-based classification

In the lidar-based classification stage, we deal with only lidar data to obtain coarse classifi-
cation results not only for acquiring training samples of the four classes of interest, but also
for calculating the normalized digital surface model (nDSM) as a high-rise object mask

Lidar-based
classification

Image-based
classification

Knowledge-based cross-validation

Buildings Ground Grass High
vegetation

Lidar-driven mask

Lidar-driven labelled image

Red band for lidar-NDVI

Figure 1. Flow chart of the proposed method.
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Figure 2. Sub-flow chart of the lidar-based classification.

for the next image-based MLC. Figure 2 shows a detailed flow chart of the lidar-based
classification. The processing steps are divided into four parts.

(1) The Separation of on-terrain and off-terrain Points
Lidar point cloud data are filtered into off-terrain and on-terrain points based on
the algorithm of progressive triangulated irregular network (TIN) densification that
is detailed in Axelsson (2000). This filtering algorithm, one version of which has
been used in the commercial software Terrasolid®, is considered to be robust and
steady for modelling surfaces with discontinuities such as urban areas. The filtering
method assumes that objects on the ground, such as trees, cars, and buildings, etc.,
are usually higher than those of on-terrain points. First, the lowest points in lidar
data, such as seed points, within a user-defined grid of a size greater than the largest
type of features are selected to join an on-terrain data set. In order to minimize
grid size sensitivity to the selection of seed points, from which a parametric plane
is derived, some seed points will be removed if their perpendicular distances to
the fitting plane do not satisfy the median value estimated from the histograms.
Then, the rest of the seed points generate a sparse TIN as an initial digital elevation
model. For each iteration, points in each TIN facet are added to the on-terrain data
set if they meet the criteria based on the calculated parameters, distances to the
TIN facets, and angles to the nodes. At the end of each iteration, the TIN and the
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thresholds are recomputed. The iterative process continues until no more points
meet the threshold values.

(2) The generation of a high-rise object mask
An nDSM, a representation of elevated objects on a flat surface, is generated by
subtracting DTM from the digital surface model (DSM). Both DSM and DTM
are in the raster format with the same spatial resolution. A high-rise object mask is
made from the nDSM that includes possible points of buildings and high vegetation.
Generally, the heights of buildings are more than 2.0 m in urban areas; therefore,
the high-rise object mask is derived with a given height threshold of 2.0 m for the
separation of the majority of buildings in the image-based classification.

(3) The separation of ground and grass
According to Jutzi and Gross (2009), the intensity information is the physical power
of incoming echoes, considered as a synonym for the amplitude, reflectance, or
energy in the terminology of laser scanning. Different ground objects have dif-
ferent reflecting characteristics within the range of the near-infrared wavelength,
which is useful for recognizing different types of features. For example, road sur-
faces paved with asphalt usually appear darker than building roofs with concrete,
and water often appears the darkest because it absorbs infrared laser light. Thus,
the intensity image is similar to the low-resolution grey image. Based on this fea-
ture, grass points are roughly separated from filtered on-terrain points using the
lidar-normalized difference vegetation index (lidar-NDVI). The lidar-NDVI can be
calculated by the following equation:

Lidar-NDVI = NIR − R

NIR + R
, (1)

where R is the Red band from the ancillary aerial image and NIR is the grey value of
the intensity image. Compared with tree intensity, which varies with type, species,
and height, grass intensity information is relatively stable. Then, the results of lidar-
NDVI is stretched into the range from 0 to 255 as a vegetation-index image, from
which the median threshold method is used to separate grass from ground points
based on the histogram statistics.

(4) The separation of buildings and non-buildings
We adopt a Riemannian graph to segment classified off-terrain lidar points into
two classes: building and high vegetation. Because lidar points are acquired at an
altitude of around 2000 m, the point density of a discontinuous feature, such as
a building breakline, is lower than that of the object inside; thus, the distances of
points in an intra-object are shorter than those of between-object points. According
to this theory, different objects can be distinguished if we label points close to
oneanother as one object by using the Riemannian graph.

The Riemannian is a graph that consists of the edges to the k-nearest neigh-
bours for every data point. According to Gumhold, Wang, and Mcleod (2001),
the Riemannian graph is robust under conditions of very noisy data and is able
to construct the connectivity information. The Kd-tree data structure contributes
to the finding of the neighbourhood of a lidar point by using the approximate
nearest-neighbours (ANN algorithm, open source developed by David M. Mount,
University of Maryland). During the tests, a neighbourhood k size of 14–20 is
suitable for delivering good results. In theory, each object is a sub-graph of inter-
connected points so that objects are obtained by iterating the Riemannian graph of
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lidar points to find sub-graphs based on the graph distances. However, in practice,
due to the presence of noise and the complexity of objects, k-neighbours of each
point could not be inside objects of interest. Thus, a height difference criterion is
introduced into the clustering process. When the graph distances and height dif-
ferences of points meet the given thresholds, the neighbours are considered to be
connective and belong to the same objects. Starting from a known building point,
all points having the same characteristics with the start point are obtained to form
a building segment by iterating the Riemannian graph.

After building points are separated from off-terrain points, the remaining off-
terrain points, according to the height criterion, are classified into high vegetation
and miscellany (e.g. cars). Generally at the end, a whole 3D lidar point cloud is
divided roughly into five classes: building, high vegetation, ground, grass, and mis-
cellany. By using the bi-linear interpretation method, a lidar-driven labelled image
is generated from the first four urban features with the same spatial resolution as
aerial imagery for the selection of training samples.

2.2. Image-based classification

In this stage, we focus on processing mainly the aerial image simultaneously acquired with
lidar data. With the assistance of the lidar-based classification results, the statistical MLC is
applied to obtain five classes (i.e. grass, building, ground, high vegetation, and miscellany).
Figure 3 shows the flow chart of the image-based classification.

The aerial image needs to be pre-processed before the classification is performed,
because during the image acquisition and the electronic signal transmission process,
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Figure 3. Sub-flow chart of the image-based classification.
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external factors such as the atmospheric effect and instrumentation errors cause random
noises superimposed on the pixel brightness. This noise can be removed by the process
of low-pass filtering or smoothing. We use anisotropic diffusion, also called Perona–Malik
diffusion. It is a technique aimed at reducing image noise without removing significant
parts of the image content, typically edges, lines, or other details that are important for the
interpretation of the image (Perona and Malik 1990). Figure 4 shows an example of the
Perona–Malik diffusion. Figure 4(a) is the image without using the Perona–Malik diffusion
and Figure 4(b) shows the filtering results using the Perona–Malik diffusion. This com-
parison demonstrates that building boundaries and edges are sharpened and enhanced, and
buildings’ inner detail information is smoothed to reduce speckle noises, which is beneficial
to classification implementation.

Several seed points are randomly selected for each class of interest in the lidar-driven
labelled image. These seeds then grow into a number of regions in eight directions.
According to the location of training samples in the lidar-driven labelled image, corre-
sponding statistical information of training samples can be gathered in the aerial image.

Training samples from a known data set such as lidar data will provide a large number
of high-precision samples, which means that larger sample sizes generally lead to increased
precision when estimating unknown parameters. It is necessary to identify training samples
for all classes of interest in the image to be analysed. However, it is impractical to expect the
availability of large quantities of training samples in the traditional supervised classification
methods because labelling data requires much laborious human effort and takes much time.
According to Richards and Jia (2006), if pixels in the training samples are not representative
of the signature of a given class, the desired class will not be classified correctly. The

(a) (b)

Figure 4. An example of the Perona–Malik diffusion: (a) before and (b) after.



198 H. Guan et al.

proposed partially supervised analysis employs training samples provided by lidar data,
a different data set, to bias the process of discovering structure in the imagery data. Liu,
Shi, and Zhang (2011) mention that if the pixels or points are adequately trained by a
large number of samples, the traditional statistic MLC can achieve the same classification
accuracy as other machine learning classifiers. Thus, prior information of particular classes
of interest, extracted from lidar data, can provide sufficient training samples and assist in
calculating relatively highly accurate statistical information.

Meanwhile, an nDSM is adopted as a lidar-driven high-rise object mask when the MLC
is carried out for the aerial image. Huang et al. (2008) stated that a lidar-driven nDSM
has great potential for classification tasks. According to the lidar-driven high-rise object
mask, the ancillary aerial image can be divided into high-height and low-height regions.
In the high-height regions, the ancillary aerial image is classified into two classes (high
vegetation and buildings) depending on the training samples discussed above. In the low-
height regions, the image is labelled as the other two classes of interest (grass and bare
ground). Usage of the lidar-driven high-rise object mask can effectively lessen the con-
fusion between spectrally identical or similar objects; for example, sometimes it is hard
to distinguish alpha roads from building roofs because of their similar material spectral
characteristics. Thus, the ancillary aerial image is finally classified into the four classes of
interest and class miscellany by the partially supervised MLC by means of the lidar-driven
high-rise object mask.

Shape information of ground objects, the basis of information extraction from ground
objects, can be calculated for distinguishing buildings from other lidar points because the
majority of buildings are square or rectangular in the real world (Zhang and Zhu 2011).
Considerable research has been dedicated to improving land-use/land-cover classification
accuracy by integrating ground object shape information (Werff and Meer 2008). Segl et al.
(2003) point out that the majority of buildings have the characteristics of a rectangular or
quadratic shape with a length of 10–50 m and a width of 5–20 m, by which industrial or
residential buildings are separated from roads. The shape index can be represented in three
ways: the perimeter and area, the area alone, and the ratio of the perimeter to the area
(compactness). The calculation of the object area (Sarea) is a summation of all pixels in
an object; the perimeter (Sperimeter) of an object is a summation of pixels belonging to its
boundary. Compactness is defined as (Burghardt and Steriniger 2005):

Comtactness = 2

√
πSarea

Sperimeter
. (2)

The compactness is a measure of the regularity of the object contour (Heinzle, Anders,
and Sester 2006). Its value is between 0 and 1; the maximum value of 1.0 is for a cir-
cle. The compactness shows significant difference between regular, man-made objects like
buildings and irregular, narrow-shaped natural objects like trees. The greater the value of
compactness is, the higher the possibility of buildings. Thus, using compactness, misclassi-
fied building pixels can be removed from the building class. Our experiments demonstrate
that a threshold of 0.55 can remove most narrow, irregular, and jagged connected objects
from the building class.

2.3. Knowledge-based cross-validation

After the image-based classification, the final classification results are achieved by com-
prehensive cross-validation of the image-based and lidar-based classification results. The
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lidar-based classification mainly uses lidar data, whereas the image-based classification is
mainly based on spectral information. Thus, their classification results are complementary.
In this stage, a KBCV method is applied to combine two-type preliminary classification
results. Although the lidar-driven labelled image and the lidar-driven high-rise object mask
are acquired from the lidar-based classification results, the MLC still causes lots of classi-
fication errors relying on the spectral and shape information. Due to the limitations of any
single classifier, it has been experimentally observed that obtaining satisfaction classifica-
tion results from a single classifier is impossible for any given task. There is a tendency to
combine multiple classification methods or multiple classification results to improve clas-
sification accuracy (Liu, Skidmore, and Oosten 2002). There are two classification results
given in this article: the lidar-based and the image-based results. Any discrepant points
in two-classification results are cross-verified. In other words, if a point in the lidar-based
classification results is classified into the same class with its corresponding pixel in the
image-based classification results, the labelled point is considered as right. The developed
KBCV method is based on three characteristics of lidar data, including intensity, height,
and eigenvalue. Thus, we create validation rules to adjust those misclassified points.

2.3.1. Height-based rule

The height-based rule is created to adjust the misclassified building and bare ground points.
The building pixels are often mixed up with the bare ground pixels in the spectral images
because of their similar material characteristics; however, they can be distinguished from
each other in lidar data in terms of the height criterion. Thus, we iterate lidar points
(Pi, where i = 0, 1, 2 . . . N) assigned as the building class, interpolate them into the DEM
generated from ground points, and then compare interpolated elevation values with their
real elevation values. This rule is represented as:

if Hi < Hthreshold then Pi ∈ G, (3)

where Hi is the height value of point Pi. The given threshold Hthreshold is determined by the
classified building results in the lidar-based classification stage. The absolute height of each
classified building point is counted to form a histogram, a useful graphic representation of
the information content of buildings.

2.3.2. Intensity-based rule

As mentioned in Section 2.1, intensity information is useful for identifying vegetation from
other features in the data sets. Thus, the intensity-based rule is used to correct misclassified
points between high vegetation and buildings. Local intensity mean values are calculated in
building (BI) and high vegetation (TI) regions, respectively. Owing to this type of misclassi-
fication occurring along buildings’ boundaries, buffer zones along the building boundaries
are first required to build up, and then building points (Pi, i = 0, 1, 2 . . . N) are iterated
inside these buffer zones. This rule is represented as:

if
Inti < (BI − BI/4) and Inti > (BI + BI/4)
and (TI − TI/4) < Inti < (TI + TI/4)

then Pi ∈ High vegetation

else Pi ∈ Miscellany,

(4)

where Inti is the intensity value of point Pi.
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2.3.3. Eigenvalue-based rule

The last rule is eigenvalue based. The eigenvalue-based rule is defined as the spatial fea-
ture of each point by calculating a variance–covariance matrix of its neighbours. It is
another auxiliary indicator for distinguishing planes, edges, corners, and volumes (Gross
and Thoennessen 2006). For each point vj under consideration, its neighbourhood points
can be found by the Kd-tree (K-dimensional tree), a space-partitioning useful data struc-
ture for organizing points in k dimensional space. A 3 × 3 variance–covariance matrix Sj

of point vj is given by

Sj =
n∑

j=0

(Pj − M)T
(
Pj − M

) ∀ (j = 0, 1, 2 . . . N − 1) , (5)

where Sj is the variance–covariance matrix of point vj, n is the number of neighbourhood
points of point vj, Pj is the coordinate

(
xj, yj, zj

)
of point vj, N is the total number of lidar

points, and M is a 1 × 3 mean vector of its neighbourhood points.
In this 3 × 3 variance–covariance matrix, each point vj has three eigenvalues

(λ1, λ2, λ3). An eigenvalue λi (i = 1, 2, 3) represents the spatial information of a lidar
point because it is a scalar associated with an eigenvector �ei (i = 1, 2, 3), which reflects
the spatial distribution of a lidar point.

Anisotropy = λ1 − λ3

λ1
, (6)

Planarity = λ2 − λ3

λ1
, (7)

Linearity = λ1 − λ2

λ1
. (8)

The planar objects, such as buildings and ground, show high values of planarity. On the
other hand, high vegetation, in general, obtains a high value of anisotropic distribution
(Chehata, Guo, and Mallet 2009).

3. Results and discussion

Two data sets are used in this study to test the performance and applicability of the proposed
classification method. Test site I data were collected in the multi-return mode by a Leica
ALS50-II scanner (airborne laser scanner; Leica Geosystems Inc., Norcross, GA, USA) and
test site II data were collected by an Optech ALTM 3100 system (airborne laser scanner;
Optech Inc., Toronto, Canada). Both systems were mounted on helicopters.

3.1. Dunhuang test site in Gansu

Test site I data were acquired in Dunhuang, Gansu, western China, in October 2009. The
sensor, operated at a fixed wavelength (1.064 µm) and flown at 2750 m above sea level,
generated points at nadir for a 45◦ field of view. Figure 5(a) shows a lidar point cloud of
628,085 points. The lidar data have average point spacing of 1.4 m in and along the cross-
track directions, with a horizontal accuracy of 27 cm and a vertical accuracy of 15 cm.
Lidar points of different height values are shown as a different shade of grey. Figure 5(b)
is a colour aerial image acquired from an RCD105 digital frame camera with a ground
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(b)(a)

Figure 5. Study area of Dunhuang, China. (a) Lidar data and (b) aerial image.

sample distance (GSD) of 0.5 m. The orientation parameters of the aerial image are known.
The experimental area is a typical urban region that contains variously sized buildings with
different orientations, as well as trees and grass interspersed among buildings. Meanwhile,
the study area and its vicinity are relatively flat, with elevations ranging from approximately
1132 to 1170 m.

3.1.1. Lidar-driven training samples and high-rise object mask experiments

In this experiment, the lidar-driven training sample strategy and high-rise object mask are
investigated by quantitative assessment, compared to a conventional photo-interpretation
method. In general, the primary step in the supervised classification is the prior identifica-
tion of training samples. Although sometimes map data in the GIS database can be used to
assist in selection of training samples by superimposing them over the image data, training
samples in most cases are chosen by the photo-interpretation method from images formed
from the multispectral data to be classified (Richards and Jia 2006).

For the sake of comparison, the sample size of the proposed partially supervised method
was identical/close to the photo-interpretation method using commercial software ENVI®.
Table 1 lists the number of training samples. As a proportion of the full image to be
analysed, the number of training samples would represent less than 1–5%. For accuracy
assessment, an adequate number of testing data are required per class of interest. Congalton

Table 1. The training samples and test data for Dunhuang study site.

Training samples
(manual)

Training samples
(lidar-driven) Test data

Categories Pixels ROIs Pixels ROIs Pixels

Buildings 1465 53 1453 57 415
High vegetation 709 87 733 83 197
Ground 1404 58 1431 49 317
Grass 1334 45 1306 51 193
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and Green (2009) pointed out that it is necessary to have sufficient testing data for build-
ing a valid error matrix to represent classification accuracy. Thus, the sample size N was
determined by Equation (9) for the binomial probability theory (Fitzpatrick-Lines 1981):

N = Z2p (100 − p)

E2
, (9)

where p is the expected percentage accuracy, E is the allowable error, and Z = 1.96 from
the standard normal deviant for the 95% two-sided confidence level. An expected accuracy
of 95% was selected because the land-use classification system specifies that each class
category should be mapped to at least 85% accuracy, and then the allowable error of 5% is
chosen. For this study area, the sample size (N) of 996 meets the demand of Congalton and
Green’s (2009) rule-of-thumb of a minimum of 50 samples per class.

Three experiments are performed for comparison. First, the aerial image alone is used as
the standard case for comparison (case MLC1 in Table 2). The training samples are required
by manual photo-interpretation. Second, the selection of training samples is changed into
the lidar-driven strategy (case MLC2). Third, the lidar-driven high-rise object mask is added
(case MLC3).

Figure 6(a) shows that the lidar-driven labelled image, interpolated from the coarse
lidar-based classification results, is used to extract training samples by a region-growing
algorithm for the image-based classification in the second stage. Starting from randomly
selecting several seeds of each class of interest, training sample regions are acquired.
As shown in Figures 6(b)–(d), building, tree, and ground training samples are overlapped
on the aerial image. Visual inspection shows that these training samples completely cover
the desired classes. Unlike traditional sample selection methods, the lidar-driven training
sample selection is automated and not only guarantees sample accuracy and capacity but
also saves training time.

One of the most common methods of expressing classification accuracy is the prepa-
ration of a classification error matrix (confusion matrix). An error matrix is an effective
way to assess accuracy in that it compares the relationship between known reference data
and the corresponding results of the classification (Congalton 1991). It is a square matrix
E of N × N elements, where N is number of classes. The element Eij is the number of
points known to belong to class i and classified as belonging to class j. Thus, the ele-
ments on the leading diagonal Eii correspond to correctly classified points, whereas the
off-diagonal elements correspond to erroneous classifications (i.e. the commission and
omission errors). From the confusion matrix, the user’s (UA), producer’s (PA), overall
accuracy (OA) (Story and Congalton 1986), and kappa coefficient (Congalton, Oderwald,
and Mead 1983; Congalton and Green 2009) can be calculated. Table 2 lists the accuracy

Table 2. Accuracy assessment of training sample experiments.

Producer’s accuracy (%) User’s accuracy (%)

Experiment OA (%) Kappa Bs HV Gd Gs Bs HV Gd Gs

MLC1 70 0.57 66 60.8 71.9 74 81.1 43.1 65.1 81.1
MLC2 78.1 0.66 84.1 62.1 70.0 84.3 75.3 56.1 81.7 85.1
MLC3 85.6 0.79 87.4 80.6 85.9 75 88.1 69.1 84.8 84.8

Notes: MLC 1, photo-interpretation training sampling; MLC2, lidar-driven training sampling; MLC3, lidar-driven
training sampling and lidar-driven nDSM mask; Bs, buildings; HV, high vegetation; Gd, ground; and Gs, grass.
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(a)

(c) (d)

(b)

Figure 6. Lidar-based classification results: (a) lidar-driven labelled image, (b) lidar-driven building
training samples overlapping on the aerial image, (c) lidar-driven high vegetation training samples
overlapping on the aerial image, and (d) lidar-driven ground training samples overlapping on the
aerial image.

assessment results for the comparative experiment on training sample selection (cases
MLC1 and MLC2). The overall accuracy of only the standard aerial image experiment
(case MLC1) is 70.0%, which is unsatisfactory for urban classification applications. The
overall accuracy is improved by about 8% when using the lidar-driven labelled image (case
MLC2). Generally, the overall accuracy and kappa coefficient of the lidar-driven training
sampling strategy are higher than those of photo-interpretation. In particular, the producer’s
and user’s accuracy have more significant improvement than those based on an interpreter’s
empirical expertise. Because high vegetation is rare and sparsely scattered, ground or par-
tial building boundary pixels may be included in the high vegetation training samples
under the photo-interpretation method and might lead to decreased classification accuracy.
Adding the lidar-driven high-rise object mask improves the overall accuracy by about 8%
(case MLC3), compared with case MLC2. Spectral confusion between buildings and roads
and between high vegetation and grass might be solved, because the lidar-driven high-rise
object mask leads classification to be implemented in the high-height and low-height levels,
respectively. Thus, the contribution of the lidar-driven labelled image and high-rise object
mask has been confirmed by accuracy assessment in this study.
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3.1.2. The PSHC and OBC experiments

The OBC and PSHC are performed to investigate the proposed PSHC performance. The
feature vector used for this experiment contains shape index, spectral information, lidar
intensity, lidar-driven nDSM, height variance, and eigen-based values. The first two are
derived from aerial imagery, whereas the other four are lidar based. These features are
calculated using C++ programming language.

The OBC experiment was implemented by the segmentation of an image into a network
of homogeneous image regions and the use of a supervised nearest-neighbour classifier
to train and build up a knowledge base for the classification of image objects, which
was performed using the Definiens Professional Earth® commercial software (also called
eCognition®). As discussed above, the nDSM mask has a great influence on the accuracy
of classification so that a high weight value is assigned. Other features are assigned identi-
cal weight values. Visual inspection determines a set of segmentation parameters to create
a number of regions by repeating experiments. Afterwards, we use the same lidar-driven
training samples listed in the Table 1. After a number of sample objects have been declared
as initial information for a nearest-neighbour classification, the four categories are classi-
fied. Similarly, the classification accuracy is evaluated by using the testing samples listed
in Table 1.

The proposed PSHC is performed using C++ programming language in Microsoft
Studio 2005®. The prior knowledge of desired classes is derived from training samples of
the lidar-driven labelled image. The lidar-driven high-rise object mask divides the aerial
image into high-height and low-height levels. At each level, the statistical MLC is per-
formed. Because a building, in general, is regular, the value of shape measure calculated
by Equation (2) would be closer to 1.0 for a regular boundary. Therefore, the shape mea-
sure removes a partial misclassification and improves classification accuracy. Figure 7(a)
is the image-based classification results refined by the shape-based information. In the
figure, the purple pixels represent the misclassified buildings that should belong to the
high vegetation class. It should be noted that the ‘salt and pepper’ classification effect
occurs owing to spectral confusion between class and spectral variation within class; for
example, there are a few discrete and discontinuous regions in the building or high vege-

(a) (b)

Figure 7. The results of classification: (a) the image-based classification results refined by the
shape-based information and (b) the final classification results after the KBCV stage.
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Table 3. Accuracy assessment of KBCV and OBC experiments.

Producer’s accuracy (%) User’s accuracy (%)

Experiment OA (%) Kappa Bs HV Gd Gs Bs HV Gd Gs

OBC (Definiens) 86.5 0.82 86.4 72.7 87.1 77.6 91.1 79.6 90 84.3
PSHC 90.4 0.88 92.4 73.3 95.7 83.1 90.5 81.4 93.2 87.8

tation classes. In the KBCV stage, according to lidar-based and image-based classification
results, the discrepancy between these two classification results is cross-validated by the
analysis of three rules: height-based, intensity-based, and eigen-based rules. Thresholds are
set from expert experience, including height, intensity, and spatial distribution parameters.
Figure 7(b) shows the final classification results after the KBCV stage.

Table 3 shows the accuracy assessment results for the OBC and PSHC. Compared with
case MLC3 in Table 2, 5% improvement of the accuracy indicates that the KBCV is the
necessary step to improve the classification performance after the implementation of MLC.
As shown in the Table 3, the overall accuracies of the OBC and PSHC are higher than those
of the traditional statistical MLC (cases MLC1 to MLC3 in Table 2). However, because the
OBC segmentation parameters are chosen based on visual interpretation of the segmen-
tation results, it is difficult to determine the segmentation parameters. For example, small
objects may not be identified if the segmentation parameters are large, while a number of
much smaller objects may be so small that their characteristic cannot be calculated if the
segmentation parameters are very small. Thus, the overall accuracy and kappa coefficient
values of the PSHC are greater than those of the OBC.

3.2. Niagara Falls test site in Ontario

The second lidar point cloud data were acquired by the Optech ALTM 3100 system, cov-
ering a typical residential area in the region of Niagara Falls, Ontario, Canada. The lidar
data set consists of the first and last returns of the laser beam. The true colour image data
were simultaneously taken by an onboard 4k × 4k digital camera. Figure 8(a) shows a
raster DSM, containing a total of 190,944 points, which was interpolated with both the
first and last pulse returns by the bi-linear interpolation method. The width and height of
the grid are equal to the GSD of the aerial image (0.5 m). The elevation of the study area
ranges from 150.00 to 178.11 m. Figure 8(a) shows that several clusters of trees are located
around buildings along the streets and Figure 8(b) shows a true colour aerial image that
was re-sampled to a 0.5 m ground pixel. The majority of buildings appearing in the colour
image have gable or hip roofs. From the aerial image, it is difficult to classify high vegeta-
tion because the colour of vegetation ranges from green to brown and the canopy density is
relatively low.

Figure 8(c) shows the resultant classification image of the image-based classification
process. A number of classification errors involve the missing of building boundaries, and
can be compensated for by spatial information of lidar data in the cross-validation stage.
Figure 8(d) shows the final classification resultant image, from which a majority of speckles
and noises which resulted from the image-based classification are removed by the KBCV.
Table 4 shows the accuracy assessment results for three classification stages in the study.
The overall accuracy is increasing from the lidar-based classification to the KBCV stage.
The overall accuracy of the image-based classification does improve by about 9%, and
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(a) (b)

(c) (d)

Figure 8. Niagara Falls test site in Ontario: (a) the aerial image, (b) the intensity image, (c) the
image-based classification results, and (d) the final classification results.

Table 4. Accuracy assessment of KBCV and OBC experiments.

Producer’s accuracy (%) User’s accuracy (%)

Experiment OA (%) Kappa Bs HV Gd Gs Bs HV Gd Gs

Lidar based 73.5 0.658 78.5 46.0 78.4 57.6 83.5 56.9 76.2 77.3
Image based 82.1 0.83 86.1 67.8 82.5 82.6 84.3 79.8 83.1 81.7
PSHC 91.7 0.9 91.8 75.7 94.9 85.3 91.2 82.4 92.6 88.4

the KBCV overall accuracy of 91.7% improves significantly from the image-based over-
all accuracy of 82.1%. This result indicates that the hierarchical classification strategy is
feasible for the classification accuracy increase by passing down the previous classification
results to the next classification stage. This simple hierarchical scheme offers a wide range
of construction of different analysis strategies.
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Generally, the advantage of the proposed hierarchical classification framework is that
it offers a mechanism not only to improve training sample accuracy and reduce training
time, but also to overcome the ambiguity between high- and low-height objects. Based on
this design, the categories at the low-height level are roads and grass, while only buildings
and trees need to be classified at the high-height level. The KBCV stage also improves
classification abilities by adding a variety of knowledge-based rules to adjust the lidar-based
and image-based classification results.

4. Conclusions

Since training samples are used to ‘teach’ a supervised classifier, it is essential to make
sure that training samples are sufficient and representative. Generally, the manual selection
of training samples often includes at least two types of land-use features within training
areas. Individual classes are difficult to distinguish correctly by using incomplete statis-
tic information extracted from training samples. This condition results in the decrease of
classification accuracy to some extent. The proposed PSHC strategy first utilizes the lidar-
based classification results to generate a labelled image for training sample selection and
a lidar-driven high-rise object mask. Automatic training sample selection not only keeps
classification results consistent, but also improves the quality of training samples. A lidar-
driven high-rise object mask reduces spectral confusion between land-use feature types;
for example, at the high-height level, high vegetation and buildings are easier to separate
because their spectral characteristics are quite distinct. Similarly, at the low-height level,
ground and grass are significantly separable. Lidar-driven experiments have shown that
the overall accuracy is improved by approximately 8% when using the lidar-driven train-
ing samples compared to training samples selected by photo-interpretation; in addition, the
lidar-driven high-rise object mask improves the overall accuracy by about 8%.

In terms of spatial and spectral information, the lidar-based and image-based classi-
fication results are complementary. Meanwhile, the knowledge-based rules are created to
cross-validate the discrepancy between two types of classification results. The OBC and
PSHC experiment results indicate that the overall accuracy of the PSHC is 3% better than
that of the OBC method. Moreover, the Niagara Falls test site experiment demonstrates that
the multi-step classification strategy improves the accuracy of classification by analysing
previous classification results. Another advantage of the proposed PSHC approach is that
the KBCV also can be extended by adding various rules from lidar data and imagery
according to users’ requirements.
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