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a b s t r a c t

Light detection and ranging (lidar) technologies have proven to be the most powerful tools to collect,
within a short time, three-dimensional (3-D) point clouds with high-density, high-accuracy and
significantly detailed surface information pertaining to terrain and objects. However, in terms of feature
extraction and 3-D reconstruction in a computer-aided drawing (CAD) format, most of the existing
stand-alone lidar data processing software packages are unable to process a large volume of lidar data
in an effective and efficient fashion. To break this technical bottleneck, through the design of a
Condor-based process virtualization platform, we presented in this paper a novel strategy that uses
network-related computational resources to process, manage, and distribute vast quantities of lidar data
in a cloud computing environment. Three extensive experiments with and without a cloud computing
environment were compared. The experiment results demonstrated that the proposed process virtua-
lization approach is promisingly applicable and effective in the management of large-scale lidar
point clouds.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Light detection and ranging (lidar) technologies, including
airborne, mobile and terrestrial laser scanning (ALS, MLS, and
TLS), have gradually become common mapping practices in three-
dimensional (3-D) data acquisition. Existing lidar systems can
provide point clouds with a point density of up to thousands of
points per square metre. For example, an Optechs Lynx Mobile
Mapper captures a total of 144 million points of five blocks in
20 min (Conforti and Zampa, 2011). This revolutionary data
acquisition technology allows for various applications, such as
transportation, utility, forestry, mining, and urban planning. In
addition to the huge quantity of point clouds acquired by a laser
scanner, multiple high-spatial-resolution cameras (as common
components) provide a significantly large quantity of image data.
For example, a Trimbles MX-8 system, integrating two RIEGLs

VQ-250 laser scanners and four CCD cameras, collects a total of 35
Gigabytes in 20 min (Guan et al. , 2013a).

Furthermore, it is intricate and sophisticated to efficiently store,
manage, and process lidar data and images for customized
products, such as object identification (Secord and Zakhor, 2007;
Guan et al., 2013b), 3D building models (Habib et al., 2005; Zhang
et al., 2005; Mitishita et al., 2008; Nebiker et al., 2010) and Digital
Orthophoto Maps (DOMs) (Liu et al., 2007) because creating these
lidar-derived products are costly and intensive computation due to a
variety of methods and a diverse selection of parameters. Current
lidar data processing software packages (e.g. QT Modeler, LasTools,
InPho, LiDAR Explorer for ArcGIS, Terrasolid, and TopPIT) are with
stand-alone and task-oriented features that considerably limit lidar
data applications (GIM, 2012); thus, much attention has been paid to
research on organizing lidar data more effectively and efficiently.

Although a group of level-of-detail (LOD) variants have proven to
be suitable for adaptive visualization of a notably large volume of
lidar data, these variants are time-consuming in pre-processing and
progressively inefficient in query performance because of their
unbalanced tree structures (Pfister et al., 2000; Rusinkiewicz and
Levoy, 2000). Moreover, a variety of tree structures, ranging from
binary-tree, quad-tree, octree to their combinations, have been
presented to accelerate the lidar data processing procedure,
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(Lu and He, 2008; Liu et al., 2008; Kreylos et al., 2008; Elseberg et al.
2011). For example, the binary-tree is employed for building extrac-
tion (Sohn et al., 2008); the octree is used for split-and-merge
segmentation (Wang and Tseng, 2010). Those two-dimensional (2-
D) tree-based algorithms are limited by their unbalanced index
structures and one-dimensional (1-D) space partitioning.

To overcome the above two limitations, 3-D R-trees, the most
well-known index structure for spatial data, have been applied to
the real data by adaptively adjusting index structures (Zhu et al.,
2007). In Gong et al. (2012), a hybrid spatial index method (3DOR-
Tree) that integrates R-Tree and Octree structures is used to
overcome the unbalanced data distribution. Similar to B-tree,
R-tree is a height balanced tree that hierarchically splits spaces
into possibly overlapping subspaces. However, the tree-node over-
lapping and complexity of 3-D R-trees cause multipath queries,
resulting in lower query efficiencies in lidar data processing.

In most cases, to achieve final lidar-derived products, existing
established lidar processing algorithms and software tools must
divide substantial amounts of lidar points into a number of data
blocks (Pu et al., 2011) and thin out or rasterize the lidar data for a
series of post-processing procedures (Van Gosliga et al., 2006;
Mongus and Zalik, 2012). Besides software limitations, computer
hardware, such as the amount of computer memory ranging from
a few hundred megabytes to gigabytes, is usually unable to
support intensive calculation requirements if couples of threads
are simultaneously implemented for lidar data processing on a
multi-processor computer. Thus, a lidar data processing system
requires an open, shared and interoperated environment, where
data processing, management, and distribution are automatic,
intelligent, and real-time. To this end, advanced techniques like
parallel processing are used to improve large-scale lidar data
processing efficiency by distributing them among multiple
shared-servers (Wand et al., 2008; Ma and Wang, 2011). First,
through data index structures, such as grid, quadtree, and octree,
those techniques, regarding spatial relationship of the datasets,
uniformly divide and distribute mass remotely sensed data into
data servicers,. A client retrieves the data from the data servers
directly and efficiently according to data spatial locations and
boundaries, which enables the client to maximize the capability of
parallel computing. With advances in Grid Computing, Cloud
Computing is a promising choice of massive remotely sensed data
processing (Xue et al., 2011). Therefore, besides a high throughput
computation and grid workflow for remote sensing quantitative
retrieval applications, a cloud computing environment is moti-
vated by the requirement for customized remote sensing products,
especially lidar-derived products.

In this paper, we design a Condor-based virtual platform of massive
remotely sensed data processing for lidar-derived products in a cloud
computing environment, and analyze the platform's performance on
three common uses of lidar processing techniques: filtering, DEM
interpolation, and DOM generation. Specifically, we take advantage of
cloud computing, one of the newest internet-based paradigms in
computation in the field of lidar data processing to accomplish the
following: (1) solve the expanding data and task-intensive computa-
tion problems encountered within customized lidar-derived products
as the demand for these products increases; (2) develop a prototype of
a Condor-based process virtualization platform for large-scale remo-
tely sensed data processing, analysis, and intensive computation;
(3) provide an efficient method for users to make full use of various
idle internet resources and established lidar-relevant data processing
algorithms; (4) explore the potential for improving the parallel
efficiency of our Condor-based process virtualization platform by
synchronizing computation and communication procedures.

The remainder of the paper is organized as follows: Section 2
introduces cloud computing. Section 3 presents a Condor-based
middleware design for lidar data processing. Section 4 discusses

extensive experimental results and evaluates the performance of
the proposed process virtualization platform in the cloud comput-
ing environment. Finally, Section 5 states the concluding remarks.

2. Cloud computing

The “cloud”, a natural evolution of distributed computing, is of the
Web 2.0 protocol and is a particularly widespread virtualization
technology. Associated with a new paradigm for the provision of
computing infrastructure, cloud computing shifts infrastructure loca-
tions from the desktop to the network (Boss et al., 2007; Vaquero
et al., 2008). Those network-related capabilities and resources are
provided as services, via the on-demand and accessible internet
without knowing the detailed knowledge of the underlying technol-
ogy (Bolze and Deelman, 2010). Cloud computing in the early
development period was called “Grid Computing” – a term that
originated in the 1990s. The main research of Grid Computing ranged
from Giga Ethernet testbed to Metacomputing. In Smarr and Catlett
(1992), Metacomputing, focusing onmanaging and harnessing hetero-
geneous computational resources, is considered as the prototype of
Grid Computing. Typical representative projects of Metacomputing
included FAFNER (an internet-based sieving effort from Cooperating
Systems Corporation), I-WAY, and Information Wide-Area Year (Foster
et al., 1996). FAFNER was followed by distributed projects such as
SETI@home (Korpela et al., 2001) and Distributed.Net; whereas,
Globus (a toolkit of middleware components for Grid Computing
infrastructure) (Foster et al., 2001) and Lehion (an object-based
approach to Grid Computing) projects were based on I-WAY. The
1990s period of Grid Computing was characterised by the use of
distributed interconnected computers and resources collectively to
achieve high performance computational capabilities and resource
sharing (Wilkinson, 2010). Grid computing technology subsequently
evolved into a wider range of science and engineering disciplines,
including biomedical research, industrial research, high-energy phy-
sics, bioinformatics, chemistry, earth science, and geometric model-
ling. In 2001, the Open Grid Services Architecture (OGSA), a new
generation of grid structure as a standard of Grid Computing, was
originally proposed by Foster et al. (2003) to integrate web services
supported by industrial communities with computation services
(Foster and Kesselman, 2003).

Network-based remotely sensed data management and distri-
bution systems have achieved significant breakthroughs in com-
mercial software (e.g., Lockheed Martin's Intelligent Library
System, the Microsoft Terraserver, Z/I Imaging corporation's Terra-
Share) and scientific research platforms (e.g., Graz Distributed
Server System(GDSS), Data and Information Access Link (DIAL)).
However, to the best of our knowledge, most systems and
commercial products concentrate on data retrieving, distribution,
and storage. Little attention has been paid to fast and effective data
processing and analysis services for such a huge volume of
remotely sensed data, such as lidar point clouds in particular.

Virtualization is defined as creating something virtually or non-
existent rather than having an actual physical version. The process
virtualization of remotely sensed data in cloud computing envir-
onments is a system that connects internet-oriented service tech-
nology with a remote-sensing database for data retrieval, proces-
sing and feedback. There are two ways to virtualize lidar data in a
cloud computing environment. One is a tightly coupled model for
parallel computation; the other is a loosely coupled model in
distributed computation. Physical and software interactions are
highly inter-dependent with stable and robust communications in
the tightly coupled model; while in a loosely coupled architecture,
a significantly large number of interactions operate independently
in different geographical positions, leading to costly and unreliable
communications. Meanwhile, a successful remotely sensed data
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processing platform not only handles a considerable amount of
data with complex attributes and relationships, but also provides a
variety of services to deal with a large number of analysis,
modelling, and other computational requirements. Therefore, in
view of a real network environment, data security and a variety of
function requests, the process virtualization of lidar-derived pro-
ducts is built on the tightly coupled model in a cloud computing
environment. With the process virtualization, what users need to
do is send requests according to their demands. As the lidar-
derived products are not standardized, carrying out user requests
requires a number of processing procedures and a large quantity of
computing resources, resulting in lidar-derived products that must
be produced in Grid Computing environments.

3. Middleware component design for lidar data processing

To efficiently process a large volume of lidar data, a Condor-
based process virtualization platform is designed to use network-
related computational resources in a cloud computing environ-
ment. Based on the description of Condor, a middleware design of
lidar data processing is introduced.

3.1. Condor

Condor, developed by the University of Wisconsin–Madison in
1998, is a software-development kit based on large collections of
distributive computing resources to support high-throughput com-
puting (Thain et al., 2005; Magoulès et al., 2009). Condor is
characterized by having a high-throughput computing (Condor
computation resource pool) formed by putting available idle com-
puters together on the network as an integral part of many
computational grids around the world. Thus, it has been widely used
as a distributed batch computing system, and its name was changed
to HTCondor in 2012 (http://research.cs.wisc.edu/htcondor/). In addi-
tion, Condor's advantages also include support of the following:
multiple platforms, checkpoints and progress migration, remote
procedure calling systems, internal connections of Condor pools,

dynamic expansion, etc. Condor's portability also makes it easy to
adjust to a computing pool.

Condor has two components: job and resource management.
Job here is defined as a process, or set of processes, executed on
the grid. The job management component is responsible for
managing job execution. Users can inquire into job queuing or
submit a new job. The resource management component focuses
on policy scheduling, priority scheming, as well as resource
monitoring, distributing, and managing. Through task scheduling
and multi-task parallel mechanisms, a Condor-based cloud com-
puting system accelerates task processing. With this fault-tolerant
characteristic, the system survives crashes, network outages, or
any single point of failure by flexibly transferring tasks to other
available resources on the network (Chorafas, 2011).

In terms of the complexity and dynamism of lidar data
processing on a large scale, the demand for fast shared and steady
data processing software in the network environment requires a
process virtualization platform to be an open server-oriented
structure. With this structure, job submission, distribution, and
management are performed while being closely monitored. From
this viewpoint, we present the process virtualization platform of
lidar-derived products shown in Fig. 1.

The process virtualization platform of lidar-derived products
consists of multiple computing pools (clusters) in the network
segments with management systems installed at the frontend
computers. The management systems are responsible for inter-
connecting the computer pools. Intermediate, or final, results of
lidar data are stored in each computing pool's data centre. The
advantages of storing lidar data, or lidar-derived products, in the
data storage centres are two-fold: high data-processing efficiency
due to infrequent lidar-data communication in the network and
high service efficiency due to the reusability of the intermediate or
final results of lidar data for other lidar-relevant algorithms.

3.2. Middleware components

A complete fault tolerant middleware (defined as a collection of
software and packages used for the implementation of a grid)

Fig. 1. Virtualization platform of lidar data products.
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consists in many interconnected components. Because Condor
technology focuses on the user concerns of job scheduling, job
submission, job allocation, error recovery, and creation of a user-
friendly environment, it provides solutions for both the frontend
and backend of the middleware (Besserson et al., 2010). Condor-
based middleware design is introduced and described here, with
the key components shown in Fig. 2.

(1) Client
User-specific tasks and a variety of computational parameters
are first submitted. Then, based on the description of these
tasks, this model searches for specialized processing services
on the network and submits the tasks and their corresponding
data resources to the Condor computation resource pool for
cloud computing.

(2) Lidar data processing server
Lidar data processing mainly includes the following services:
data calibration, registration, DEM generation, land-use classi-
fication, digital orthoimage generation, and 3-D building
reconstruction. These processing services have already been
implemented in the stand-alone lidar data processing system.
Under the distributed cloud computing environment, each
lidar data processing service is treated as a single task
implemented by a specific processing algorithm. Therefore, it
is convenient for users to perform many kinds of algorithms to
process lidar data, and upgrade processing software by chan-
ging only relevant processing models.

(3) Computational resource inquiring server
This model is responsible for collecting computational resources
in the network and transferring tasks to resource offers.

(4) Data centre
The data centre stores, not only remotely sensed data (ima-
gery, lidar point clouds, and GIS data), but also remotely

sensed intermediate and final data processing results that
have a high rate of repeated use. How all the remotely sensed
data is stored in the data centre will support stability, rapidity
and efficiency of data communication.

(5) Monitoring and dispatching
This model is in charge of monitoring computer nodes such as
their CPUs, memories, and workload. The model also tracks
the progress of tasks such as job completion, waiting, and
failure.

Due to the unstructured nature of lidar points, lidar data can be
processed hierarchically and separately. As a result, by integrating
multiple idle computers on the internet, this distributed structure
in cloud computing environments contributes to the processing of
voluminous lidar data through the presented Condor-based mid-
dleware design that transfers a traditional single thread task into
multi-thread parallel tasks. A combination of a high-throughput
grid platform and unique data characteristics of remotely sensed
data can accelerate computations and significantly increase data
processing efficiency.

3.3. Task scheduling and load-balancing

Scheduling, a process of ordering the execution of a collection
of tasks in a pool of resources, is one of the cores of the
heterogeneously distributed cloud computing environment. When
the size of the data to be processed increases, the overhead
associated with it also increases; hence, the efficiency of the
communication decreases. In cases of a huge volume of remotely
sensed data, the data to be processed are usually satellite images,
aerial images, and point clouds. Thus, the minimum granularity is
usually a single image or a scanning strip of points as shown in the
following two examples: (1) During the task of ortho-rectification,

Fig. 2. The middleware design.
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we subdivide a large task into a number of subtasks and distribute
them in process units of one image (that is, a job) each to
computational resources for ortho-rectification. (2) We divide
lidar data into a number of blocks according to point density and
minimum application requirements (e.g. an area of 1 square kilo-
metre, or a scanning strip), and then distribute the blocks in
process units of one block each to computational resources. After
determining processing granularity, the job is added to its local job
queue. Based on the recordings of the jobs in the local job queue,
job allocation is performed to distribute those jobs to computa-
tional resources in the network.

Load-balancing provided by Condor supports online migration
process between computational resources, that is, this Condor-
supported load-balancing scheme ensures appropriate workload
allocation by automatically migrating processes to idle computa-
tional resources for jobs. Thus, no human interaction is needed.

4. Results and discussion

To assess performance, we use two study sites in different cities
in China. All lidar processing algorithms, used in this study, such as
progressive Triangular Irregular Network (TIN) densification filter-
ing, DEM interpolation, and ortho-rectification, have been success-
fully implemented in stand-alone stations.

4.1. Study sites and data description

The following two sites are included within this study, as
shown in Fig. 3.

4.1.1. Dunhuang city
The first study site, Dunhuang City (a major stop on the ancient

Silk Road) is located in northwestern Gansu Province, Western
China. An arid, continental climate is typical in this mountainous
area. Due to prolonged overgrazing of the surrounding land,
Dunhuang City was gradually invaded by the expansion of the
Kumtag Desert. Study area I, an area of about 280 km2, is a mix of
urban area, desert, and Mogao Caves. (Mogao Caves are well-
known Buddhist cave sites, located 25 km southwest of Dunhuang
City.) The lidar data were acquired in October, 2009, using a Leica
ALS50-II with 15 scan strips and data volume of 16 GB at absolute
altitudes ranging from 760 to 3200 m above Mean Sea Level. The
laser sensor's specifications are designed according to the site-
specific terrain. For example, Dunhuang City (A) is a city with
features such as apartments, narrow streets, and industrial facil-
ities, distinct from the desolate desert area (C) surrounding the
city. Relatively, the area of Mogao Caves (B) is crowded with a
number of Buddhist caves. Thus, to capture more terrain details
and avoid occlusion, region B requires denser points than regions
A and C. The detailed data-acquisition parameters are reported in
Table 1.

4.1.2. Xi'an city
The second study site, Xi'an City, is the capital of Shanxi

province (the province adjacent to Gansu). As part of the economic
revival of interior China (especially for the central-northwest
regions), Xi'an City features groups of ancient architecture that
co-exist with modern high-rise buildings. Study area two is a
typical urban area with larger-sized industrial or commercial
buildings, small and large residential buildings, as well as some

Fig. 3. Study areas for assessment of the proposed Condor-based process virtualization platform.

Table 1
The specifications of the study area in Dunhuang.

Regions Flying height (m) Scan angle (1) Scan frequency
(kHz)

Pulse repetition
frequency (kHz)

Point density
(points/m2)

Mogao-caves area (A) 760 45.0 42.5 122.6 0.5
Urban area (B) 1310 45.0 34.8 82.2 0.9
Desert area (C) 3200 50 13.9 37.1 2.1
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tessellated farmland. The Leica ALS50-II sensor was operated at a
fixed wavelength (1064 nm) and flown at an absolute altitude of
1900 m above Mean Sea Level with a ground speed of about
120 km/h. The sensor had a laser divergence of 0.22 mrad, and
generated points at nadir for a 451 field of view. The lidar data
have average point spacing of 0.4 m in the along- and across-track
directions, with a horizontal accuracy of 727 cm and a vertical
accuracy of 715 cm. The currently available systems offer pulse
repetition frequency values between 20 kHz and 160 kHz. A
RCD105 digital frame camera was integrated with the Leica
ALS50-II system, providing four photographic strips composed of
a total of 49 images. Each aerial image has a size of 7162 by 5389
pixels with a ground sample distance (GSD) of 13 cm.

4.2. Results

All processing procedures were implemented by VC++ in
Microsoft Visual 6.0 with the Condor 7.2 version download from
Condor open source (http://research.cs.wisc.edu/htcondor/index.
html). After customizing the configuration, we create a small cloud
computing pool consisting of multiple computer nodes. Mean-
while, we develop a graphical task generation module for users to
submit and monitor their jobs that produce the lidar-derived
products using Application Programming Interfaces (APIs) pro-
vided by the Condor source. The test platform is composed of 12
computers as a cluster, among which, eight computers are config-
ured with CPUs of 3.0 GHz and memories of 2 GB. The other four
computers are deployed with CPUs of 2.66 GHz and memories of
1 GB. All 12 computers function as computational nodes. One of
the nodes has the responsibility for resource inquiring and

managing. To simplify the designed system structure, this node
also coordinates computational tasks and management. The clus-
ter's components are internally connected with each other
through a one-GB Ethernet with maximum speed of 50 MB/s
under the Microsoft Windows XP Operating System. In this study,
we test the following three lidar data processing models, which
have already been successfully implemented in stand-alone sta-
tions: filtering, DEM generation, and DOM services. Thus, based on
distributed cloud computing environments, these algorithms,
which can share resources on the internet to the maximum extent,
can be directly invoked by constructing corresponding interface
programs without any adjustments.

Based on the computational demand for performing a certain
task, the proposed process virtualization platform searches the
optimum idle hardware resources required for computation in the
cloud computing environment. The optimum speed of the lidar
data processing is obtained when computational resources on the
internet are used. Table 2 compares the lidar data processing time
for the above three services with four clusters of 3, 6, 9, and 12
nodes, respectively. Study area I was used to test the filtering and
DEM generation services. Study area II, Xi'an City, was used to
assess the computational performance of DOM generation in cloud
computing environments. According to Table 2, for processing a
large volume of lidar data, the proposed Condor-based process
virtualization platform is more effective than that of the conven-
tional stand-alone service.

Fig. 4(a) shows the results of DEM generation for study area I
(Dunhuang dataset) using a filtering service called progressive TIN
densification. A visual inspection confirms that the results repre-
sent the terrain features quite well. Quantitatively, an overall

Table 2
Tests of cloud computing.

Operations Filtering DEM generation DOM generation

Algorithms Progressive triangulated irregular network (TIN)
densification

Moving surface interpolation Differential rectification

Datasets Study area I Study area I Study area II
Input dataset and size Dunhuang dataset, 30 blocks (2.83 GB) Dunhuang dataset, 30 blocks

(2.83 GB)
Xi'an-city dataset, 40 images
(4.31 GB)
DEM (2.93 GB)

Output data size 2.83 GB 960 MB 4.30 GB
Total amount of data size 5.66 GB 3.79 GB 11.54 GB
Processing time of stand-
alone

13′27″ 91′06″ 14′40″

Processing time of distributed cloud computing
3 Nodes 9′31″ 63′48″ 12′13″
6 Nodes 7′20″ 27′42″ 10′22″
9 Nodes 6′18″ 21′34″ 9′46″
12 Nodes 5′42″ 14′20″ 9′20″

Fig. 4. The processing results; (a) DEM generation; (b) DOM.
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accuracy of up to 20 cm is achieved for DEM over the desert area.
Because the lidar data are uniformly divided into blocks, each of
which is distributed to a computation node as a processing unit,
there are some break-lines among the filtering results of the
adjacent blocks. A post-adjustment is thus required to remove
those sharp break-lines according to the accuracy required by
the users.

Fig. 4(b) shows the DOM results obtained with the data from
study area II. After using the indirect differential rectification
method, the ortho-rectified image of 0.5 m GSD has no camera
lens distortion.

4.3. Discussion

In general, the following two indicators are used to assess the
performance of parallel computation in the Condor-based process
virtualization platform: speedup and efficiency, defined as:

ISpeedup ¼ TS=Tp ð1Þ

IEf f iciency ¼ TS=ðP � TpÞ ð2Þ

where, TSis the time complexity in sequential data processing, Tpis
the time complexity in parallel data processing, and P is the
number of processors. However, because the number of processors
on the internet is uncertain, we use ISpeedupto evaluate the
performance of lidar data processing in the distributed cloud
computing environment.

Table 3 displays the speedup differences of 3, 6, 9, and 12 nodes
in the proposed cloud computing environment. As seen in Table 3,
the efficiency of parallel processing is growing with an increase of
the number of nodes. However, the speedup is not strictly
proportional to the number of nodes owing to heavy data commu-
nication. In fact, data communication time, compared to computa-
tional time, accounts for a significant proportion of whole lidar data
processing time in the cloud computing environment. As a result,
the speedup of DOM generation from a large volume of images by
an algorithm of differential rectification is smaller than that of DEM
interpolation from a relatively small lidar dataset. In this study, the

speedups of DEM interpolation are 1.24, 2.32, 2.81, and 4.04 times
more than those of DOM generation at 3, 6, 9, and 12 nodes,
respectively. Meanwhile, the ratio of the speedup to data volume
(V) also explains that data volume plays an essential role in the
performance of speedup, as seen in Fig. 5. In other words, the
communication speed is proportional to the size of the input and
output data. In view of the ratio of speedup to data volume, it seems
that the Condor-based distribution platform in the field of remote
sensing does not enhance processing efficiency as significantly as
other science and engineering fields. The philosophy behind this
phenomenon is that processing platforms of remotely sensed data
are required not only to deal with large volume of input data, but
also to output even larger volume of results, which is totally
different from other disciplines that just require a small amount
of computational results. Compared to stand-alone data processing
modes, the Condor-based process virtualization in the cloud com-
puting environment can enhance efficiency of data processing to a
large extent. Besides filtering, DEM and DOM generation, the
presented scheme could be extended to other more complicated
and time-consuming algorithms in the lidar data processing sys-
tems, including decomposition of lidar waveform data, registration
of lidar points with high-resolution images, feature extraction and
3D object reconstruction fusing lidar data with images. Aiming at
the unusual situation of remotely sensed data, such as large-scale
inputs and outputs, we could synchronize computation and com-
munication to reduce network delay.

5. Conclusions

This paper introduced a Condor-based process virtualization
platform on which we employed the concept of process virtualiza-
tion for the processing, configuring, and managing of large-scale
remotely sensed data in a cloud computing environment. The
designed Condor-based middleware in this study is a fundamental
research and prototype of information retrieval, extraction, and
applications. With this middleware, data and task-intensive com-
putations for a substantial amount of lidar data have been
achieved. Extensive experiments showed that the Condor-based
process virtualization platform of lidar data is applicable as well as
flexible to customize lidar-derived products.

The parallel performance of the proposed process virtualization
platform could be improved in the following two ways: synchro-
nize computation and communication to reduce network delay;
increase granular computing and decrease communication over-
head using redundant computation. In addition, a user-friendly
post-adjustment strategy could be improved to remove some
break-lines among the adjacent blocks. Future research will
incorporate such strategies into parallel distributed and network
based processing workflows of remotely sensed data in cloud

Table 3
A comparison of speedup between different nodes.

Speedup and
ratio of speedup
to data volume

Filtering DEM generation DOM
Generation

ISpeedup ISpeedup/ V ISpeedup ISpeedup/ V ISpeedup ISpeedup/ V

3 Nodes 1.4133 0.2497 1.4279 0.3768 1.2005 0.0998
6 Nodes 1.8340 0.3240 3.2888 0.8678 1.4148 0.1226
9 Nodes 2.1349 0.3772 4.2241 1.1145 1.5017 0.1301
12 Nodes 2.3596 0.4169 6.3558 1.6770 1.5714 0.1362

Fig. 5. The ratio of Speedup to data volume.
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computing environments. There are some break-lines among the
filtering results of the adjacent blocks. A post-adjustment is thus
required to remove those sharp break-lines according to the
accuracy required by the users.
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