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Abstract
Remote sensing and hydrologic modeling are two key approaches to evaluate and predict hydrology and
water resources. Remote sensing technologies, due to their ability to offer large-scale spatially distributed
observations, have opened up new opportunities for the development of fully distributed hydrologic and
land-surface models. In general, remote sensing data can be applied to land-surface and hydrologic modeling
through three strategies: model inputs (basin information, boundary conditions, etc.), parameter estimation
(model calibration), and state estimation (data assimilation). There has been an intensive global research
effort to integrate remote sensing and land/hydrologic modeling over the past few decades. In particular,
in recent years significant progress has been made in land/hydrologic remote sensing data assimilation. Hence
there is a demand for an up-to-date review on these efforts. This paper presents an overview of research
efforts to combine hydrologic/land models and remote sensing products (mainly including precipitation, sur-
face soil moisture, snow cover, snow water equivalent, leaf area index, and evapotranspiration) over the past
decade. This paper also discusses the major challenges remaining in this field, and recommends the directions
for further research efforts.
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I Introduction

Changes in the spatial and temporal patterns of

water resources are expected to play a major

role in driving the impacts of climate and global

change on human settlements and infrastructure

(Bates et al., 2008). The monitoring and predic-

tion of water resources under climate change

rely on in-situ and remote sensing observations,

and reliable hydrologic modeling systems. In-

situ observations are generally based upon

uneven point sources, and have limited and
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sparse spatial coverage except in developed

areas. Remote sensing offers better geographi-

cal coverage and holds the capability to provide

land/hydrologic models with extensive amounts

of spatially distributed data. A variety of hydro-

logic variables can be estimated using remote

sensing (see the review papers by Dietz et al.,

2012; Li et al., 2009; Rango, 1994; Tang

et al., 2009; Wang and Qu, 2009; Zheng and

Moskal, 2009).

Remotely sensed hydrologic products have

been increasingly available over the past

decades, which has opened up new possibilities

for advances in the integration of remote sen-

sing and land surface/hydrologic models. A

number of review papers on this topic have been

published, but usually focused upon only soil

moisture or snow products (e.g. Loumagne

et al., 2001; Moradkhani, 2008; Wagner et al.,

2009). A relatively comprehensive review of

integrating remote sensing data and hydrologic

modeling was provided by Kite and Pietroniro

(1996). Since then, however, significant prog-

ress has been made in this area, especially due

to advances in land/hydrologic data assimila-

tion. Hence there is a demand for an up-to-

date review on recent efforts in this field. This

paper presents an overview of progress in com-

bining remote sensing and hydrologic modeling

over the last decade, with a focus on the develop-

ment of satellite data assimilation. The aim is to

provide the research community with a guide for

future efforts. The remainder of the paper is orga-

nized as follows. Section II summarizes the key

approaches that are used to integrate remote sen-

sing data and land/hydrologic models. In section

III, we review the integration of hydrologic/land-

surface models with six categories of remotely

sensed products (precipitation, surface soil

moisture, snow covered area, snow water equiv-

alent, leaf area index, and evapotranspiration)

during the past 10 years. Finally, this paper dis-

cusses the problems and challenges remaining

in this field (section IV), and recommends future

research directions (section V).

II Strategies for integrating
remote sensing data and
hydrologic modeling

In general, remote sensing information can con-

tribute to land-surface and hydrologic modeling

through three strategies. First, remote sensing

products can be applied to model inputs. His-

torically, this type of application has been domi-

nant in incorporating remote sensing and

hydrologic models. Remote sensing can provide

hydrologic models with the required basin

information, such as a digital elevation model

and land cover. Furthermore, remote sensing-

derived hydrologic variables (e.g. satellite

precipitation) can be used to drive hydrologic

models. Remote sensing can offer large-scale

spatially distributed data for forcing hydrologic

models (e.g. Andersen et al., 2002; Stisen et al.,

2008). However, the ‘forcing’ suffers consider-

ably from uncertainties and biases in remote

sensing measurements. Uncertainties associated

with remote sensing-based forcing data may be

enlarged during the model’s forward integration

and therefore could significantly degrade the

model performance. For instance, an uncer-

tainty source from satellite-based precipitation

products could exert a negative effect on the

ensemble prediction of streamflow (Morad-

khani et al., 2006). Collier (2009) demonstrated

the propagation of uncertainty in radar-based

rainfall input in hydrologic modeling and the

associated impact on flow simulations.

The second strategy is its application to para-

meter estimation. Hydrologic models typically

contain substantial conceptual, effective para-

meters that are hard or impractical to directly

measure. These parameters need to be cali-

brated to the best-fitting local values so that

an optimal agreement between the modeled

and observed variables can be obtained. Sal-

vucci and Entekhabi (2011) demonstrated

that AMSR-E (Advanced Microwave Scan-

ning Radiometer for EOS) soil moisture prod-

uct was useful for the calibration of the soil
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hydraulic properties in the Noah land surface

model (LSM). Parajka et al. (2006, 2009)

showed that a multi-objective calibration of

a hydrologic model with SCAT (Scatterom-

eter on European Remote Sensing Satellite)

derived soil moisture information enhanced the

soil moisture simulations in both gauged and

ungauged catchments.

The third strategy is its application to state esti-

mation. A state estimation problem is also

referred to as data assimilation, which is a process

to constrain the model simulations with observa-

tions to improve estimation of the state variable.

A great number of methods have been developed

for land/hydrologic data assimilation (Table 1). A

simplistic method is a direct insertion, which uses

an observed variable value to directly replace the

simulated equivalent at each observation time

(Figure 1a). The method imposes an observation

as the sole strong constraint regardless of its qual-

ity. If the model provides a good estimate, it

would not be reasonable to replace it with a

poor-quality observation. To this end, advanced

data assimilation schemes update the model

simulations through an optimal constraint that is

based upon the estimated measurement and

model forecast errors (Figure 1, b and c).

Data assimilation technologies are being

increasingly used in a great variety of disci-

plines for incorporating observations into

models. Data assimilation methods and their

application to land surface and hydrologic

modeling have been recently reviewed by

some researchers (e.g. Liu and Gupta, 2007;

Y. Liu et al., 2012; Reichle, 2008; Vereecken

et al., 2008). The reader is referred to these

articles for details on the properties of differ-

ent algorithms (e.g. error covariance calcula-

tion and evolution, computational demands).

Here we briefly describe two categories of

state estimation problems: smoothing (Figure

1b) and filtering (Figure 1c), which involve

the most commonly used advanced methods

for hydrologic data assimilation. The basic

idea of a ‘smoothing’ assimilation is to seek

an optimal fit of the model state to observa-

tions over a time window, which is achieved

either by a maximum-likelihood estimator

(e.g. a four-dimensional variational method,

4DVAR) or by a variance minimizing estima-

tor (e.g. an ensemble Kalman smoother,

EnKS). The former assumes that the error sta-

tistics of the background (a priori state) and

the observation are known (e.g. Gaussian),

and the state with the maximum likelihood is

sought by minimizing a cost function that

measures the distance of the model state

(unknown) to the observations and to the

background. Specifically, (1) run the model

with the first-guess estimate of initial and

boundary conditions to obtain model output

results over the time window; (2) calculate the

cost function and determine whether it is

small enough (i.e. whether the minimization

convergence criterion is met); (3) if not,

adjust the initial or boundary conditions based

upon a descent direction, which is determined

by the gradient of the cost function; and (4)

repeat the above steps until the convergence

criterion is met. On the other hand, a variance

minimizing estimator directly derives the

analysis state based upon an analysis equa-

tion, which can ensure that the total analysis

error variances are minimum over the whole

space and time domain. The two estimators

are identical when the system is linear (van

Leeuwen and Evensen, 1996). In a smoothing

assimilation the state estimation over the

assimilation interval (time window) is influ-

enced by all the observations distributed in

this time interval (Figure 1b), i.e. the observa-

tional information is propagated not only from

the past into the future but also from the future

into the past.

In contrast, a ‘filtering’ adjusts only the cur-

rent state. A ‘filtering’ algorithm sequentially

conducts a forecast step and an analysis step.

In the forecast step, the forecast model is inte-

grated forward in time, while at the analysis step

new observation is used to adjust the current
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Table 1. Summary of land/hydrologic data assimilation methods.

Methods Specifications Examples

Direct insertion Directly replace the model forecast with an
observation.

Rodell and Houser (2004); Tang and
Lettenmaier (2010)

Statistical
correction

Statistical characteristics (e.g. mean,
standard deviation) of the modeled
variables are adjusted to match those
observed.

Houser et al. (1998); Pauwels et al. (2002)

Successive
corrections

Update the modeled variables at each grid
based on the surrounding observations by
multiple passes. The weight of an
observation depends upon its distance to
the model grid.

Rodrı́guez et al. (2003)

Nudging Add a nudging term, which is proportional
to the model/observation difference, to
the prognostic equations. The nudging
term will force the integration of
prognostic equations towards
observations.

Brocca et al. (2010); Houser et al. (1998)

Optimal
interpolation

Observations are weighted according to
known or estimated errors. Determine
the optimum weight (gain) matrix using
least squares so that the total analysis
error is minimum.

Houser et al. (1998); Liston and Hiemstra
(2008)

Three-
dimensional
variational
(3DVAR)

Seek a state with the maximum likelihood by
iteratively minimizing a cost function,
which measures the misfit between the
model simulations and observations.
Dynamical constraints are included when
minimizing the cost function.

Seo et al. (2003a, 2003b)

Four-
dimensional
variational
(4DVAR)

Extension of 3DVAR to the time dimension.
A smoothing algorithm. Seek an optimal fit
of the model forecast to observations
over an assimilation interval. The state
estimation is affected by all the
observations within the assimilation
interval.

Reichle et al. (2001a, 2001b)

Kalman Filter
(KF)

A variance minimizing analysis in the
framework of a sequential assimilation.
Each assimilation cycle consists of two
steps: the forecast step (the model state is
integrated forward in time) and the
analysis step (the model prediction is
updated with observations). Explicit error
covariance propagation. Valid only for
linear systems.

Crow and Zhan (2007); Crow et al. (2005);
Walker and Houser (2001)

(continued)
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model state. Starting with the updated state esti-

mation, the model is then integrated forward

to the next observation time. Therefore, the

observational information is propagated in a

sequential manner (Figure 1c). A ‘filtering’ esti-

mation can be accomplished with a maximum-

likelihood estimator (e.g. a three-dimensional

variational method, 3DVAR), a variance mini-

mizing estimator (e.g. the Kalman filter, KF; the

extended Kalman filter, EKF; and the ensemble

Kalman filter, EnKF), or a recursive Bayesian

filter (e.g. the particle filter, PF).

In practice, land/hydrologic forecasting is

often difficult since the hydrology and Earth

system contains various complex, non-linear

stochastic processes. A subtle uncertainty source

arising from model inputs or parameters may

lead to substantial forecast biases. A state

estimation via a sequential assimilation or a

strong-constraint 4DVAR largely deals with

the uncertainties in the model input fields, and

ignores deficiencies in the model physics and

parameters (i.e. assuming that the model is per-

fect). In contrast, a parameter estimation handles

uncertain model parameters, but cannot account

for deficiencies associated with model inputs.

Hence, to obtain the desired outcomes, some

researchers proposed to simultaneously update

the model state and parameters, e.g. the augmen-

tation method (Gillijns and De Moor, 2007; Yang

and Delsole, 2009) and the dual state-parameter

estimation method (Moradkhani et al., 2005),

although this type of application has not yet been

effectively exploited for remote sensing data.

A main obstacle is the dynamic instability prob-

lem due to the interactions between the model

Table 1. (continued)

Methods Specifications Examples

Extended
Kalman Filter
(EKF)

A non-linear counterpart of the KF. A line-
arized and approximate error covariance
is used. Able to deal with some non-linear/
Gaussian processes.

Dong et al. (2007); Draper et al. (2009);
Francois et al. (2003); Sun et al. (2004)

Ensemble
Kalman Filter
(EnKF)

A Monte Carlo variant of the KF. The error
statistics are represented by an ensemble
of model states and the ensemble spread
defines the error variance. The ensemble
mean is the best estimate (assumption of
Gaussian statistics).

Crow and Wood (2003); De Lannoy et al.
(2010, 2012); Draper et al. (2012); Reichle
et al. (2002, 2007); Su et al. (2008, 2010)

Ensemble
Kalman
Smoother
(EnKS)

Similar to EnKF except that the time
dimension is included. A smoothing
variance-minimizing estimator.

Crow and Ryu (2009)

Bayesian Filter Seeks a posterior probability density
function (PDF) at a current time given all
the observations up to the current time
based on Bayes theorem.

Kolberg et al. (2006)

Particle Filter
(PF)

A Monte Carlo importance sampling is used,
and the posterior PDF of the model state
is represented by a weighted sum of the
particles that are sampled from a proposal
distribution. Update the importance
weights at the analysis step. A non-linear/
non-Gaussian filter.

Dechant and Moradkhani (2011);
Moradkhani et al. (2006, 2012)
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state variables and parameters as well as their

inconsistent adjustment speeds (Liu and Gupta,

2007; Yang and Delsole, 2009).

III Integration of remote sensing
data with hydrologic and
land-surface models

There has been an intensive global research

effort to integrate remote sensing data and

hydrologic modeling over the past decade. The

relevant work is largely focused on remote

sensing-based precipitation, surface soil moist-

ure, snow cover, snow water equivalent, leaf

area index, and evapotranspiration.

1 Precipitation

Precipitation plays a dominant role in the

Earth’s water and energy cycles, and is the

most important forcing variable of hydrologic

models. Historically, a rain gauge network

has been the main observing system provid-

ing precipitation data for hydrologic applica-

tions. Due to being based upon uneven point

sources, however, the spatial coverage of rain

gauge observations is usually limited, espe-

cially in developing regions. When there is

a large spatial variability in precipitation sys-

tem (e.g. mesoscale and microscale intense

convective storms), gauge-based precipitation

may contain substantial sampling errors and

uncertainties. Satellite-based remote sensing,

which can overcome the limitation of rain

gauge observations in spatial coverage, pro-

vides a useful tool for estimating precipitation

on a large scale, especially in ungauged basins.

Satellite technologies using visible/near-infrared,

passive microwave, and active radar sensors

(Table 2) have been developed for estimating pre-

cipitation (e.g. Kidder and Vonder Haar, 1995;

Kummerow et al., 1996; Stephens and Kum-

merow, 2007). Satellite precipitation has been

an important source to force hydrologic models.

For example, precipitation estimates from

geostationary Meteorological Satellites

(METEOSAT) thermal infrared data were applied

to force the distributed hydrologic model MIKE

SHE code for runoff modeling in the Senegal

River basin (Andersen et al., 2002; Stisen and

Sandholt, 2010; Stisen et al., 2008). Grimes and

Diop (2003) used METEOSAT thermal infrared

imagery-derived precipitation to drive a lumped

hydrologic modeling for the Qualia catchment.

More recently, T. Liu et al. (2012) presented the

use of the Chinese meteorological satellite

Fengyun-2C precipitation in modeling the Chi-

na’s Tarim River basin runoff with MIKE SHE.

Figure 1. Schematic of different strategies for
hydrologic data assimilation: (a) direct insertion;
(b) smoothing; (c) filtering.
Source: Adapted from Reichle (2008) and Dorigo
et al. (2007).
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Kalinga and Gan (2010) examined the use

of the combined infrared and microwave sat-

ellite rainfall data in the SACramento Soil

Moisture Accounting (SAC-SMA) model that

is a conceptual rainfall-runoff model. The rainfall

products were derived from the infrared data

collected by the Tropical Rainfall Measuring

Mission (TRMM) satellite and geostationary

operational environmental satellite (GOES),

which were then adjusted with the TRMM

Microwave Imager (TMI) data. Although satel-

lite remote sensing can provide large-scale

spatially distributed rainfall data, significant

improvements in runoff simulations were not

guaranteed when satellite precipitation data,

in comparison to rain gauge observations, were

used (e.g. Andersen et al., 2002). This is prob-

ably related to uncertainties in satellite-based

precipitation products (Moradkhani et al.,

2006; Stisen and Sandholt, 2010). For example,

sensors onboard polar-orbiting satellites usu-

ally have relatively coarse temporal sampling

frequency (1–2 visits per day), which will affect

their ability to accurately estimate a high spatio-

temporal variability (e.g. diurnal characteristics)

of precipitation. The merged satellite visible/

near-infrared and microwave rainfall estimates

contain less significant uncertainties and could

lead to better streamflow simulations than

single-sensor precipitation.

Ground-based weather radars (Table 2) pro-

vide another efficient remote sensing tool for

measuring rainfall. The radar-based quantitative

precipitation estimation (QPE) relies on a radar

reflectivity (Z) to rainfall rate (R) relationship.

The Z–R relationship varies with the rainfall

systems. Applying different Z–R relationships

based on precipitation echo classification can

improve the accuracy of radar rainfall estima-

tion (Xu et al., 2008; Zhang et al., 2011). The

Table 2. Summary of remote sensing techniques for precipitation estimation.

Sensors Retrieval methods Pros Cons

Visible/infrared (IR)
(e.g. from GOES,
METEOSAT, GMS)

Rain rate is estimated based
upon the cloud top
temperatures

Good spatial and
temporal resolution

Weak physical connection to
precipitation

Spaceborne passive
microwave
sensors (e.g. SSM/
I, TMI, AMSU-B)

A Bayesian approach to match
the observed brightness
temperatures Tb with those
from simulated hydrometeor
profiles (Imagers); a
combination of Tb at
different frequencies
(Sounders)

Better physical
connection to
precipitation

Coarse spatial and temporal
resolution

Spaceborne radar
(e.g. PR on
TRMM)

Radar reflectivity (Z)-rain rate
(R) and specific attenuation
(k)-radar reflectivity (Z)
relations

Direct measurement
of the three-
dimensional struc-
ture of precipitation

The variability of the drop
size distributions (DSDs)
strongly affects
precipitation estimation

Ground-based radar
(e.g. WSR-88D)

Radar reflectivity (Z)-rainfall
rate (R) relationship

High spatial and
temporal resolution

Limited radar coverage in
mountainous regions;
brightband contamination

Abbreviations: GOES, geostationary operational environmental satellite; METEOSAT, Meteorological Satellites; GMS,
Japan’s Geostationary Meteorological Satellite; SSM/I, Special Sensor Microwave/Imager; TMI, Tropical Rainfall Measuring
Mission (TRMM) Microwave Imager; AMSU-B, Advanced Microwave Sounding Unit-B; PR, Precipitation Radar on TRMM
WSR-88D, the US NEXRAD Weather Surveillance Radar-1988 Doppler.

470 Progress in Physical Geography 38(4)



introduction of radar-based rainfall data into

hydrologic models has been demonstrated to

be useful for the simulations of streamflow,

flood events and water budgets (e.g. Guo

et al., 2004; Safari and De Smedt, 2008; Yang

et al., 2004). Currently, ground-based radars,

e.g. the US Next Generation Radar (NEXRAD)

Weather Surveillance Radar-1988 Doppler

(WSR-88D), can provide high spatial (2 km in

range by 1 deg in azimuth up to 4 km � 4 km)

and temporal resolution (*6 min) QPE. Butts

et al. (2005) reported the use of rainfall data

(hourly and 4 km in space) observed by NEX-

RAD in a flexible hydrologic modeling system

that originates from MIKE SHE. Results indi-

cated that hydrologic prediction could benefit

from the forcing of NEXRAD rainfall data. Tra-

ditionally, hydrologic modeling forced by

radar-based rainfall inputs has generally been

limited to small catchments (�10,000 km2) due

to a limited detection coverage of a single radar

(e.g. Butts et al., 2005; Cole and Moore, 2008).

The deployment of the radar network (e.g. in the

USA and Canada) has made it possible to con-

duct a high time and space resolution precipita-

tion analysis for large regions (e.g. Zhang et al.,

2011). Kitzmiller et al. (2011) indicated that

QPE from multiple NEXRAD mosaic could be

useful for streamflow simulations at large

scales. In Europe, He et al. (2011) used QPE

from a combination of five C-band Doppler

radars to force a hydrologic model that was

applied to the Skjern River catchment.

Radar rainfall estimates suffer from several

known sources of uncertainty such as reflectivity

calibration differences, inappropriate Z–R rela-

tionships, range degradation, and brightband con-

tamination, which may affect rainfall-runoff

modeling (e.g. Borga, 2002; Collier, 2009; Habib

et al., 2008a, 2008b). A series of studies have

been conducted to address how to mitigate the

effects of uncertainty in radar rainfall estimates

on hydrologic modeling. An automated Z–R

selection and a brightband identification could

improve radar rainfall estimation and therefore

flow simulations (Kitzmiller et al., 2011). Some

efforts investigated the impact of gauge, radar,

and gauge-adjusted radar rainfall forcings on run-

off modeling, suggesting that a gauge-radar

merged precipitation field generally led to opti-

mal runoff simulations and prediction (e.g. Biggs

and Atkinson, 2011; Cole and Moore, 2008,

2009; Kitzmiller et al., 2011; Sun et al., 2000).

Germann et al. (2009) showed that the use of an

ensemble of radar precipitation fields in a hydro-

logic model could improve flash flood simula-

tion, especially in mountainous regions that

often witness large uncertainty in radar precipita-

tion estimation.

Advanced data assimilation schemes esti-

mate observational errors and minimize their

impact on model simulations. The basic idea

of data assimilation is to merge observations

into the framework of dynamic models by mea-

suring the model and measurement uncertain-

ties. Precipitation observations usually cannot

be assimilated into a hydrologic model system

(standalone) because the precipitation field is

not a state variable. In a coupled atmospheric-

land/hydrologic model system the assimilation

of satellite or radar precipitation is applicable.

Seo et al. (2003b) reported a real-time varia-

tional assimilation of radar precipitation in the

Hydrology Laboratory-Research Distributed

Hydrologic Model (HL-RDHM). Their work

demonstrated that the updating of model state

variables with radar rainfall and other observa-

tions improved streamflow modeling.

2 Surface soil moisture

Soil moisture is an important variable for numer-

ical weather, climate, and hydrologic forecasts.

This is because soil moisture plays a crucial role

in the hydrologic cycle by controlling the parti-

tioning of water and energy fluxes at the land sur-

face and the moisture exchanges at the soil-

vegetation-atmosphere interface. Surface soil

moisture can be estimated using various remote

sensing instruments including microwave,
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optical, and thermal infrared sensors (e.g. Wang

and Qu, 2009). Microwave techniques are of par-

ticular value for surface soil moisture estimation

because microwave measurements are sensitive

to changes in the soil dielectric properties, which

are strongly controlled by soil water content.

Liquid water has a very high dielectric constant

(*80–90 at 0–20�C) while the dielectric con-

stant is very low (only *4) for dry soil. Such a

high contrast between the dielectric constants

of wet and dry soils forms the basis for deriving

soil moisture information from microwave

remote sensing data. Both passive and active

technologies have been developed for micro-

wave estimation of surface soil moisture (Jack-

son, 2005). Over the past decades, the

dominant spaceborne passive microwave sensor

systems for soil moisture estimation include the

Special Sensor Microwave Imager (SSM/I)

(e.g. Jackson, 1997), the Scanning Multichannel

Microwave Radiometer (SMMR) (e.g. Reichle

and Koster, 2005), TMI (e.g. Bindlish et al.,

2003), AMSR-E on the Aqua satellite (e.g. Njoku

et al., 2003; Reichle et al., 2007), the European

Space Agency (ESA) Soil Moisture and Ocean

Salinity (SMOS) satellite (Kerr et al., 2012) that

carries a novel instrument called Microwave

Imaging Radiometer with Aperture Synthesis

(MIRAS), and the newly launched Advanced

Microwave Scanning Radiometer 2 (AMSR2).

For spaceborne active measurements, the ESA

Remote Sensing Satellite (ERS) Synthetic Aper-

ture Radar (SAR) and Scatterometer (SCAT), the

Canadian RADARSAT series (e.g. Merzouki

et al., 2011), and the Advanced Scatterometer

(ASCAT), successor of the SCAT, onboard the

Meteorological Operational (Metop) satellite

(e.g. Albergel et al., 2009; Bartalis et al., 2007)

have been the main observing systems. Tables

3a and 3b provide the specifications for these

passive and active microwave sensors, respec-

tively. There is usually an inverse relationship

between a sensor’s temporal frequency and spa-

tial resolution. The active SAR technology is

able to scan the land at a high spatial resolution,

but the revisit time is very long. Passive micro-

wave sensors onboard polar-orbiting satellites

offer a higher time resolution (revisit per 1–3

days) due to their wide swaths, but generally

result in relatively coarse spatial samplings.

Microwave sensors measure only the soil

moisture within a near-surface layer. The soil

thickness measured increases with the wave-

length (approximately several tenths of the

wavelength). For bare soil, the penetration

depth is about 3–5 cm for L-band (1–2 GHz)

sensors (e.g. SMOS), and only *1–1.5 cm for

C (4–8 GHz) or X (8–12 GHz) band measure-

ments (e.g. AMSR-E). Soil moisture estima-

tion using microwave sensors is subject to

vegetation effects. Where there is a vegetation

cover, the radiation emitted or backscattered

from the soil will be attenuated owing to the

scattering and absorption by the vegetation

canopy. The magnitude of the vegetation

attenuation increases with the sensor frequency

and the vegetation density. Hence soil moisture

retrieval at high microwave frequencies (>5–6

GHz) is valid only for bare soil or sparely vege-

tated regions. Vegetation cover impacts upon

sensors operating at low frequencies are less

pronounced because the latter can penetrate

moderately dense canopies. For example, L-

band sensors (e.g. SMOS) can provide reliable

measurements over a wide range of vegetation

cover (biomass�5 kg/m2). Overall, soil moist-

ure retrieval is challenging for active micro-

wave sensors because the radar signal is

highly sensitive to local features of the soil sur-

face (surface roughness, topography, vegeta-

tion, etc.), while passive microwave soil

moisture products are usually more reliable due

to higher signal-to-noise ratio and mature retrie-

val algorithms.

In hydrologic/land surface models, the cal-

culation and simulation of soil water content is

based upon an energy and water balance method.

In general, the soil thermal and moisture regimes

are resolved using multiple soil layers. There has

been an intensive global research effort to
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integrate microwave soil moisture information

and land surface/hydrologic modeling over the

past decade. In particular, the assimilation of

microwave measurements in land/hydrologic

models has received considerable attention

(Table 4). Some efforts focused upon a direct

assimilation of microwave brightness tempera-

ture observations in land surface models to esti-

mate soil moisture. A series of synthetic studies

based upon the 1997 Southern Great Plains

(SGP97) hydrology experiment demonstrated

that a direct assimilation of microwave bright-

ness temperature data in land surface models

could provide reliable soil moisture estimation

(e.g. Reichle et al., 2001a, 2001b, 2002). In rea-

listic situations, Margulis et al. (2002) used the

EnKF method to assimilate airborne Electroni-

cally Steered Thinned Array Radiometer

(ESTAR) 1.4 GHz surface brightness tempera-

ture measurements during SGP97 into the

Noah LSM. Crow and Wood (2003) conducted

similar assimilation experiments with the

Table 3a. Summary of spaceborne passive microwave sensors for soil moisture estimation.

Sensor (satellite) Period of operation
Frequency/footprint

size (along track � cross track) Polarization Data acquisition

SMMR (Nimbus-7) 1978–1987 6.6 GHz / 148 km � 95 km
10.7 GHz / 91 km � 59 km
18.0 GHz / 55 km � 41 km
21.0 GHz / 50 km � 38 km
37.0 GHz / 27 km � 18 km

H & V Every other day

SSM/I (DMSP) 1987–present 19.3 GHz / 69 km � 43 km
22.0 GHz / 60 km � 40 km
37.0 GHz / 37 km � 29 km
85.5 GHz / 15 km � 13 km

H & V Daily

TMI (TRMM) 1997–present 10.7 GHz / 63 km � 39 km
19.4 GHz / 30 km � 18 km
21.3 GHz / 28 km � 28 km
37.0 GHz / 16 km � 10 km
85.5 GHz / 7 km � 5.1 km

H & V Daily

AMSR-E (Aqua) 2002–2011 6.9 GHz / 74 km � 43 km
10.7 GHz / 51 km � 30 km
18.7 GHz / 27 km � 16 km
23.8 GHz / 31 km � 18 km
36.5 GHz / 14 km � 8 km
89.0 GHz / 6 km � 4 km

H & V Daily

AMSR2 (GCOM-W1) 2012–present 6.9/7.3 GHz / 62 km � 35 km
10.7 GHz / 42 km � 24 km
18.7 GHz / 22 km � 14 km
23.8 GHz / 26 km � 15 km
36.5 GHz / 12 km � 7 km
89.0 GHz / 5 km � 3 km

H & V Daily

MIRAS (SMOS) 2010–present 1.4 GHz / *43 km � 43 km H & V Every 1–3 days

Abbreviations: SMMR, Scanning Multichannel Microwave Radiometer; SSM/I, Special Sensor Microwave/Imager; DMSP,
Defense Meteorological Satellite Program; TMI, Tropical Rainfall Measuring Mission (TRMM) Microwave Imager;
AMSR-E, Advanced Microwave Scanning Radiometer for EOS; AMSR2, Advanced Microwave Scanning Radiometer 2;
GCOM-W1, Global Change Observation Mission 1st – Water ‘SHIZUKU’; MIRAS, Microwave Imaging Radiometer with
Aperture Synthesis; SMOS, Soil Moisture and Ocean Salinity satellite.
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TOPMODEL-Based Land Surface-Atmosphere

Transfer Scheme (TOPLATS) model. Their

results showed that the assimilation of ESTAR

brightness temperature measurements led to

good soil moisture estimation not only in the sur-

face layer but also in the root zone. Mattia et al.

(2009) demonstrated that high spatial resolution

surface soil moisture could be estimated through

an integration of SAR data and hydrologic mod-

eling with a constrained minimization technique.

In their SAR retrieval algorithm, the hydrologic

model provided the background information

about soil moisture at coarse spatial resolution

based on the Antecedent Precipitation Index

(API) approach.

A great number of studies attempted to

improve soil moisture simulations in land mod-

els through the assimilation of microwave soil

moisture retrievals (i.e. soil moisture was

retrieved from microwave brightness tempera-

tures prior to data assimilation). As one of the

pioneer studies, for instance, Houser et al.

(1998) incorporated soil moisture derived from

the NASA L-band (1–2 GHz) push broom

microwave radiometer (PBMR) mounted on a

NASA C-130 aircraft into the hydrologic model

TOPLATS with several assimilation schemes.

Results showed that all the assimilation

schemes could produce substantial improve-

ment in surface soil moisture simulations. Sev-

eral studies (Ni-Meister et al., 2006; Reichle

and Koster, 2005; Reichle et al., 2007) assimi-

lated global surface soil moisture retrievals

from SMMR and AMSR-E into the NASA

Catchment LSM using the EnKF method. An

improvement in the simulated surface soil

moisture in terms of annual cycles and anoma-

lies demonstrated the potential of a sequential

assimilation of passive microwave remote sen-

sing information to monitor surface soil moist-

ure. In Draper et al. (2009), the EKF method

was applied to assimilate AMSR-E near-

surface soil moisture into the Interactions

between Surface, Biosphere, and Atmosphere

(ISBA) land model. The assimilation resulted

in an efficient updating of root-zone soil moist-

ure. More recently, multi-year near-surface soil

moisture observations by AMSR-E and ASCAT

were assimilated, separately or jointly, into the

Catchment LSM with the EnKF technique

(Draper et al., 2012). The study showed that the

soil moisture simulations could be improved

through the assimilation of either AMSR-E or

ASCAT soil moisture products. A joint

Table 3b. Summary of spaceborne active microwave sensors for soil moisture estimation.

Sensor/satellite Period of operation Frequency Polarization
Spatial
resolution Repeat cycle

SAR/ERS-1 1991–1999 5.3 GHz VV 30 m 35 days
SAR/ERS-2 1995–2011 5.3 GHz VV 25 m 35 days
ASAR/Envisat 2002–2012 5.3 GHz VV/HH, HV/HH, VH/VV 30–1000 m 35 days
SAR/TerraSAR-X 2007–present 9.6 GHz HH, VV, HV, VH 1–18 m 11 days
SAR/RADARSAT-1 1995–present 5.3 GHz HH 8–100 m 24 days
SAR/RADARSAT-2 2007–present 5.4 GHz HH, VV, HV, VH 3–100 m 24 days
SAR/JERS-1 1992–1998 1.3 GHz HH 18 m 44 days
PALSAR/ALOS 2006–present 1.3 GHz HH, VV, HV, VH 7–100 m 46 days
SCAT/ERS-1&2 1991–2011 5.3 GHz VV 25 km/50 km 3–4 days
ASCAT/Metop 2006–present 5.3 GHz VV 25 km/50 km 1–2 days

Abbreviations: ERS, European Remote Sensing Satellite; SAR, Synthetic Aperture Radar; ASAR, Advanced Synthetic
Aperture Radar; Envisat, Environmental Satellite; JERS, Japanese Earth Resources Satellite; PALSAR, Phased Array type
L-band Synthetic Aperture Radar; ALOS, Advanced Land Observing Satellite; SCAT, Scatterometer; ASCAT, the
Advanced Scatterometer.
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assimilation of two sensor products led to the

best soil moisture estimation.

During a flooding event, the affected areas

are usually characterized by wet pre-storm soil

moisture conditions (i.e. low microwave bright-

ness temperatures). This provides an opportu-

nity for improving streamflow forecasts by

using microwave remote sensing observations

to identify antecedent soil moisture conditions.

Jacobs et al. (2003) introduced the surface soil

moisture observed by ESTAR during the SGP97

hydrology experiment into a lumped rainfall-

runoff model. The ESTAR soil moisture retrie-

vals were applied to represent antecedent soil

moisture conditions and to update the curve

numbers and the runoff predictions based upon

a strong correlation between the curve number

and soil moisture in the Soil Conservation

Service (SCS) curve number method. Results

showed an enhancement in runoff forecasts

for the watersheds at different spatial scales.

Bindlish et al. (2009) used AMSR-E brightness

temperatures at two bands (6.9 GHz and 10.7

GHz) as inputs to a statistical adaptive model,

and enhanced streamflow simulations. Pauwels

et al. (2002) improved the simulated hydro-

graphs in TOPLATS through the assimilation

of ERS SAR soil moisture estimates using a sta-

tistical correction approach. Similarly, an EKF

method was applied to assimilate soil moisture

retrieved from ERS-1 SAR data into a lumped

rainfall-runoff model coupled with a land sur-

face scheme (Francois et al., 2003). The study

demonstrated that the sequential assimilation

of SAR data had the potential to improve hydro-

logic runoff simulations by quantifying uncer-

tainties in the model’s forcing data. Regarding

the earlier studies of assimilating ERS SAR soil

moisture retrievals into hydrologic models, we

refer the readers to a review paper by Loumagne

et al. (2001).

Crow et al. (2005) suggested that the predic-

tive capability of land surface’s response to pre-

cipitation was enhanced when TMI-derived

surface soil moisture was sequentially

assimilated into an API model. Brocca et al.

(2010) explored the impact on flood forecasting

of assimilating an ASCAT-based soil wetness

index in a rainfall-runoff model. Results revealed

that the assimilation of the ASCAT soil moisture

estimates via a simple nudging scheme led to an

enhancement in runoff prediction, in particular

when the initial soil wetness conditions are

undetermined.

The aforementioned efforts have demon-

strated that the adjusting and constraint of pre-

storm soil moisture conditions in hydrologic

models with remotely sensed soil moisture could

improve the characterization of antecedent soil

moisture conditions and therefore the prediction

of runoff response to subsequent rainfall. Crow

and Ryu (2009) proposed a new assimilation

scheme in which remotely sensed surface soil

moisture measurements were employed to simul-

taneously adjust both antecedent soil moisture

and rainfall accumulations during hydrologic

modeling. Their work was motivated by the addi-

tional capability of soil moisture data to filter

errors contained in satellite-based rainfall prod-

ucts (Crow and Zhan, 2007; Crow et al., 2009).

Preliminary results indicated that the new

approach outperformed those schemes which

considered only the calibration of antecedent

wetness conditions.

Until recently, X- and C-band spaceborne

microwave observations were dominant for sur-

face soil moisture assimilation. As mentioned

before, soil moisture derived from the newly

launched SMOS (L-band) holds a better geogra-

phical coverage than X- and C-band products.

Merlin et al. (2006) attempted to assimilate syn-

thetic SMOS-type soil moisture observations into

a distributed soil–vegetation–atmosphere trans-

fer (SVAT) model. Land data assimilation with

real SMOS soil moisture data has also started

(e.g. De Lannoy et al., 2011; Zhan et al., 2012).

The upcoming NASA Soil Moisture Active Pas-

sive (SMAP) mission is expected to further

enhance the capability to estimate soil moisture,

which will surely trigger more research efforts
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to assimilate new and potential satellite soil

moisture into land/hydrologic models.

3 Snow cover and snow water equivalent

The presence of snow has a strong impact on

the land surface energy and water budgets

because of its high albedo, low thermal con-

ductivity and water storage mechanism. In

middle to high latitude or alpine river basins,

spring and early summer runoff is usually

dominated by snowmelt. Hence snow infor-

mation is very important for numerical

weather prediction and land/hydrologic mod-

els. In general, snow accumulation and abla-

tion can be simulated either with an explicit

description of heat and water exchange pro-

cesses (an energy balance technique; e.g.

Cline and Carroll, 1999; Verseghy, 2000) or

using air temperature as the sole governing

index (a temperature index method; e.g.

Brasnett, 1999; Slater and Clark, 2006)

(Table 5).

Satellite remote sensing is capable of provid-

ing estimates on snow covered area (SCA) and

snow water equivalent (SWE). The SCA can

be estimated from snow reflectance characteris-

tics in medium/high resolution visible and

near-infrared observations (e.g. Moderate Reso-

lution Imaging Spectroradiometer, MODIS;

Advanced Very High Resolution Radiometer,

AVHRR; Landsat Thematic Mapper, TM)

(Hall et al., 2002; Painter et al., 2009;

Rosenthal and Dozier, 1996; Zhao and Fer-

nandes, 2009), while passive microwave sen-

sors (e.g. AMSR-E, SMMR, SSM/I) can

provide coarse-scale SWE estimation based

upon a brightness temperature gradient between

different microwave bands (e.g. Derksen, 2008;

Derksen et al., 2003; Foster et al., 2005; Kelly,

2009; Kelly et al., 2003). A review of the typ-

ical sensors and retrieval algorithms for SCA

Table 5. Summary of methods for snow representation in land/hydrologic models.

Models
Methods for simulating
snow processes References

A simple snowpack accumulation and melt
model by Brasnett (1999)

Temperature index Brasnett (1999)

A snowpack model developed by Clark
et al. (2006)

Temperature index Clark et al. (2006)

SNOW-17 model Temperature index Anderson (1973); Slater and
Clark (2006)

SPH-AV snow model Temperature index Roy et al. (2010)
MIKE SHE model Energy balance Abbott et al. (1986)
A snow energy and mass balance model

by Cline and Carroll (1999)
Energy balance Cline and Carroll (1999)

Mosaic land surface model (LSM) Energy balance Rodell and Houser (2004)
Noah LSM Energy balance Ek et al. (2003); Zaitchik and

Rodell (2009)
The Canadian Land Surface Scheme (CLASS) Energy balance Verseghy (2000)
The cold regions hydrological model (CRHM) Energy balance Pomeroy et al. (2007)
Catchment LSM Energy balance (multiple

layers)
Koster et al. (2000); Sun et al.

(2004)
Community Land Model (CLM) Energy balance (multiple

layers)
Bonan et al. (2002); Su et al.

(2008)
VIC model Energy balance (multiple

layers)
Andreadis and Lettenmaier

(2006)
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and SWE estimation was recently provided by

Dietz et al. (2012).

During the past decade, much attention has

been paid to the assimilation of satellite snow

products into land/hydrologic models (Tables

6a and 6b). For example, snow cover estimated

from visible and near-infrared satellite observa-

tions can be used to update the SWE simulations

in land/hydrologic models through a rule-based

direct insertion method. Rodell and Houser

(2004) introduced MODIS-derived snow cover

information into the Mosaic LSM based upon

a direct insertion scheme. Specifically, given a

location and time, if the LSM indicates snow but

the MODIS snow cover value is very low (e.g.

<10%), then the modeled SWE is adjusted to

zero. Conversely, if the LSM does not show

snow (i.e. SWE is 0) while MODIS provides a

high snow cover (e.g. >40%), then a thin layer

of snow is inserted into the model. A global

simulation of the Mosaic LSM showed that such

a simple updating approach could lead to

improvement in the simulated SWE. Tang and

Lettenmaier (2010) attempted to apply the

2000–2008 Terra MODIS daily snow cover

500 m resolution product (MOD10A1) to the

Variable Infiltration Capacity (VIC) snow

model with a similar updating technique. A case

study of the Feather River Basin, California,

indicated that the streamflow simulations dur-

ing snow-melting intervals could be consider-

ably affected by the addition of MODIS snow

cover observations to the model. Roy et al.

(2010) reported an improvement in spring

streamflow simulations through a direct inser-

tion of SCA products from MODIS and

NOAA/NESDIS Interactive Multisensor Snow

and Ice Mapping System (IMS), both separately

and jointly, into the snow model component of a

conceptual and lumped hydrologic model

MOHYSE. In their scheme, the modeled SWE

was adjusted to an empirical threshold value

when the model and observation showed a con-

tradiction. Although a direct insertion scheme

may be useful, a major deficit pertinent to its

application is that the updating does not quan-

tify the uncertainties in satellite observation and

model. The adding or removing of the modeled

snow guided by satellite observations with large

random errors may produce non-physical snow

estimation and therefore the dynamic imbal-

ances in the model. To mitigate this problem,

Zaitchik and Rodell (2009) proposed a so-

called forward-looking assimilation scheme

that sought an agreement between the modeled

snow and future satellite observations by modi-

fying the forcing air temperature and precipita-

tion. The method was applied to assimilate

MODIS SCA observations into the Noah LSM,

which led to more accurate snow estimation

than a direct-insert updating.

Andreadis and Lettenmaier (2006) used the

EnKF method to assimilate MODIS-derived

snow cover into the VIC macroscale hydrologic

model. The satellite SCA observation was

linked to the modeled SWE based upon a snow

depletion curve (SDC). The assimilation of

MODIS snow cover information improved the

VIC SWE estimation, especially during snow-

melt events. Su et al. (2008, 2010) also demon-

strated that the assimilation of MODIS snow

cover fraction (SCF) with the EnKF method

could enhance the SWE simulations in the Com-

munity Land Model.

Landsat TM images have also proved effec-

tive in mapping snow covered fraction (e.g.

Rosenthal and Dozier, 1996). Kolberg et al.

(2006) assimilated the SCA data based on

Landsat-7 Enhanced Thematic Mapper Plus

(ETMþ) imagery into the snow model compo-

nent of a gridded distributed rainfall-runoff

model. In the snow module, at each grid the

snow state was represented by a snow depletion

curve. A spatial model was proposed to provide

the prior distribution of the snow depletion

curves at all pixels, which was then updated

based upon Bayes’ theorem. A test over the cen-

tral Norwegian high mountain region indicated
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that the Bayesian assimilation of Landsat-7

ETMþ SCA significantly improved SWE

estimation.

On the other hand, the SWE estimated by

passive microwave sensors can be used to

directly update the SWE simulations in land sur-

face/hydrologic models (Table 6b). Andreadis

and Lettenmaier (2006) attempted to assimilate

AMSR-E SWE retrievals into the VIC model

using the EnKF method, although the results did

not show great promise. Generally, only a mar-

ginal enhancement in SWE simulations was

found for shallow snowpacks after assimilating

AMSR-E observations, while for deeper snow-

packs the assimilation even produced larger

SWE errors than the modeling without assimila-

tion. In their defense, this was related to large

biases in AMSR-E SWE retrievals. Dong et al.

(2007) assimilated SMMR-derived SWE esti-

mates into the Catchment LSM with the EKF.

The SWE resulting from the assimilation, rela-

tive to those from the free-running model or

SMMR alone, showed better agreement with

in-situ observations. Similar to Andreadis and

Lettenmaier (2006), Dong et al. (2007) also

pointed out that the assimilation performance

was not encouraging when remotely sensed SWE

contained substantial errors or the simulated

SWE values were very high. Dechant and Mor-

adkhani (2011) assimilated AMSR-E brightness

temperature data into a snow model (SNOW-

17) to predict the spatial distribution of SWE.

Their assimilation experiments indicated that the

PF method led to more accurate SWE prediction

than the EnKF. The snowmelt distribution

derived from the assimilation could benefit

streamflow forecasting in the SAC-SMA model.

More recently, progress has been made on the

joint use of MODIS SCA and AMSR-E SWE

products in hydrologic models. As examples,

Kuchment et al. (2010) integrated the daily

maps of both MODIS-derived SCA and

AMSR-E-based SWE into a physically based

snowpack model to obtain the spatial pattern

of snowpack characteristics. The combination

of the two data sets proved useful for the snow-

melt runoff hydrograph simulation in a physi-

cally based distributed hydrologic model. In

the study of De Lannoy et al. (2012), multi-

year data of AMSR-E SWE and MODIS SCF

observations are assimilated separately and

jointly into the Noah LSM with the EnKF tech-

nique. As shown for the shallow snowpack

events, the joint AMSR-E SWE and MODIS

SCF assimilation provided more realistic spatial

SWE patterns than when the two data sets were

assimilated separately.

In addition to land data assimilation usage,

remote sensing snow products have also been

used for model initialization and calibration.

For example, Tekeli et al. (2005) used the snow

depletion curves derived from the MODIS 8-

day snow cover product (MOD10A2) to initia-

lize a snowmelt runoff model, and demonstrated

that MODIS could provide reliable SCA estima-

tion for the simulations and prediction of snow-

melt runoff. Parajka and Blöschl (2008) showed

that MODIS snow cover products could be used

for the calibration of a semi-distributed hydrolo-

gic model, which resulted in an improved runoff

modeling.

4 Leaf area index

Leaf area index (LAI) plays a critical role in

estimating the amount of precipitation intercep-

tion and evapotranspiration (ET). LAI can be

estimated from visible/near-infrared satellite

observations (e.g. Chen and Cihlar, 1996;

Tucker et al., 2005) or using active LiDAR or

radar systems (e.g. Manninen et al., 2005; Mors-

dorf et al., 2006). The LAI data, which were

derived from NOAA-AVHRR NDVI (normal-

ized difference vegetation index) observations,

were utilized as inputs to a large-scale hydrolo-

gic modeling in the Senegal River Basin with

MIKE SHE (Andersen et al., 2002; Stisen

et al., 2008). The application of AVHRR

LAI observations in MIKE SHE exerted a sub-

stantial impact on the hydrograph and
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evapotranspiration simulations. The prediction

of discharge was considerably improved, and

the relative contribution of each component

to the total evapotranspiration was remark-

ably changed. Droogers and Kite (2002)

explored the potential of improving hydrolo-

gic modelling at different spatial scales

(field, irrigation scheme, and basin) using

AVHRR LAI data. The study suggested that

the use of AVHRR LAI measurements, in

combination with other public domain data,

in the SWAP (soil–water–atmosphere–plant)

and SLURP (semi-distributed, land-use-

based, runoff processes) models could pro-

vide a powerful tool for water resources

assessment.

A distributed hydrology-vegetation model uti-

lized the vegetation characteristics and LAI esti-

mated from Landsat TM as inputs to predict

evapotranspiration (Chen et al., 2005). An experi-

ment based on a small watershed in Saskatche-

wan, Canada, indicated that the mapped ET

results were similar to eddy-covariance ET mea-

surements recorded within the watershed. As

shown in Boegh et al. (2004), the LAI data based

upon Landsat TM and SPOT measurements were

employed to adjust the LAI simulated by a

coupled Daisy/MIKE SHE model. The remote

sensing-based average LAI was estimated for

each agro-hydrologic group response unit. The

simulated LAI was then adjusted based upon the

remotely sensed LAI. As a result, the prediction

of evapotranspiration and crop yields was

improved, although the ET simulation suffered

from the large-scale spatial variation in LAI.

The MODIS sensor aboard NASA’s Terra and

Aqua satellites offers an efficient remote sensing

tool for deriving LAI (e.g. Fensholt et al., 2004;

Huete et al., 2002; Myneni et al., 2002). Over the

last decade, MODIS-based LAI measurements

have been frequently utilized as one of the input

data sources for driving distributed hydrologic

models (Table 7). In particular, a combination

of MODIS-based LAI and hydrologic models has

the potential of improving ET estimation. Zhang

and Wegehenkel (2006) incorporated MODIS

LAI data into a grid-based soil water balance

model to estimate the spatial patterns of daily soil

moisture and actual evapotranspiration. The 8-

day LAI (MOD15A2) and 16-day NDVI

(MOD13A2) products at a spatial resolution of

1000 m were used to initialize the modeling.

Overall, the simulated soil water content and

actual ET rates were shown to be in good agree-

ment with in-situ observations. Andersen (2008)

demonstrated that MODIS-derived LAI data

(MOD15A2) were well suited for use in the

SVAT (Soil Vegetation Atmosphere Transfer)

model (coupled with MIKE SHE) to simulate

ET. Boegh et al. (2009) presented the use of

MODIS NDVI and LAI products in a physically

based agro/ecohydrologic model (Daisy) for eva-

potranspiration and runoff simulations at a wide

range of spatial scales (agricultural, forest, and

urban land surfaces). The study concluded that

much of the observed variability of streamflow

and eddy covariance latent heat fluxes could be

captured by the Daisy modeling system when

both the model and remote sensing data are avail-

able at appropriate scale to resolve spatial varia-

tions in land surface features.

The assimilation of remote sensing-derived

LAI in hydrologic models has also emerged

over the last decade. A constant gain Kalman

filter method was adopted by Vazifedoust

et al. (2009) to assimilate MODIS-based LAI

in a distributed SWAP model. The LAI data

were derived from 250 m spatial resolution

MODIS observations of the soil-adjusted

vegetation index based upon a logarithmic

relation between the two types of data sets.

The study showed that the assimilation of

MODIS-based LAI could result in better ET

and crop yield forecasts in the SWAP model.

5 Evapotranspiration

Evapotranspiration, accounting for precipita-

tion interception, land surface evaporation, and

plant transpiration, is an essential part of the

Xu et al. 483



T
a
b

le
7
.
R

ep
re

se
n
ta

ti
ve

ef
fo

rt
s

to
in

te
gr

at
e

M
O

D
IS

-b
as

ed
le

af
ar

ea
in

d
ex

(L
A

I)
an

d
la

n
d
/h

yd
ro

lo
gi

c
m

o
d
el

s.

A
u
th

o
rs

LA
I
d
at

a
D

at
a

p
er

io
d

La
n
d
/h

yd
ro

lo
gi

c
m

o
d
el

s
In

te
gr

at
io

n
m

et
h
o
d
s

St
u
d
y

re
gi

o
n

Z
h
o
u

et
al

.
(2

0
0
4
)

M
O

D
1
5
A

2
(M

O
D

IS
8
-d

ay
LA

I)
p
ro

d
u
ct

(r
es

o
lu

ti
o
n
:
1

km
)

O
ve

r
2
0
0
0

T
h
e

th
re

e-
la

ye
r

va
ri

ab
le

in
fil

tr
at

io
n

ca
p
ac

it
y

(V
IC

-3
L)

m
o
d
el

M
O

D
IS

LA
I
u
se

d
as

m
o
d
el

in
p
u
ts

T
h
e

B
ao

h
e

R
iv

er
b
as

in
(d

ra
in

ag
e

ar
ea

o
f

*
2
5
0
0

km
2
),

C
h
in

a
Z

h
an

g
an

d
W

eg
eh

en
ke

l
(2

0
0
6
)

M
O

D
IS

1
6
-d

ay
N

D
V

I
(M

O
D

1
3
A

2
)

an
d

8
-d

ay
LA

I
(M

O
D

1
5
A

2
)

(r
es

o
lu

ti
o
n
:

1
km

)

1
Ja

n
u
ar

y
2
0
0
1

to
3
1

D
ec

em
b
er

2
0
0
3

A
gr

id
-b

as
ed

so
il

w
at

er
b
al

an
ce

m
o
d
el

M
o
d
el

in
p
u
ts

T
h
e

U
ck

er
ca

tc
h
m

en
t

(2
4
1
5

km
2
)

in
n
o
rt

h
ea

st
er

n
G

er
m

an
y

A
n
d
er

se
n

(2
0
0
8
)

M
O

D
1
5
A

2
p
ro

d
u
ct

(r
es

o
lu

ti
o
n
:
1

km
)

1
O

ct
o
b
er

2
0
0
5

to
3
0

Se
p
te

m
b
er

2
0
0
6

M
IK

E
SH

E
SV

A
T

(S
o
il

V
eg

et
at

io
n

A
tm

o
sp

h
er

e
T

ra
n
sf

er
)

m
o
d
el

M
o
d
el

in
p
u
ts

T
h
e

A
n
d
ar

ax
R

iv
er

b
as

in
(2

2
6
5

km
2
),

Sp
ai

n

B
o
eg

h
et

al
.
(2

0
0
9
)

LA
I
b
as

ed
u
p
o
n

M
O

D
IS

5
0
0

m
(M

O
D

1
3
A

1
)

an
d

1
km

(M
O

D
1
3
A

2
)

N
D

V
I

2
0
0
1
–
2
0
0
2

gr
o
w

in
g

se
as

o
n
s

T
h
e

ag
ro

-h
yd

ro
lo

gi
ca

l
m

o
d
el

D
ai

sy
T

h
e

LA
I
si

m
u
la

ti
o
n

w
as

ad
ju

st
ed

to
m

at
ch

M
O

D
IS

LA
I

T
h
e

is
la

n
d

o
f
Sj

æ
lla

n
d

(7
3
3
0

km
2
),

D
en

m
ar

k

V
az

ife
d
o
u
st

et
al

.
(2

0
0
9
)

LA
I
b
as

ed
u
p
o
n

2
5
0

m
M

O
D

IS
es

ti
m

at
io

n
o
f
SA

V
I
(s

o
il-

ad
ju

st
ed

ve
ge

ta
ti
o
n

in
d
ex

)

M
ar

ch
to

M
ay

2
0
0
5

T
h
e

p
h
ys

ic
al

ly
b
as

ed
so

il–
w

at
er

–
at

m
o
sp

h
er

e–
p
la

n
t

(S
W

A
P
)

m
o
d
el

A
ss

im
ila

ti
o
n

w
it
h

a
K

al
m

an
fil

te
r

T
h
e

B
o
rk

h
ar

ir
ri

ga
ti
o
n

d
is

tr
ic

t
(8

3
3

km
2
),

Ir
an

T
.
Li

u
et

al
.
(2

0
1
2
)

LA
I
b
as

ed
u
p
o
n

M
O

D
IS

N
D

V
I

(r
es

o
lu

ti
o
n
:
1

km
)

1
M

ay
to

3
1

D
ec

em
b
er

2
0
0
5

M
IK

E
SH

E
M

o
d
el

in
p
u
ts

T
h
e

T
ar

im
R

iv
er

b
as

in
in

C
h
in

a
(t

h
e

m
o
d
el

d
o
m

ai
n

is
1
3
2
,8

0
0

km
2
)

484



hydrologic cycle. Evapotranspiration rates are

subject to meteorological factors, soil character-

istics, vegetation, surface parameters, etc., and

therefore usually exhibit substantial spatial

variability. Remote sensing cannot provide a

direct measurement of evapotranspiration. Sur-

face energy balance models are usually required

to estimate ET from satellite measurements.

Satellite thermal infrared and optical data are

suitable for estimating evapotranspiration (e.g.

Bastiaanssen et al., 1998; Jiang and Islam,

2001; Loheide and Gorelick, 2005; Stisen

et al., 2008). Potential evapotranspiration (PET)

can be derived from satellite estimation of sur-

face radiation (Makkink, 1957). Radiation-

based PET derived from geostationary satellite

visible/infrared data has been used as one of key

inputs to large-scale hydrologic modeling over

the last decade (e.g. Shu et al., 2010; Stisen

et al., 2008). Satellite observations of NDVI and

LAI can also be used to estimate PET. Zhou

et al. (2006) demonstrated the potential of

AVHRR NDVI data to provide PET for a dis-

tributed hydrologic model.

Boegh et al. (2004) utilized evapotranspira-

tion rates, which are calculated based upon

surface and radiation parameters derived from

Landsat TM and SPOT data, to validate ET

simulated by a coupled Daisy-MIKE SHE

model. The result showed good agreement

between the simulated ET and remote sensing

measurements. Kamble and Irmak (2008)

attempted to assimilate ET, which was derived

from Landsat TM/ETM data with a surface

energy balance model, into a SWAP model.

The assimilation of Landsat-based ET using

genetic algorithms led to a moderate enhance-

ment in the SWAP’s capability to predict soil

moisture.

MODIS data in combination with the Surface

Energy Balance Algorithm for Land (SEBAL;

e.g. Bastiaanssen et al., 1998) are able to pro-

vide actual ET for hydrologic modeling (Table 8).

SEBAL solves the energy budget equation by

converting satellite radiances into land surface

heat and vegetation parameters. Immerzeel and

Droogers (2008) demonstrated the capability of

MODIS/SEBAL-derived ET to calibrate the

SWAT (Soil and Water Assessment Tool) model

that can simulate, on a daily time step, the hydro-

logic processes involving rainfall, surface runoff,

subsurface flow, groundwater, and evapotran-

spiration (Arnold and Fohrer, 2005). To minimize

the difference between the measured and mod-

eled ET values, a non-linear parameter estima-

tion algorithm was built to adjust some model

parameters and inputs such as land use, soil,

or precipitation via a number of optimization runs

based upon different parameter combinations. As

shown for the best optimization run, the correla-

tion between the simulated and observed actual

ET was significantly improved.

Qin et al. (2008) attempted to predict the

water balance for the Haihe River basin by

assimilating MODIS-based ET by the SEBS

(Surface Energy Balance System algorithm;

Su, 2002) into a physically based distributed

model. The assimilation using the EKF tech-

nique was shown to be superior to the open loop

(free-run) in mapping the finescale structure of

actual ET. Vazifedoust et al. (2009) assimilated

MODIS/SEBAL-derived relative evapotran-

spiration (the ratio of actual ET and PET) into

the SWAP model using a constant gain Kalman

filter method. Results showed that the assimila-

tion of MODIS-based relative ET information

produced only a marginal impact upon the simu-

lated LAI and crop yield.

In addition to SEBAL, other algorithms have

also been developed to estimate actual ET from

MODIS observations, e.g. the Penman-Monteith

equation (Leuning et al., 2008). Zhang et al.

(2009) explored the use of remote sensing-based

actual ET, which was derived from MODIS LAI

data using the Penman-Monteith equation, in

a lumped-type rainfall-runoff modeling. More

accurate runoff simulations in ungauged catch-

ments were produced on a daily and a monthly

basis when the model was calibrated with

both MODIS-based actual ET and the observed
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streamflow as compared to the calibration using

only the streamflow measurements.

IV Discussion

This paper provides the status of integrating

land/hydrologic models and remotely sensed

hydrologic products (precipitation, surface soil

moisture, SCA, SWE, LAI, and ET) over the

past decade. The main efforts in this field

include: (1) the use of satellite and radar preci-

pitation data in driving hydrologic models; (2)

the assimilation of microwave soil moisture

products (mainly from SMMR, AMSR-E, and

ASCAT) in land surface and hydrologic models

to update soil moisture simulations or to identify

antecedent soil moisture conditions; (3) the

assimilation of MODIS snow cover and

AMSR-E SWE in land models; and (4) the

model calibration, initialization, and validation

using LAI and ET derived from optical observa-

tions (mainly MODIS, AVHRR, and Landsat

TM) and their preliminary assimilation. These

studies have suggested that the integration of

remote sensing data and land/hydrologic model-

ing can offer benefits to hydrologic forecasts,

especially through advanced data assimilation

methods. In practice, however, the integration

of remote sensing and land/hydrologic model-

ing is often complex, and has faced a number

of critical problems and challenges.

1 Considerable uncertainties and biases
in remotely sensed products

Since the hydrology and Earth system contains

various complex, non-linear stochastic pro-

cesses, subtle errors in the forcing fields can

cause very large uncertainties in model outputs.

Hence, the quality (both accuracy and preci-

sion) of remote sensing-based hydrologic vari-

ables exerts a critical impact on the predictive

capability of hydrologic and land surface mod-

els. Remotely sensed products usually contain

substantial uncertainties and biases, which

depend on a wide range of factors, such as sen-

sor type (wavelength, resolution, polarization,

etc.), cloud cover, vegetation cover, retrieval

algorithm, and physical connection between

retrievals and measurements. To improve retrie-

vals from remote sensing measurements, an

efficient way is to use multi-sensors (including

in-situ measurements-adjusted remotely sensed

products). For example, satellite precipitation

can be estimated from visible/infrared and

microwave measurements. However, each sen-

sor type may suffer from its weakness inherent

in measurements (Table 2). Microwave sensors

onboard polar-orbiting satellites can directly

detect precipitation hydrometeors and the over-

lying cloud layer, but generally have relatively

coarse spatial (10–20 km) and temporal (1–2

visits per day) sampling frequency. The visi-

ble/infrared measurements from geostationary

satellites can offer a much higher time resolu-

tion (hourly or finer), but have a poor physical

connection to precipitation since rainfall rates

are derived from cloud-top temperatures. A

combination of the visible/infrared and passive

microwave techniques could counteract the

shortcomings in each product/sensor type and

produce a more reliable high spatial and temporal

resolution precipitation field (e.g. Huffman

et al., 2007; Joyce et al., 2004), which may be more

appropriate for driving high-resolution distributed

hydrologic models (e.g. Pereira-Cardenal et al.,

2011). Kitzmiller et al. (2011) demonstrated that

QPE from the merged satellite-radar-gauge

observations had the better potential to improve

finescale hydrologic modeling.

New sensor technologies can improve the

accuracy of remote sensing retrievals. For

example, as indicated by some studies (e.g.

Ryzhkov et al., 2005), polarimetric radars can

effectively identify the variability of raindrop

size distribution and therefore improve rainfall

estimation. For surface soil moisture estimation,

the recently launched L-band sensor SMOS/

MIRAS (Kerr et al., 2012) is more effective in

vegetated regions than those operating at higher
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microwave frequencies (e.g. X- and C-band

AMSR-E observations).

Advanced data assimilation schemes can

optimally merge remote sensing observations

into models by taking into account the model

and measurement uncertainties. For instance,

Francois et al. (2003) showed that a direct inser-

tion of ERS-1 SAR-derived soil moisture into a

lumped rainfall-runoff model did not improve

streamflow prediction. By contrast, the sequen-

tial assimilation of SAR soil moisture with the

EKF method had the potential to constrain the

uncertainties in the forcing data and the model,

thus improving runoff simulations. Note that

advanced data assimilation schemes measure

only random observational errors, and biases

(systematic errors) in remotely sensed products

will impact their ability to produce the best esti-

mate. For example, large biases contained in the

AMSR-E SWE product did not cause satisfactory

assimilation outcomes (Andreadis and Lettenma-

ier, 2006). If observations biases are known, they

should be removed prior to the assimilation.

Unfortunately biases in remotely sensed products

are difficult to estimate in practice due to their

complicated variations in space and time. The

development of bias correction schemes is an

important ongoing research activity.

2 The model-measurement scale
discrepancy

Surface soil moisture and SWE derived from

spaceborne passive microwave sensor observa-

tions (e.g. AMSR-E, SMMR, SSM/I, SMOS) are

of particular value for land/hydrologic modeling,

but typically have a relatively coarse spatial res-

olution (>25 km). With the rapid increase in

computing power, on the other hand, the opera-

tional distributed hydrologic/land surface models

can be available at very high resolution (�1 km

in space). This results in an increased demand for

integrating coarse-scale remote sensing products

and finescale land/hydrologic simulations. Tradi-

tionally, coarse resolution observations are

disaggregated into the finer model grids prior

to being added into the model (e.g. Andreadis

and Lettenmaier, 2006; Merlin et al., 2006). This

simplistic treatment may be useful, but the inter-

polation errors contained in the disaggregated

products are likely to be introduced to the model.

A combination of remotely sensed products

across different spatial scales can be used to

improve an a priori disaggregation scheme that

resamples coarse-scale observations into the

finescale model grids prior to data assimilation.

As we know, for example, satellite snow products

typically include snow cover from visible/near-

infrared observations (e.g. MODIS, AVHRR,

Landsat TM) and SWE from passive microwave

sensors (e.g. AMSR-E, SMMR, SSM/I). Snow

cover data usually have a good spatial resolution

(<1 km), but are valid only for daytime and

cloud-free conditions, while microwave SWE

estimates hold the advantage of continuous cover-

age during day/night, but generally suffer from

their relatively coarse spatial resolution. Merging

coarse-scale microwave SWE measurements with

finescale visible/near-infrared snow cover data

(e.g. Gao et al., 2010; Liang et al., 2008) could

produce more reliable disaggregated snow prod-

ucts for high resolution distributed hydrologic

simulations (e.g. Kongoli et al., 2007).

Modern data assimilation provides an effective

framework for directly merging satellite measure-

ments and models that differ in resolution/scale.

De Lannoy et al. (2010) investigated the assimila-

tion of synthetic coarse-scale microwave SWE

observations into the finescale Noah LSM with

the EnKF. The study assessed two downscaling

schemes: a direct assimilation of coarse-scale

observations by the use of a scaling observation

operator and a disaggregation of coarse-scale

observations to the finescale model grids prior to

data assimilation. Results showed that the direct

assimilation approach was more efficient than the

prior disaggregation scheme. The use of an influ-

ence radius (i.e. inclusion of observations from

neighboring pixels) could improve the assimila-

tion performance in both schemes. A joint
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assimilation of multi-sensor observations proved

to be the most efficient in simulating both the

overall and finescale structures of land variables

(e.g. De Lannoy et al., 2012; Draper et al., 2012).

3 Statistical biases between remotely
sensed and modeled state variables

Theoretically, advanced assimilation schemes

can dynamically integrate remote sensing

observations and model simulations to pro-

duce an optimal estimate of the state variable

of interest. In reality, however, the assimila-

tion of remote sensing data in land/hydrologic

models may be complex because of inherent

differences between remote sensing and model

simulations. Remote sensing is an indirect

measurement of land and hydrologic para-

meters, and reflects only instantaneous ‘true’

values of the object within the sampled area

(instantaneous field of view, IFOV) at the

observing time. By contrast, a model simulates

the state of hydrologic and land parameters at

desired spatial and temporal scales based upon

their continuous evolution in time and space,

which is governed by internal physics pro-

cesses and dynamic mechanisms, initial condi-

tions, and forcing (boundary conditions). Hence

statistical differences between remotely sensed

and modeled variables are very likely.

For instance, satellite-based and modeled

soil moisture showed different mean value and

probability distribution (Reichle and Koster,

2004; Reichle et al., 2004), which could be

a major impediment for optimally merging the

two data sets. To mitigate the satellite-model

biases impact on satellite soil moisture assim-

ilation, a priori observation rescaling by

matching the cumulative distribution functions

of the two data sets could be useful and prac-

tical (Crow et al., 2009; Draper et al., 2012;

Reichle and Koster, 2004, 2005), although

new random errors generated in satellite prod-

ucts due to rescaling cannot be entirely ruled

out. Another method to remove the biases is

that the land/hydrologic model is calibrated

using the climatology of satellite soil moisture

observations, but the optimized model para-

meters may show large spatial variability than

those based upon the traditional soil texture

(Kumar et al., 2012).

4 Difficulty in quantifying observation
error covariances

In a data assimilation system, the input error

covariances reflect the uncertainties (random

errors) in model forecast (background) and

observation, and strongly affect to what extent

the forecast will be modified to fit the observa-

tions. Their accurate specification is therefore

crucial to the success of the analysis. Observa-

tion error covariances usually result from both

instrumental errors and representativeness

errors. The former can be estimated according

to the precision of a measurement instrument,

while the latter are caused mainly by the misfit

between an observation space and a model

space. Since remote sensing observations are

indirect measurements, their preprocessing

(retrieval and interpolation algorithms) will

introduce substantial representativeness errors

and error correlations. Further, if the retrieval

procedure involves the background informa-

tion, the observation and the background errors

will be not completely independent. Hence the

estimate of representativeness errors is critically

important to the assimilation of remote sensing

data. In reality, however, these error character-

istics are complex, and are difficult or impossi-

ble to completely estimate since they are subject

to a number of factors (platform, vegetation

cover, observation operator, regridding, etc.).

Some approximations could be efficient. For

example, the error probability densities are

assumed to be Gaussian, and observation error

correlations are assumed to be zero, although

such approximations will raise other problems

(discussed below).
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5 Limitation of Gaussian assumption

Data assimilation provides a framework for

optimally merging remotely sensed observa-

tions and land/hydrologic modeling, and repre-

sents the current state-of-the art in quantitative

use of remotely sensed data in models. The

Earth and hydrologic system is dominated by

various non-linear stochastic processes, which

in turn are affected by noise sources. In this

way, a general land/hydrologic data assimila-

tion problem can be described as estimating the

probability density function (PDF) of the under-

lying system based upon the model prediction

and the observation. The solutions to the prob-

lem can be represented by statistical parameters,

such as means, medians, modes, or variances.

Bayesian filtering is optimal for seeking the

posterior PDF conditioned on the observations

(Gordon et al., 1993; Malakoff, 1999). When

it comes to assimilating remotely sensed hydro-

logic products into land surface/hydrologic

models, the KF and its variants (EKF, EnKF)

have been dominantly employed in this field

over the past decade. The KF can be viewed

as a special case of Bayesian filtering under the

linear/Gaussian (i.e. normal distribution) situa-

tion. In other words, the KF is based upon the

assumption of linear systems and Gaussian dis-

tributions in the predicted and measured error

statistics. Its variants (e.g. EKF, EnKF) can

solve the optimal estimation problem for some

non-linear systems, but still hold the Gaussian

assumption. In reality, however, non-linear,

non-Gaussian circumstances are the most com-

mon. In a non-linear system, the non-Gaussian

forecast errors could be produced as the system

evolves even if the error distributions are ini-

tially Gaussian (Evensen and van Leeuwen,

2000; Miller et al., 1999). The EKF often fails

to track the state space in a strongly non-linear

system which has a highly skewed PDF (e.g.

Miller et al., 1999).

The EnKF usually performs better than the

EKF for high dimension systems since the

former uses a Monte Carlo method, instead

of a linearized and approximate error covar-

iance equation in the latter, to solve the

Fokker-Planck equation for the time evolu-

tion of the model state PDF. Nevertheless,

the EnKF scheme may also fail in cases

where a satisfactory estimator cannot always

be well represented by the ensemble mean

(e.g. Bengtsson et al., 2003). Reichle et al.

(2002) showed that due to the impact of

model non-linearity, the PDF of the modeled

soil moisture under very wet or dry states

became skewed, and was far from Gaussian.

In this situation, the EnKF could not provide

an optimal estimation since the analysis step

ignored the asymmetric distribution and used

only the first two moments (the mean and the

covariance) of the PDF. Crow and Wood

(2003), in their brightness temperature assim-

ilation experiments for soil moisture estima-

tion, also suggested that the EnKF may not

yield satisfactory results when the underlying

error structures are significantly non-

Gaussian.

A general non-linear filter (non-linear/non-

Gaussian) is expected to be efficient when

used for the non-linear dynamic models with

considerably skewed PDF for the predicted

errors (e.g. multi-modal structure) (Han and

Li, 2008; Miller et al., 1999). Non-linear/

non-Gaussian filters can be implemented

through particle interpretations (e.g. Pham,

2001) or kernel approximation (Miller et al.,

1999). For example, the PF method uses a set

of particles (sampled from a proposal distribu-

tion) with associated importance weights to

approximate the posterior PDF. In theory, the

PF is suitable for all types of systems (linear

or non-linear) and PDFs (Gaussian or non-

Gaussian) due to the ability to track the full

state space (Arulampalam et al., 2002). Some

researchers have conducted satellite snow

assimilation with the PF (e.g. Dechant and

Moradkhani, 2011) and the preliminary results

showed promise.
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V Conclusions

Studies have suggested that remote sensing data

hold great potential to improve the predictive

capability of land/hydrologic models, especially

through advanced data assimilation schemes.

The encouraging results will warrant further

research efforts in integrating remotely sensed

products and land/hydrologic models. Future

research directions should be focused upon the

following: (1) development of techniques to

combine multiple and complementary remote

sensing sources to provide the disaggregated

products for hydrologic modeling; (2) joint

assimilation of multi-scale, multi-sensor prod-

ucts in land/hydrologic models; (3) application

of general data assimilation approaches (e.g.

non-linear/non-Gaussian filters); (4) further

development of the techniques that are suitable

for satellite LAI and ET data assimilation; (5)

integration of new and potential sensor products

(e.g. soil moisture from the planned SMAP mis-

sion; snow water equivalent from AMSR2) with

land/hydrologic models.
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