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Optimal paths computed by conventional path-planning algorithms are usually not “optimal” since real-
istic traffic information and local road network characteristics are not considered. We present a new
experiential approach that computes optimal paths based on the experience of taxi drivers by mining
a huge number of floating car trajectories. The approach consists of three steps. First, routes are recov-
ath-finding
oad network
ierarchy
axi trajectory
avigation system

ered from original taxi trajectories. Second, an experiential road hierarchy is constructed using travel
frequency and speed information for road segments. Third, experiential optimal paths are planned based
on the experiential road hierarchy. Compared with conventional path-planning methods, the proposed
method provides better experiential optimal path identification. Experiments demonstrate that the travel
time is less for these experiential paths than for paths planned by conventional methods. Results obtained
for a case study in the city of Wuhan, China, demonstrate that experiential optimal paths can be flexibly

inte
obtained in different time

. Introduction

Navigation systems are an important component of intelligent
ransportation systems and have become a standard device in
ehicles, cell phones and other mobile devices. Many web-based
apping services also provide navigation tools for regular users.

ath planning, a core component of various navigation applica-
ions, involves identification of the shortest path for any given
rigin–destination pair in a directed graph in which a non-negative
eight is applied to the length or travel time for road segments.

he Dijkstra (1959) algorithm and label correcting (LC) algorithm
Bellman, 1958) routing are two classical methods used to solve
he shortest path problem. Variants of these algorithms have
een extensively studied (Cherkassky et al., 1996; Thorup, 2004).

epending on whether the edge weights are static or dynamic,
e can classify theoretical computation schemes for the short-

st path into two categories. In recent years, researchers realized
hat preprocessing of road networks can significantly improve
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rvals, particularly during peak hours.
© 2010 Elsevier B.V. All rights reserved.

the performance of the Dijkstra (LS) algorithm (Gutman, 2004;
Goldberg and Harrelson, 2005; Kohler et al., 2006; Sanders and
Schultes, 2006). Preprocessing is usually performed for road net-
works with static hierarchies. Computation for static networks
can yield the exact shortest paths using Euclidean distance-based
measurements. Computation for dynamic traffic conditions is a
theoretically complicated operations research problem (Ahuja et
al., 1993). The uncertainty of real traffic situations means that
the best search results are not necessarily computed in reality.
Finding the exact shortest path in road networks with dynamic
traffic conditions (dynamic road networks) is a non-deterministic
polynomial-time hard (NP-hard) problem (Ahuja et al.,2003). A few
simplifying assumptions can be made, such as transformation of
dynamic networks to time-dependent networks using the first in,
first out (FIFO) condition. The shortest path in a FIFO network can
be computed using the label algorithm (Kaufman and Smith, 1993).
However, the theoretical assumptions do not completely hold in a
real road network. Thus, there is a gap between theoretical algo-
rithm research and real-world applications.

Taxi drivers usually disregard the planned routes computed by

navigation systems. They tend to adopt their own “best” routes
according to their driving experience. Very often, their solutions
are more cost-effective (less travel time and lower costs) than the
shortest paths identified by traditional path-planning algorithms.
Their experience implicitly comprises their familiarity with local

dx.doi.org/10.1016/j.jag.2010.07.003
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
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oad networks and real-world traffic conditions during different
ime intervals, such as peak and off-peak hours. This type of driv-
ng experience is accumulated from thousands of validated route
hoices made in daily life. Therefore, intuitively, this highly reliable
riving experience, which is represented by a huge number of taxi
rajectories, may support dynamic path-planning decision-making.

In this paper, a flexible road network hierarchy is constructed
sing the experience of taxi drivers to support path-planning. Con-
truction of this hierarchy depends on the speed and frequency for
oads traveled by taxi vehicles. Roads categorized as upper level
re traveled at high frequency and high speed and have a higher
robability of being selected than those at lower levels. Conse-
uently, the experience of taxi drivers can be integrated into an
xperiential road hierarchy. Path-finding based on such a hierarchy
epresents an approximation of selection of an experiential route
y taxi drivers. Empirical results show that our new approach can
rovide an experiential optimal path. The travel time is less than
raditional algorithms applied in various off-the-shelf navigation
ystems. Our novel approach is a pilot study for effective integration
f realistic traffic information in theoretical optimal path-planning.

The remainder of the paper is organized as follows. Section 2
escribes the methodology for integrating taxi driver experience

nto optimal path computation. Section 3 presents the experimen-
al results. Section 4 discusses our method compared to related
ork on the path-finding problem in road networks. Section 5 con-

ludes the paper with a summary of our study and a discussion of
uture research directions.

. Methodology

The knowledge of experienced drivers is rarely integrated in
ath-finding. Driver experience can be mined from the data gener-
ted by extensive floating car applications in transportation. In this
ection, we present a novel optimal path-finding approach using a
ynamic road hierarchy based on taxi driver experience.

Fig. 1 presents a framework for the identification of experiential
ptimal paths based on floating car trajectories. First, preprocess-
ng of road network data is performed to construct a dynamic
ierarchical road network by incorporating taxi driver experience.
econd, the optimal path is computed based on the experiential
oad network. The framework consists of three main procedures
rectangular boxes in Fig. 1): recovery of taxi routes, construction
f the experiential road hierarchy, and computation of the experi-
ntial optimal path.

The first two procedures represent preprocessing of road net-
ork data. In China, floating cars are largely taxis. Therefore,
oating car data mainly refer to taxi GPS trajectories. Taxi routes,
hich implicitly incorporate optimal paths chosen by experienced
rivers, are recorded as GPS trajectories. Thus, floating car data
an be used as input data for constructing an experiential road
ierarchy because they reflect the prior knowledge of taxi drivers

or optimal path selection. Experiential routes are first recovered
rom original GPS coordinates. The original floating car data are
racking points recorded by a GPS receiver mounted in a taxi. A

ap-matching algorithm must be executed to assign original GPS
oordinates to corresponding road segments since the original GPS
ata are not accurate enough to fall into correct road segments.
hen a set of taxi routes can be recovered by connecting these
oad segments together. If the sampling rate is very low and road
egments cannot be connected in a complete sequence, additional

oad segments should be interpolated to construct a continuous
oute in the road network. A set of experiential routes are therefore
btained from a huge number of recovered taxi trajectories. Second,
n experiential road hierarchy for the network is constructed using
ecovered experiential routes. The more frequently that road seg-
Fig. 1. Framework for the identification of experiential optimal paths. Oval boxes
represent data. Rectangular boxes represent computation processes or functions.
The preprocessing step incorporates taxi driver experience into the road network
hierarchy so that the path computation step can produce experiential optimal paths.

ments are traveled as part of the experiential routes, the more likely
it is that the segments are assigned to the upper level road category.
An experiential road hierarchy can then be constructed statistically.
Each level must be strongly connected so that an optimal path can
be computed between each pair of nodes in the road network. Using
this experiential hierarchy, experiential path computation can be
performed using a bidirectional shortest path search algorithm. We
describe the three procedures in the following sub-sections.

2.1. Recovery of taxi routes from GPS trajectories

Experiential taxi routes are recovered to obtain optimal routes
chosen by taxi drivers from their GPS trajectories. A recovered route
starts at the location where a passenger enters the taxi and ends
when they leave, as recorded in the GPS trajectories. First, original
tracking points are map-matched to corresponding road segments.
We used the similarity metric of Greenfeld (2002) to determine
the road segment to which a tracking point belongs. If GPS track-
ing data are sparse, an additional interpolation step is performed
between two neighboring road segments that are not topologically
connected in the road network. Assume that point p′

i
is the match

point for the original tracking point pi at time ti. Path pth is the route
between match points p′

i
and p′

i+1 in a sequence of time. The path
length is the sum of the length from point p′

i
to p′

i+1 along the route
in the network (Fig. 2). The lengths of all paths between p′

i
and p′

i+1
are computed and compared to one estimated by multiplying the

mean velocity of the two GPS track points by their time interval.
The path whose length is closest to the estimated length is cho-
sen as a recovered trajectory segment. Road segments between the
two segments that match points belong to are interpolated into the
recovery routes. Thus, through interpolation, complete taxi routes
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Fig. 2. Interpolation of GPS paths.

an be recovered through sequential matching of road segments in
ime series.

.2. Construction of the experiential road hierarchy

Given a directed graph G = {N,E}, N is a set of intersections of
oads and E is a set of road segments between two neighboring
unctions. A continuous recovery route in a graph G is denoted as:

= 〈e1, . . . , ej, . . . , em〉 (ej ∈ E, 1 ≤ j ≤ m), (1)

here j (1 ≤ j ≤ m) is a time index from the start point to the end
oint of � in chronological order. � contains no cycles and is essen-
ially a set of acyclic edges (i.e. � satisfies the condition ei /= ej, ∀ei,
ej ∈ � and i /= j).

An experiential route can be determined using speed informa-
ion extracted from a huge number of recovered taxi routes. A route
ith higher speed implies that this is preferable for driving. Con-

eptually, a route can be associated with edges of G. Therefore, for
large number of routes, experiential routes statistically reflect a
river’s choice of route. An experiential road hierarchy can then
e constructed based on the preference information. The hierarchy

s flexible for different time intervals, since traffic status contin-
ally changes with time. Each level of the hierarchy should be
trongly connected to ensure topological completeness for optimal
ath computation. There are two steps for road hierarchy construc-
ion: building of experiential route sets and construction of the
xperiential road hierarchy.

.2.1. Building of experiential route sets
Let l: E → R+ be a length function in graph G. l(e) represents the

ength of edge e. Assume that p′ is a point matching GPS point p
n matched edge e = {vhead, vtail}. lf(e) is the length of the segment
rom p′ to vtail on e, and lb(e) is the length of the segment from vhead

o p′ on e. The length of a recovery route � can be computed as:

� = lf (e1) +
m−1∑
i=2

l(ei) + lb(em). (2)

he length of the first edge is computed using the function lf(.), since
1 is split by its matching point. Similarly, the length of the last edge

s computed using the function lb(.) because it is also broken at the
ast matching point. The speed for route � is given by:

� = l�
ıt

, (ıt : tm − t1), (3)
rvation and Geoinformation 13 (2011) 110–119

where t1 and tm denote the start and end times for route �, respec-
tively. Conceptually, v� is a critical factor in choosing preferred
routes. Empirically, taxi drivers select a route that they can drive at
higher speed. Therefore, we can determine whether or not a route is
empirically preferred from its associated speed. Let vT be the speed
threshold, which can be determined by statistical analysis of all
trajectories (see Section 3). An experiential route set is given by:

SER = {�|v� ≥ vT }. (4)

Time should be constrained to the time interval �tinterval, so an
experiential route set in �tinterval is given by:

S�
ER = {�|v� ≥ vT , and t1, tm ∈ �tinterval}, (5)

where �tinterval is a time interval (tbegin, tend), and t1 and tm are as
defined above. Given any time interval, a flexible experiential route
set can be built.

2.2.2. Construction of the experiential road hierarchy
All roads are categorized as heavily used, frequently used or

rarely used roads, according to driving preference information
derived from the frequency for edge e in all experiential routes in
S�

ER. An experiential road hierarchy for the network can be con-
structed based on classification of the travel frequency for edge e,
provided that all road edges at each level are strongly connected.

An interesting finding on road hierarchy was reported by Jiang
(2007) topological, who demonstrated that the topological char-
acter of urban streets conforms to the 80/20 principle, whereby
a 20% of streets account for 80% of traffic flow, implying that
city road networks are inherently hierarchically organized (Jiang,
2009). Inspired by these findings, we used the quantile as a sta-
tistical reasoning tool to determine the driving preference of taxi
drivers. Each route in the set S�

ER is associated with corresponding
edges in G. Driving preferences during specific time intervals, such
as peak hours, can be derived from travel frequency quantiles for
edges for all experiential routes. Travel frequency is thus a criterion
for extracting upper level experiential roads from graph G.

Let function c(e) be the travel frequency for edge e ∈ E, deter-
mined by counting the number of routes that pass through e in all
trajectories of S�

ER.

p(g) = P{c(e) = g}, (g ≥ 0) (6)

denotes the probability distribution for travel frequency in edge set
E. Let N(g) be the number of edges that satisfy c(e) = g. Let m be the
total number of edges in E. Then the above formula can be rewritten
as:

p(g) = N(g)
m

, (g ≥ 0). (7)

Let Fn(q) be the cumulative distribution function (cdf) of g, i.e. c(e)
(where q denotes the variable for integration).

Fn(q) =
∫ q

0

p(g)dg, (g ≥ 0), (8)

where
∫ +∞

0
p(g)dg = 1, (g ≥ 0). We can statistically use Fn to derive

the driving preference for the roads (Fig. 3). Let q1, q2 (0 < q2 < q1 < 1)
be two quantile thresholds. Two corresponding g values (g1 and g2)
can be derived given q1 and q2. Based on the two thresholds, all
roads can be classified into three levels according to driving pref-
erence. Heavily used roads are edges with c(e) values g above the
threshold g1. Frequently used roads have c(e) values between g1

and g2, and rarely used roads have c(e) values below g2. We can
extract two upper levels in terms of c(e) values from graph G. The
road segments at these two levels should be strongly connected
for hierarchical route planning. Therefore, extraction of upper level
roads and forcing of strong connectedness are the two steps for
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Fig. 3. Extraction of the most-traveled roads to build upper level road sets. There are
four experiential routes in the figure, represented by dashed lines. Four routes pass
e
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e
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dge e3, so c(e3) has the greatest travel frequency. Thus, edge e3 is the 0.8 quantile
f the cdf Fn . Assuming that q1 = 0.8, edge e3 should belong to the upper level of the
xperiential road hierarchy.

onstruction of an experiential hierarchical graph for a road net-
ork.

Assume that the hierarchical graph:

= {G, H0, H1, H2} (9)

s a partition of graph G = {V, E} based on frequency c(e) for a road.
he two steps are described as follows (Fig. 4):

Step 1. Extraction of upper level roads. For each edge e ∈ E, we
compare c(e) with thresholds g1 and g2. The edge set E for
the road network is grouped into three subsets, heavily used
set Ehe = {e | c(e) ≥ g1}, frequently used set Efr = {e | g1 > c(e) ≥ g2}
and rarely used set Era = {e | g2 > c(e) ≥ 0}, where E = Ehe ∪ Efr ∪ Era

and Ehe ∩ Efr ∩ Era =∅. The three subsets of E constitute a road
hierarchy for the network. The bottom level is H0 = G. Level
H1 is constructed as Ehe ∪ Efr, where H1 = {V1, E1}, E1 = Ehe ∪ Efr,
and V1 = {v|v is the head or tail vertex of e1 ∈ E1}. This ensures that
edge e1 ∈ E1 and its two vertexes are also in H1. Simi-
larly, top level H2 is constructed as Ehe, where H2 = {V2, E2},
E2 = Ehe, and V2 = {v|v is the head or tail vertex of e2 ∈ E2}. The sub-
graph Hi = {Vi, Ei} is level i of the hierarchy graph H and satisfies
G = H0 ⊃ . . . ⊃ Hi ⊃ . . . ⊃ Hr for 0 ≤ i ≤ r (in this case, r = 3). We attach
the node associations of neighboring levels, which record the
duplicate copy of the node in neighboring upper level Hi+1, to a
node v ∈ Vi in level Hi. The association between levels i and i + 1 is
established so that hierarchical route planning can be performed
in the road network.
Step 2. Forcing of strong connectedness. Let Ci be a maximal con-
nected subgraph of level Hi constructed according to step 1. The
vertexes and edges that do not belong to Ci in level Hi are deleted.
C2 is a maximal strongly connected component (SCC) of H2. E2/EC2

and V2/VC2 are first deleted from H2. Then C2 is a new H2. The same
operation is performed on H1. After deletion of these vertexes and

edges that do not belong to Ci, the node association between neigh-
boring levels should be upgraded because associated edge sets and
vertex sets have changed.

ig. 4. Construction of the experiential road hierarchy. 1. Extraction of upper level
oads based on travel frequency. 2. Forcing strong connectedness for extracted roads.
Fig. 5. Hierarchical route-planning. Hi and Hi+1 are two neighboring levels. s,t are
the source and target vertexes. v′

s is a duplicate of vs in the upper level Hi+1 and v′
t is

a duplicate of vt in the upper level Hi+1. The hierarchical search terminates at vmeet

in level Hi+1.

2.3. Experiential optimal path planning

We extend the paradigm of Car and Frank (1994) by incorpo-
rating taxi driver experience. A taxi driver identifies optimal paths
based on hierarchical reasoning. Roads that are frequently traveled
at high speed are more likely to be selected first. An experiential
hierarchy H for the road network G = (V, E) is constructed by merg-
ing experiential information recovered from taxi trajectories with
the actual road network. An experiential optimal path can then be
computed by applying conventional LS algorithms to H, which con-
sists of levels H0, H1 and H2. Each node v ∈ Vi is extracted from graph
G for each level Hi = {Vi, Ei}, so v in the original graph has duplicate
copies for the associated levels. The same procedure is applied for
edge set Ei. Two duplicate vertexes in the two neighboring levels
Hi and Hi+1 should be associated via an association mapping:

fa : vi → vi+1 (10)

for vi ∈ Vi. Accordingly, when the path computation algorithm finds
a vertex that has an association mapping record, it continues to
search in the upper level starting from the duplicate for this ver-
tex. Reversing all edges of G, we can denote Gr = {V, Er} as the
reverse graph of directed graph G, where Er = {(u, v)|(v, u) ∈ E} and
l((v, u)) = l((u, v)). We thereby construct a reverse

Hr = {Gr, H0
r , H1

r , H2
r } (11)

of the experiential road hierarchy H.
We used bidirectional search methods (Nicholson, 1966) and

hierarchical reasoning to compute the experiential optimal path.
The forward search is performed in H and the backward search is
simultaneously performed in Hr. Each level is strongly connected,
so that the route planning can be performed via the following steps
based on H. Let s be a source point and t be a target point (Fig. 5):

(1) The forward search starts from s and the backward search from t
in level Hi until the nearest node vs with an associated mapping
record for the upper level Hi+1 and the nearest node vt with an
associated mapping record for Hi+1

r , respectively, are identified.
′ ′
(2) The bidirectional search subsequently continues from vs and vt ,

which are the duplicate nodes for vs and vt , regarded as a new
pair of source and target nodes in the upper level Hi+1.

(3) If the forward search meets the backward search at a node vmeet ,
the search process is terminated.



114 Q. Li et al. / International Journal of Applied Earth Observation and Geoinformation 13 (2011) 110–119

Table 1
Road class codes.

Code 00 02 03 04 06 08
Road class Freeway City expressway State road Urban major arterials Urban minor arterials Local streets
Number 325 1250 1486 1547 19,482 21,096

Fig. 6. Comparison of pre-defined road classes and the experiential road hierarchy. The y-axis denotes the percentage of experiential levels for each road class and the x-axis
represents road class codes. Red shading represents frequently used roads and blue shading denotes rarely used roads. (a) 7:00–9:00; (b) 10:00–12:00; (c) 17:00–19:00 and
(d) 20:00–22:00. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)

Fig. 7. Flexible experiential road hierarchy for four time intervals.
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ig. 8. Route length comparison for the three algorithms. The bar height represents
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4) If the search finds nodes with associated mapping records for
the upper level Hi+1, steps 1 and 2 are repeated until the search
reaches the highest level.

. Experimental results

We collected real-world taxi trajectories recorded by GPS
eceivers in 12,314 taxis during 1 week in the city of Wuhan, China.
he GPS sampling rate was one signal every 40 s. The road network
f Wuhan is represented by a graph with 45,186 edges and 20,950
odes. We recovered taxi routes in the graph using the method in
ection 2.1. We grouped all recovered routes into four sets by time
ntervals: 07:00–09:00 h (morning peak hours), 10:00–12:00 h
morning off-peak hours), 17:00–19:00 h (afternoon peak hours)
nd 20:00–22:00 h (evening peak hours). A taxi journey with start
nd end times within a specified time interval belonged to the cor-
esponding route set for that time interval. We built experiential
outes in the four sets according to Eq. (5). All GPS tracking points
or original trajectories in the four time intervals were used to sta-
istically compute the speed thresholds using mean speed data.
.1. Comparison of the experiential road hierarchy and
re-defined road classes

We constructed an experiential road hierarchy for the Wuhan
oad network using the method in Section 2.2. Only two levels
length. The right-hand vertical axis denotes the length ratio for two algorithms for
0.

were built since the Wuhan road network is relatively sim-
ple. We set q1 = 0.8. All roads were categorized as frequently
used or rarely used. Edges with a cdf (Eq. (8)) greater than
q1 were classes as frequently used roads, and the remain-
ing edges as rarely used roads. Therefore, frequently used
roads were considered as upper level roads and all roads as
low-level roads. There are two main differences between the
pre-defined road classes (Table 1) and our experiential hierar-
chy.

First, the distribution of upper level roads differs between the
experiential hierarchy and the pre-defined road classes. Fig. 6
shows the differences between the pre-defined road classes and
the experiential hierarchy for the four time intervals. Table 1 lists
pre-defined road class codes specified by map data suppliers. The
distribution of the upper level roads in our experiential road hier-
archy is mainly centered on city expressways, state roads, urban
minor arterials and local streets. Nearly 50% of the city express-
ways and urban main arterials are extracted as upper level roads in
the experiential hierarchy. The percentage of upper level roads in
class code 06 (urban minor arterials) is less than 20%, even though
the number of experiential upper level roads in class code 06 is very
large.
Second, the pre-defined road class hierarchy is static, whereas
the hierarchy based on taxi driver experience is flexible. In Fig. 6, the
experiential road hierarchy distribution is similar for the four time
intervals, although slight differences exist. The differences result
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Fig. 9. Route travel time comparison for three algorithms, analogous to

rom flexible experiential route sets that reflect the preference of
axi drivers in different time intervals. Fig. 7 presents an example.
oad A contains a few segments between intersections 1 and 2 and
oad B contains a few segments between intersections 3 and 4. Road
is an experiential upper level road but road B is not during morn-

ng peak and off-peak hours. Roads A and B are not completely
onnected in the experiential upper level road network during
vening peak hours, but are during evening off-peak hours. Roads
n the experiential upper level have higher priority and are more
ikely to be chosen for computing optimal paths. Road B, which
oes not belong to the experiential upper level roads during morn-

ng peak and off-peak hours, might not be chosen by taxi drivers
t these times. Roads A and B lose their priority during evening
eak hours. However, they recover their priority during evening
ff-peak hours. These changes in upper level hierarchy reflect dif-
erences in driving preferences of taxi drivers with knowledge of

ealistic traffic conditions on roads A and B. This example demon-
trates that the experiential road hierarchy is flexible in that road
riority can be adjusted for different time intervals according to a
river’s experience.
. (a) 7:00–9:00; (b) 10:00–12:00; (c) 17:00–19:00 and (d) 20:00–22:00.

3.2. Comparison of experiential path-finding and two traditional
algorithms

We randomly chose 28 origin–destination (OD) pairs to imple-
ment three algorithms: the Dijkstra (label setting) algorithm (LS)
using the original road network, the route-planning algorithm
for the pre-defined road class hierarchy (RCH), and the route-
planning algorithm for our experiential road hierarchy (EH). The
RCH algorithm based on pre-defined road class originated from
Car and Frank (1994). The road class hierarchy is as defined by
NavInfo Inc., a leading map data supplier for navigation systems
in China. The road class hierarchy comprises two levels: the upper
level includes freeways, city expressways, state roads and urban
major arterials; the lower level consists of all road classes. Path
computation based on road class hierarchy is widely used in
various navigation systems. The EH algorithm is based on the

hierarchy constructed by the method in Section 2.2. The weight
for path-finding computation is the length of road segments. The
travel time for each road segment was obtained using floating car
data collected over a week. The path-finding results are compared
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ig. 10. Degree of difference between the EH results and the results for the RCH an
ength difference between EH and RCH routes; (c) degree of travel time difference be

or the algorithms in Figs. 8–10. The 28 OD pairs are numbered by
ijkstra distance in ascending order.

Fig. 8 shows length differences between the three algorithms.
he bars represents route lengths and connected dots depict the
H/LS and RCH/LS ratios. The LS and RCH lengths for the four time
ntervals are all identical since they do not take into account real
raffic information. Thus, the RCH/LS ratio does not change. How-
ver, the EH lengths change during four time intervals because
ath-finding is based on a flexible experiential road hierarchy. The
CH route lengths exceed the shortest length more significantly
han those for the EH approach. All the EH/LS ratios are less than
.3 apart from one (1.5). The EH path lengths are thus very close
o the shortest length computed by the LS algorithm. Experiments
emonstrate that the EH algorithm can yield flexible paths that
re only slightly longer than the shortest paths for different time
ntervals, as evidenced by a more stable EH/LS ratio compared to
CH/LS.

Fig. 9 shows travel time differences between the three algo-
ithms. The EH algorithm yields optimal routes with the shortest
ravel time among all the algorithms for all four time intervals. All

ut one RCH routes have a longer travel time than for the shortest
ath. The EH/LS ratios for all 28 experiments are below 1, demon-
trating that the flexible EH approach can identify paths that are
ptimal in terms of travel time for different time intervals. How-
ver, the RCH and LS algorithms do not have this flexibility.
lgorithms. (a) Degree of length difference between EH and LS routes; (b) degree of
EH and LS routes; (d) degree of travel time difference between EH and RCH routes.

Fig. 10 shows the degree of difference for paths computed by
the EH algorithm and the other two algorithms. Assume that paths
A and B are two results computed by different algorithms. Let l(A)
be the sum of weights (length or travel time) for all road segments
on path A. Let lA:B(A) be the sum of weights for the parts on path
A that differ from path B. lA:B(A)/l(A) denotes the degree of differ-
ence between paths A and B. The EH algorithm is very flexible for
computing paths that vary by length or travel time in response to
different planning ODs and time intervals.

Fig. 10(a) shows degree of difference in path length for the EH
and LS algorithms. The index numbers are ranked by Dijkstra dis-
tance in ascending order. The LS algorithm is static, so that lengths
computed are the same in different time intervals. The results
reveal that the EH paths vary with time. The degree of difference is
larger than 0.5 for 10 paths for the four time intervals (index num-
bers 6, 14, 16–18, 20, 24, 26, 27, and 28). Eight of these paths are
relatively long (longer than the median route length). For these 10
paths, more than half of their segments (measured by length) do
not overlap with the corresponding shortest path. The degree of
difference is less than 0.5 for 13 paths (index numbers 1, 3, 4, 5,

7–11, 15, 19, 21, 25). Nine of these paths are relatively long (longer
than the median length). For these 13 paths, more than half of their
segments are identical to those of the corresponding shortest path.
The results imply that a long path is more likely deviate from the
shortest path for more than half its length and that a short path is
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ore likely to overlap with the shortest path for more than half of
ts segments.

Fig. 10(b) shows the degree of difference in path length for the
H and RCH algorithms. The degree of difference is larger than
.5 for 15 paths, indicating that a majority of the EH paths do not
verlap the RCH paths.

Fig. 10(c) and (d) shows the degree of difference in path travel
ime. The trends are similar to those for path length differences.

In Fig. 10(a) and (c), the degree of difference is larger than 0.5
or the three long-path experiments (nos. 26–28), which are longer
han 30 km, even for the shortest path. In Fig. 10(b) and (d), the
egree of difference is less than 0.5 for these paths. This indicates
hat for long paths, the EH algorithm yields greater similarity to
aths computed by the RCH algorithm than to paths from the LS
lgorithm.

. Discussions

The shortest path problem (SPP) has been extensively investi-
ated by researchers working in various disciplines (e.g., computer
cience, transportation engineering, and geographical information
cience). We introduce a novel experiential path-finding method
ased on road hierarchies derived from the experience of taxi
rivers. Experiential hierarchies are constructed by mining taxi
PS trajectories. Roads belonging to the upper level are given high
riority when a route is planned. Compared to current methods,
his approach uses a different perspective for solving the SPP in
oad networks. Experiments demonstrate that our methodology
an produce highly dynamic, experientially optimal and computa-
ionally efficient paths for navigation applications.

Most existing preprocessing methods (Car and Frank, 1994;
ing et al., 1998; Jung and Pramanik, 2002; Sanders and Schultes,
006; Li et al., 2008) are usually performed on static road net-
orks. However, traffic conditions for specific road networks can

hange significantly if real-time traffic information is taken into
ccount. Updating of road network hierarchies is difficult for on-
ine optimal path computation because preprocessing is generally
time-consuming procedure. In our approach we use the experi-

nce of taxi drivers and thus different optimal paths can be obtained
or peak and off-peak hours in response to varied traffic conditions
ccording to the flexible experiential road hierarchy.

The labeling algorithms (Dijkstra, 1959; Bellman, 1958) routing
nd their variants (Cherkassky et al., 1996; Thorup, 2004) com-
ute an exact minimum cost-path between a source and a target.
owever, the exact shortest path in metric space is usually not an
ptimal one in reality. There is a difference between the exact short-
st path and an experiential optimal path, which our method uses.
he experiential method results approximate to those for the Dijk-
tra algorithm in terms of length. Furthermore, the travel time is
ess for the experiential paths than for the corresponding shortest
aths. Road hierarchy is used to improve performance, as in cur-
ent hierarchy methods Car and Frank (1994) and Li et al. (2008).
he hierarchy of our method is derived from the experience of taxi
rivers and reflects priorities in selecting routes at different times.
herefore, we can compute an experiential optimal path with per-
ormance similar to that of traditional hierarchical methods.

All these advantages of our approach are illustrated by Fig. 11.
he EH length varies for the different time intervals, but the length
or the other two algorithms remains constant. The EH travel time is

ess than for the shortest paths and the path length is approximately
imilar. Furthermore, the running time and number of nodes for
he EH approach are close to those for the RCH algorithm. Thus, the
erformance of our method is close to that of hierarchical route-
lanning since we use a road hierarchy derived from taxi driver
xperience.
Fig. 11. Parallel coordinates plot based on four criteria: travel time, length, com-
puting time and expanded node numbers. The four criteria are compared for LS, EH
and RCH methods using arithmetic mean values for 28 experiments.

5. Conclusion

Taxi driver experience is rarely used in route planning in current
navigation systems. We have proposed a new method that uses
local taxi driver experience to compute optimal paths. Taxi GPS
tracking points are first used to recover original taxi routes with
map-matching and interpolating techniques. These taxi routes
that reflect driver experience are used to construct a time-variant
flexible road hierarchy. Based on this road hierarchy, an optimal
path-finding algorithm is introduced. It can dynamically provide
various path-finding results during different time intervals (such
as peak and off-peak hours). Experimental results indicate that
an experiential road hierarchy can be constructed for different
time intervals and that our experiential approach for optimal
path-finding can provide faster and shorter paths in comparison
with two traditional algorithms. Future research may focus on
a more extensive evaluation of our approach using floating car
data from other cities and more accurate computation of travel
speed.
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