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Abstract—This paper presents a supervoxel-based approach for
automated localization and extraction of street light poles in point
clouds acquired by a mobile LiDAR system. The method consists
of five steps: preprocessing, localization, segmentation, feature ex-
traction, and classification. First, the raw point clouds are divided
into segments along the trajectory, the ground points are removed,
and the remaining points are segmented into supervoxels. Then,
a robust localization method is proposed to accurately identify
the pole-like objects. Next, a localization-guided segmentation
method is proposed to obtain pole-like objects. Subsequently,
the pole features are classified using the support vector machine
and random forests. The proposed approach was evaluated on
three datasets with 1,055 street light poles and 701 million points.
Experimental results show that our localization method achieved
an average recall value of 98.8%. A comparative study proved
that our method is more robust and efficient than other existing
methods for localization and extraction of street light poles.

Index Terms—Point clouds, supervoxel, localization, segmenta-
tion, classification.

I. INTRODUCTION

S TREET light poles play an important role in transportation
systems as they provide light for pedestrians, vehicles

and road surveillance cameras during the night [1]. They
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can significantly reduce the frequency of nighttime crashes,
especially for roadway intersections [2]. Geospatial informa-
tion of street light poles has been used in many applications
including urban planning, environmental impact assessment,
Intelligent Transportation Systems (ITS), disaster management
[3]. For ITS related applications, the information of street light
poles can be used for road infrastructure maintenance, road
safety analyses, advanced driver assistance, semantic mapping,
and smart city applications. For instance, for a driver assistance
system, the position of street light poles can be used to improve
the stability of road tracking [4]. Therefore, regular inventory
and maintenance of street light poles is important. Due to the
large number of street light poles on road, traditional manual
survey methods are extremely time-consuming. A rapid and
robust method is highly needed to obtain street light pole
information.

In recent decades, several methods have been proposed to
extract street light poles from images [5]. However, image
based methods have several significant limitations, including
the lack of geospatial and reflectivity intensity information, the
image distortions caused by camera lens, and the image change
due to illumination variations. Consequently, traditional optical
imaging-based systems might not be able to understand a road
scene correctly in a poor condition.

Recently, mobile LiDAR systems have been rapidly devel-
oped. 3D points and reflectivity intensity of road scenes can
be acquired by LiDAR sensors equipped on a vehicle [6].
Compared to optical imaging-based systems, mobile LiDAR
systems can obtain accurate geospatial and reflectivity intensity
information. Besides, they are more robust to illumination
variations and image distortions. Compared to airborne LiDAR
systems, mobile LiDAR systems have a better view of steep ter-
rain and the sides of structures. Moreover, the density of point
clouds acquired by mobile LiDAR systems is also higher than
airborne LiDAR systems. Therefore, mobile LiDAR systems
are more suitable for road scene understanding and have been
used in several ITS applications [7]–[10]. Due to these reasons,
extraction of street light poles in mobile LiDAR point clouds
has attracted increasing number of attention in the last few years
[3], [11]–[13]. An example of street light pole extraction in
point clouds is shown in Fig. 1.

Point cloud segmentation is a key step for street light pole
extraction in point clouds. Nowadays, although several point
cloud segmentation methods for pole-like objects have been
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Fig. 1. Example of street light pole extraction in point clouds. (a) Input point
cloud. (b) Street light pole extraction results in point clouds.

proposed [3], [11]–[15], accurate and rapid pole-like object
segmentation in complex scenes is still an unsolved problem.
Both under-segmentation and over-segmentation will deterio-
rate the performance of existing street light pole extraction
methods for point clouds [3], [11]–[13].

In this paper, we propose a novel guided approach for auto-
matic street light pole extraction from 3D point clouds acquired
by a mobile LiDAR system. The ground points are first removed
and non-ground points are then segmented into supervoxels.
Once the localization of pole-like objects is obtained, an ef-
ficient prior information guided segmentation method is pro-
posed to acquire pole-like objects. Next, two types of features
are generated to describe the pole-like objects. Finally, Sup-
port Vector Machine (SVM) and random forests are employed
for object classification. The contributions of this paper are
three-folds:

• We propose an efficient, robust and automatic method
to locate pole-like objects. It consists of three parts.
First, the initial localization map is generated by pro-
jecting points on to a plane with a designed function.
A “ball falling” algorithm is then proposed to improve
the robustness of localization with respect to point den-
sity variations. Finally, the accurate positions of pole-
like objects is detected. Our localization method achieves
good performance on scenes with occlusion and density
variations.

• We propose a guided segmentation method. Using the
prior information of localization, the supervoxels close to
a detected position are more likely to be determined as a
pole-like object located at that position. The segmentation
method is also robust to occlusion, missing data, density
variations.

• We propose a street light pole extraction method using
SVM and random forests. The two classifiers depend on
two types of features obtained from guided segmentation
results. The method is also robust to occlusion.

The remainder of this paper is organized as follow. Section II
introduces the related work on street light pole extraction and
patches generation in point clouds. Section III describes our
method. Section IV evaluates our method and analyses the
experiment results. Section V gives the concluding results.

II. RELATED WORK

A. Labeling of Street Light Poles in Images and Point Clouds

Abdalla et al. [5] used a sequence of image filters and a cross
correlation operation to extract street light poles in images.
However, the method is not fully automatic.

Existing methods for street light pole extraction in point
clouds are mainly based on shape features [11], [12], prior
knowledge [13], and shape template matching [3]. A segmen-
tation method was presented to extract street light poles using
k-nearest neighbors, Principal Component Analysis (PCA), and
contextual/shape features [11]. Eigenvalue analysis and linear
features were also used to extract street light poles [12]. The
methods in [11], [12] used k-nearest neighbors to cluster points,
which is not robust to occlusion. Hu et al. [13] used the Density
of Projection Points (DoPP) to extract street light poles based
on the heights of street light poles. The method has to manually
determine an optimal height threshold. The Normalized Cut
(Ncut) [16], [17] and the shape template matching methods
were also proposed [3] to extract street light poles.

Aforementioned approaches for street light pole extraction
in mobile LiDAR point clouds are limited by various factors
including occlusion, clutters, incomplete data, density varia-
tions of point clouds, and high computational complexities.
Particularly, for scenes with occlusion and clutters [as shown
in Fig. 1(a)], most existing methods are not sufficiently robust.
That is because the performance of these street light pole ex-
traction methods highly relies on their point cloud segmentation
results. However, due to the lack of prior information, the
segmentation results are usually inaccurate. As a result, feature
description can be biased and classification performance will
be declined. Consequently, their street light pole extraction
performance in occluded scenes is unstable.

In summary, the major challenge for street light pole ex-
traction in point clouds is how to improve the efficiency and
robustness with occlusion, clutter, and incomplete data.

B. Studies on 3D Patch Extraction

Several existing point cloud processing algorithms are too
time-consuming as the data are treated in a point-wise manner.
In order to accelerate the point cloud processing algorithms,
over-segmentation methods have been proposed [18]–[22].
These methods are similar to the superpixel approaches that
have been widely used in image processing [23], [24]. Using
an over-segmentation method, a point cloud can first be divided
into a number of patches and the processing can then be oper-
ated in a patch-wise manner (rather than a point-wise manner).
Since the number of patches is much smaller than the number of
points in a point cloud, the efficiency of point cloud processing
can be significantly improved. Consequently, patch is treated as
the basic processing unit in this paper.

In [18], the partition of a point cloud was achieved by an
octree [25]. Local patches were then extracted according to the
leaves of the octree. The number of local patches is related
to the number of whole points and the size of octree leaves.
A major limitation of this method is that the interior shape
structure is discarded. The methods [19]–[21] simply extended
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Fig. 2. Flowchart of the street light pole extraction pipeline.

the 2D superpixel segmentation algorithms to the domain of 3D
volumes. These approaches cannot work on 3D point clouds
because they are limited to data with a structured lattice (e.g.,
2D images, 3D volumetric data). Papon et al. [22] proposed
a Voxel Cloud Connectivity Segmentation (VCCS) method to
take full advantage of 3D geometry information. The points
with similar normals, colors, and Fast Point Feature Histograms
(FPFHs) [26] are clustered into a supervoxel. Since VCCS can
greatly reduce the point cloud processing time [27], it is used in
our work for 3D patch extraction.

III. THE PROPOSED METHOD

As shown in Fig. 2, our method consists of five main stages:
(1) Ground points are removed and non-ground points are
segmented into supervoxels (Section III-A); (2) The charac-
ters of street light poles are used to locate pole-like objects
(Section III-B); (3) Pole-like objects are obtained by a guided
segmentation method (Section III-C); (4) Two types of fea-
tures are calculated for pole-like objects (Section III-D); and
(5) street light poles are recognized by SVM and random forests
(Section III-E).

The workflow of the proposed method is shown in Fig. 2 and
the result for each step of the proposed approach is shown
in Fig. 3.

A. Ground Filtering and Supervoxel Generation

1) Ground Filtering: First, the raw point clouds are verti-
cally divided into segments along the trajectory of a vehicle to
achieve high efficiency of the filtering process [9], [28]. Then,
the Random Sample Consensus (RANSAC) algorithm [29]
is applied to remove the points which are close to the ground
points. The average height of ground, hg, is estimated through

initial plane fitting. In each RANSAC iteration, the plane
function is obtained. Then, if the distance from an un-classified
point to the plane is less than a predefined threshold dt, this
point is classified as ground points.

For each iteration, this process is repeated for all unclassified
points. The iteration continues until the height of one point in
the iteration point set is higher than hg + 1 or the number of
points generated by RANSAC remains unchanged. An illustra-
tion of the ground filtering results is shown in Fig. 3(b). Once
the ground points are removed, the non-ground points with
similar features are then segmented into a supervoxel through
VCCS [22].

The points in each supervoxel are then projected onto the
XY plane to obtain the area of the convex hull [30] with
cross product. Next, several features are calculated for each
supervoxel. These features include (1) the number of points;
(2) the highest point; (3) the lowest point; (4) the barycenter of
points; (5) the area of the convex hull of the projected points;
(6) the bounding box. Each supervoxel is assigned a specific
ID while the ID of an unclassified supervoxel is assigned
to −1.

B. Localization

There are two distinctive characters for street light poles.
(1) Street light poles are usually higher than other road fa-
cilities; (2) the area of cross section of a street light pole
is nearly the same from bottom to up and is smaller than
that of common urban trees. Inspired by these observations, a
localization method is proposed based on the height and the
2D projection image of a point cloud. The localization method
includes three parts, i.e., initial localization map generation,
“ball falling,” and position detection. The localization result is
then used as prior information for segmentation. An illustration
of the localization map generation process is shown in Fig. 4.
For better visualization, the localization map is inverted to
generate Figs. 4(d)–(f). That is, each pixel in Figs. 4(d)–(f) is
calculated by subtracting the pixel value in the localization map
from the maximum pixel value.

Initial localization map generation
(1) Grid Filtering: The raw point clouds are firstly divided

into grids along the x and y axes [see Fig. 4(a) and (b)]. The
maximum value along the z axis, z′, in a grid is obtained. If
z′ is within a pre-defined range (hlow, hhigh), the grid is kept.
Otherwise, it is removed.

(2) Projection: Equation (1) is used to obtain f(z) for point
p(x, y, z) in each remaining grid. The function f(z) is defined
as follows:

f(z) =
1

exp(−(z − hlamp

2 )) + 1
(1)

where hlamp is the height of the street light pole and can be
obtained by manual measurement in point clouds. Then, the
sum of f(z) values for all the points p(x, y, z) belonging to
a grid is calculated. The maximum value of these sums in all
grids is denoted by f ′.
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Fig. 3. Illustration of the results for each step of the street light pole extraction method. (a) Raw point clouds. (b) Filtered ground points. (c) Supervoxels of
non-ground points. (d) Localization. (e) Obtained information about detected positions and supervoxels. (f) Segmentation. (g) Feature extraction. (h) Classifier
traning. (i) Classification.

Fig. 4. Illustration of the localization map generation process. (a) Raw point
clouds. (b) Gridded point clouds. (c) One of the grids. (d) Initial localization
maps. Red circle denotes the pixel of the grid shown in figure (c). (e) Final
localization map. (f) Positions of detected street light poles.

(3) Coping with density variations: It is obvious that f ′ is
related to the density of point clouds. Considering a system with
two laser scanners mounted on the top of a vehicle and worked
towards two different directions [as shown in Fig. 9], if only one
scanner is used, the density of the point cloud acquired from the
left side will be different from that acquired from the right side.
Then, f ′ has to be modified as f ′ = α · f ′ (where α = 0.67 in
this paper). If two scanners are employed, the density of point
clouds acquired from two sides will be almost the same, f ′

does not need to be modified in this case. It is obvious that the
number of points for point clouds acquired from two scanners is
about two times of that acquired from one scanner. Therefore,
in order to reduce the number of points for processing, only
the point cloud acquired from one scanner was used in our
experiments.

(4) Initial localization map generation: When f ′ is ob-
tained, the initial localization map F can be normalized by
f ′. Finally, F is replaced by the high-frequency components
in F by the removal of low-frequency components in F [see
Fig. 4(d)]. The process for initial localization map generation is
shown in Algorithm 1. In Algorithm 1, gk represents the k-th
grid in G [see Fig. 4(c)] and fk represents the pixel of gk in F
[shown in red circle in Fig. 4(d)].
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Algorithm 1 Initial localization map generation

Input: A set of grids gk ⊂ G. The number of point clouds,
Nscan

Output: An initial localization map F .
1: F ← 0 //Localization map initialization
2: for all gk ⊂ G do
3: z′ ← max

p(x,y,z)∈gk
z

4: if hlow ≤ z′ ≤ hhigh then
5: fk ←

∑
p(x,y,z)∈gk

f(z) //filtering grids by height

6: end if
7: end for
8: f ′ ← max

fk∈F
fk

9: if Nscan = 1 then
10: f ′ ← α · f ′ // coping with density variations
11: end if
12: for all fk ∈ F do
13: fk ← min(M · fk

f ′ ,M) //M is the intensity of upper
limit and equals 255

14: end for
15: F ← F −Gaussian(F, rg) //rg is the radius of Gaussian

blur function
16: return F

Due to the diversity in point density, the number of points for
street light poles with a low point density is smaller than the
number of those with a high density. Therefore, it is difficult
to locate all street light poles in point clouds acquired from a
laser scanner by a simple threshold without detecting few false
positives. Consequently, a “ball falling” algorithm is proposed.

The ball falling algorithm
(1) Falling condition: In each grid, if the number of points in

the grid, N(gk), is larger than a predefined value and the largest
z in the grid, H(gk), is larger than a predefined value, a ball
with the radius rb is firstly placed at the highest position hball

in grid gk [see Fig. 5(a)], the ball then falls down to reach the
ground in gk. When the center of the ball reaches the ground,
the ball falling process stops [see Fig. 5(d)].

(2) Seeking required supervoxels: During the ball falling
process, if the number of barycenters of supervoxels S within
the range of the ball radius [see Fig. 5(b)] is larger than a
predefined value ec and the area of convex hull of the projection
points of these supervoxels is less than a predefined threshold
st [see Fig. 5(c)], the grid is considered as the position of a
potential street light pole.

(3) Adding corresponding pixels: Therefore, the pixel fk of
gk should be added [see Fig. 4(e)]. The added pixel is related
to the number of supervoxels found by the ball falling process.
The details of “ball falling” algorithm is shown in Algorithm 2.
Where, N(·) is the number of elements in a set, H(·) is the
largest z value of the points in a grid.

Position detection
When the ball falling algorithm is performed for all grids, a

pixel intensity threshold pt is set to obtain connected areas [31].
Finally, each center of a connected area is regarded as a detected
position [see Figs. 3(d) and 4(f)] and each detected position is
assigned an unique ID [see Fig. 3(e)].

Fig. 5. Ball falling algorithm. (a) Initialization. (b) Seeking supervoxels and
calculating average distance from the barycenters to the detected position.
(c) Convex hull calculation. (d) End condition.

Algorithm 2 The “ball falling” algorithm

Input: The initial localization map F . The gridded point
clouds G.

Output: A final localization map F .
1: for all fk ∈ F do
2: if N(gk) > ng and H(gk) > hg + ho then
3: nume ← 0
4: sumd ← 0
5: hball ← GetHighestPosition(gk)
6: while hball > hg do
7: S ← GetLessAreaSupervoxel(hball)
8: if N(S) ≥ ec then
9: sumd ← sumd +GetAverageDistance(S)
10: nume ← nume + 1
11: end if
12: hball ← hball − 1
13: end while
14: fadd ← 0
15: if nume > nf then
16: fadd ← (1 − sumd

nume·rb ) · nume · pt
17: end if
18: fk ← min(fk + fadd,M)
19: end if
20: end for
21: return F

C. Localization Guided Segmentation

There are two steps in our segmentation methods. Supervoxel
classification in the two steps is performed in descending order
of the intensity of the corresponding pixel in F of detected
positions [see Fig. 4(e)].

Guided segmentation
(1) Extracting the pole of a pole-like object
The first step is to obtain the pole of pole-like objects.

According to the second character of street light poles, three
conditions are designed to classify supervoxels.
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Fig. 6. Pole extraction. (a) Supervoxels of polelike objects. (b) Distance
between the barycenter of a supervoxel and a detected position. (c) Distance
between a point of a supervoxel and a detected position. (d) Extraction result.

Barycenter condition: It is common that street light poles
are vertical to the ground and the z coordinates of ground points
in a grid are almost the same. Therefore, the distance from the
gravity center g of a supervoxel s to a detected position lk, can
be calculated:

dis(g, lk) =
√
(xg − xlk)

2 + (yg − ylk)
2 (2)

(xg, yg) and (xlk , ylk) are the plane coordinates of g and lk,
respectively. dis(g, lk) should be less than dg [see Fig. 6(b)].

Ratio condition: The distance from a point ps in s to lk
can also be obtained by [Eq. (2)] and it should be less than
a predefined value din [see Fig. 6(c)]. The ratio of points
satisfying this distance requirement should be more than λ.

Overall condition: A set of supervoxels sk satisfying above
two conditions can be acquired. If the number of supervoxels in
sk, N(sk), is more than a predefined value nl and the number
of points in sk, Np(sk), is more than a predefined value np, the
ID of lk is assigned to the supervoxels in sk [see Fig. 6(d)].

(2) Extracting the lamp part of a pole-like objects
This step is to obtain the lamp part of a street light pole. It

is observed that if an unclassified supervoxel is close to and
over the peak of the pole obtained in step 1, and the supervoxel
is within the range of the position of the pole, the supervoxel
is likely to belong to the pole. Motivated by this observation,
step 2 is presented as follows.

Adding initial seed supervoxels: First, the peak point
ppe(xpe, ype, zpe) can be obtained for some classified super-
voxels, sk, at a detected position lk. Next, the supervoxels sseed
whose barycenters are within a distance of re from ppe can be
obtained [see Fig. 7(a)]. sseed are then added into a queue Q in
the order of ascending distances between their barycenters to
ppe. The element on the top of the queue is considered as a seed
supervoxel u and is removed from Q.

Expanding: Then, the neighboring unclassified supervox-
els whose barycenters are within the distance of re from
the barycenter of the seed supervoxel can be obtained [see
Fig. 7(b)]. There are three conditions for adding a neighboring

Fig. 7. Process for extracting lamp part of a street light pole. (a) Adding
initial seed supervoxels. (b) Seeking neighbor supervoxels. (c) Relationship
with height. (d) Height limit. (e) Offset distance.

Fig. 8. Training examples. (a) Positive training examples. (b) Negative training
examples.

supervoxel sn of a seed supervoxel into the queue. (1) The z
coordinate of the highest point in the seed supervoxel is less
than the z coordinate of the lowest point in sn plus lg [see
Fig. 7(c)]. (2) The z coordinate of the highest point in sn should
be less than the estimated ground coordinate hg plus hlamp [see
Fig. 7(d)]. (3) Eight corner points of the bounding box of sn can
be obtained. Afterwards, the largest distances from these points
to the position lk [calculated by Eq. (2)] should be less than ds
[see Fig. 7(e)].

Supervoxel classification: The neighboring unclassified
supervoxelss′satisfyingthethreeconditionsareclassifiedintosk.

Terminal condition: Then, the first element of the queue
becomes a new seed supervoxel. This process continues until
the queue is empty. Each detected positions are checked by the
guided segmentation. The segmentation process is shown in
Algorithm 3. The segmentation result is shown in Fig. 3(f).
Next, the highest point psu(xsu, ysu, zsu) of an object can be
obtained. Then, the vector vh is calculated by vh = (xsu −
xpe, ysu − ype, zsu − zpe). Finally, the angle between the vec-
tor vh and the ground vector (0, 0, 1) is calculated and further
used for classification.

D. Feature Extraction

It is demonstrated by several existing feature descriptors that
improved performance can be achieved by integrating local
point features and global geometry features [8]. The distinc-
tive and robust performance of point-wise features is usually
lower than that of object part based features. Therefore, we
empirically designed two types of features to represent a street
light pole: pole features and global features. The global features
include the information of the street light lamp but the pole
features do not. Since the upper parts of street light poles and
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Fig. 9. Experimental setup for point cloud acquisition. (a) RIEGL VMX-450 system. (b) System configurations. (c) Trajectory of point cloud acquisition
(presented by yellow lines).

trees are obviously different from their poles, the combination
of pole features and global features is sufficient to discriminate
street light poles from trees.

Algorithm 3 Location guided segmentation

Input: A set of detected positions L. A set of unclassified
supervoxels, S.

Output: A set of classified supervoxels S.
1: for all lk ∈ L do
2: sk ← FindRangeSupervoxel(lk, dg)
3: sk ← RatioNear(sk, lk, din, λ)
4: if N(sk) > nl and Np(sk) > np then
5: AssignID(sk, k) //k is assigned to the ID of sk
6: end if
7: end for
8: for all lk ∈ L do
9: Q ← ∅
10: ppe ← Peak(sk)
11: sseed ← FindRangeSort(ppe, re)
12: Enqueue(Q, sseed)
13: while Q 	= ∅ do
14: u ← Dequeue(Q)
15: s′ ← FindRequiredGrowing(lk, u, re, ld, ds)
16: Enqueue(Q, s′)
17: sk ← sk ∪ s′ //k is assigned to the ID of s′

18: end while
19: end for

The pole features also can be used to describe the features
of other pole-like objects, such as traffic signs and telegraph
poles. It means that using pole features only is insufficient
to discriminate street light poles from other pole-like objects
with the same size. However, since our feature description
method uses both pole features and global features, it is able
to discriminate street light pole from other pole-like objects as
they have different global shapes.

Pole features. Once the first step of segmentation is com-
pleted, the following nine features are computed to describe

TABLE I
STATISTICS AND GROUND TRUTH OF THE DATASET

Fig. 10. Illustration of nine types of street light poles presented in our test
datasets.

the pole: (1) the height; (2) the average height; (3) the standard
deviation of height; (4) the average area of the convex hull for
the projected points in a supervoxel; (5) the standard deviation
of the area of the convex hull for projected points in a super-
voxel; (6) the area of the convex hull for the projected points
of the whole object; (7) the estimated volume; (8) the number
of pole points; and (9) the number of the supervoxels whose
area of the convex hull for their projected points is less than st,
where st is the standard area of the convex hull for the projected
points of a street light pole.

Global features. Once the second step of segmentation is
completed, the following ten features are calculated to de-
scribe the whole object: (1) the height; (2) the average height;
(3) the standard deviation of height; (4) the pixel intensity in
the corresponding location map (Section III-B); (5) the area
of the convex hull for all projected points; (6) the estimated
volume; (7) the height difference between the barycenter and
geometry center; (8) the number of points; (9) the number of
neighboring supervoxels with barycenters within a distance of
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TABLE II
PARAMETERS USED IN THE PREPROCESSING AND LOCALIZATION STAGE AND LOCALIZATION RESULTS

TABLE III
PARAMETERS USED IN SEGMENTATION

TABLE IV
EVALUATION RESULT ACHIEVED BY OUR SVM-BASED METHOD

TABLE V
EVALUATION RESULT ACHIEVED BY OUR RANDOM

FOREST-BASED METHOD

1 m from ppe; and (10) the angle between the vector vh and the
vector (0, 0, 1).

E. Classification

In the final stage, the street light poles are extracted by
classifying all the pole-like objects. The feature vectors have
to be normalized before classification. Both SVM and random
forests in the weka tool kit [32] are employed to classify objects.
SVM and random forests are trained with manually labeled
objects. Several training examples in the three datasets are
shown in Fig. 8. Finally, the trained classifiers are used to
classify the test datasets.

IV. RESULTS AND DISCUSSION

A. Mobile LiDAR Datasets

The mobile LiDAR point cloud data were acquired by a
RIEGL VMX-450 system mounted on a vehicle [as shown in
Fig. 9(a)]. The vehicle was drove at a speed of 40–50 km/h in
the City of Xiamen during point cloud acquisition. The data
collection process started from the Siming Campus of Xiamen
University (XMU), then to the International Conference and
Exhibition Center (ICEC) and arrived at the Yun Ding Tunnel
(YDT) [as shown in Fig. 9(c)]. Three different scenes were
selected for our experimental studies.

Scene 1. The first dataset was collected from the Ring Road
South (RRS). The RRS road is a typical urban road with four

Fig. 11. Failed cases for street light pole detection. (a) Street light poles with
over-segmentation. (b) Street light poles with significantly incomplete data.

lanes in two directions. Two types of trees were located next to
each other with a distance of about 4.08 m. Therefore, the street
light poles can be easily occluded by their neighboring trees
[see Fig. 12(a)]. In the RRS dataset, more than two thirds of
street light poles are occluded by trees.

Scene 2. The second dataset was collected from ICEC and a
part of RRS. There are two types of roads in the ICEC dataset:
roads with a single lane, and roads with four lanes. On the roads
with a single lane, the average distance between neighboring
trees is about 5.51 m [see Fig. 12(c)]. On the roads with four
lanes, a half of street light poles were among the trees with a
neighboring distance of 9.75 m. The canopy of these trees is so
large that the street light poles are almost surrounded by these
trees [see Fig. 12(d)]. Nearly two thirds of street light poles are
highly occluded in this dataset.

Scene 3. The dataset was collected from YDT. The roads in
the YDT dataset have two lanes. The average distance between
neighboring trees in this dataset is about 6.27 m, and nearly a
half of street light poles are occluded [see Fig. 12(b)].

More details of the three datasets are shown in Table I. In our
datasets, there are nine types of street light poles (see Fig. 10).
It is clear that our test dataset is very challenging for street light
pole extraction.

B. Street Light Pole Extraction

First, the raw point clouds were divided into segments. Next,
the non-ground points were segmented into supervoxels. The
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Fig. 12. Illustrations of street light pole extraction examples on the three datasets. (a) Street light pole extraction on the RSR dataset. (b) Street light pole extraction
on the YDT dataset. (c) and (d) Street light pole extraction of ICEC dataset.

size of each supervoxel is rs, and it should be less than the
diameter of a street light pole. Then, the positions of pole-like
objects were obtained by our localization method. The length of
a grid is dc. The parameters used in the preprocessing and local-
ization stage, and localization results are presented in Table II.
The localization results shows the number of street light poles
that have been detected as pole-like objects. Afterwards, the
proposed guided segmentation was used to segment pole-like
objects. The segmentation parameters used in the three datasets
are shown in Table III.

Then, two types of features were calculated for each seg-
mented object. To quantitatively assess the accuracy and cor-
rectness of our classification method, three metrics including
recall, precision, and F1-measure are employed. The recall
represents the percentage of true positives in the ground truth,
the precision represents the percentage of true positives in the
extracted result, and the F1-measure is a combination of the two
metrics. They are calculated as follows:

recall =
TP

TP + FN
(3)

precision =
TP

TP + FP
(4)

F1 − measure =
2 · recall · precision
recall + precision

(5)

where TP, FN, and FP denote the number of true positives,
false negatives, and false positives, respectively. The correctly

detected street light poles are considered as true positives
and the undetected street light poles are considered as false
negatives. The objects which are falsely detected as street light
poles are considered as false positives. SVM and random forests
were used to classify the objects. The radius basis function
was used as the kernel for SVM, and the parameter cost for
SVM was set to 6.0, 5.0, and 1.0 for the RRS, ICEC, and YDT
datasets, respectively. The number of trees used in the random
forests was set to 100.

Finally, a 10-fold cross validation approach was used to
obtain classification and extraction results [32]. Particularly,
each dataset was approximately and randomly divided into ten
subsets. Each subset was obtained by stratified sampling and
had a similar data distribution. The nine subsets were used for
training and the remaining one subset was used for test. For
instance, there were 3303 samples for training and 367 samples
for test in each experiment on the RRS dataset. Totally, ten
different groups of training and test data were then obtained
following this approach, resulting in ten classification results.

For each 10-fold cross validation experiment, the number of
true positives and the number of false positives in the 10-fold
experiments are counted. Then, the number of false negatives
is obtained by extracting the number of true positives from
the ground-truth number of street light poles. Subsequently,
the results for a 10-fold cross validation experiment can be
achieved. The 10-fold cross validation experiment was repeated
for ten times using different dataset partitions. Finally, the
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Fig. 13. Illustration of street light pole extraction results in point clouds with
missing data and occlusions. (a) Original point clouds. (b) Street light pole
extraction results.

mean and stand deviation (std) of recall, precision, and F1-
measure for the ten 10-fold cross validation experiments were
calculated. Note that, the standard deviation of the three metrics
can be used to measure the robustness of our method.

Street light pole extraction results achieved on the three
datasets by the two classifiers are shown in Tables IV and V,
respectively. Our algorithm with SVM achieved an average
recall, precision, and F1-measure of 96.3%, 97.0%, and 96.6%,
respectively. Our algorithm with random forests obtained an
average recall, precision, andF1-measure of 95.9%, 99.2%, and
97.5%, respectively. As shown in Tables IV and V, most of the
street light poles were correctly extracted in each dataset using
our algorithms. Besides, the standard deviations for all of the
three metrics are smaller than 0.01. It is clearly shown that our
algorithm is very stable and robust.

Due to the complexity of experimental data, many street light
poles are surrounded by trees. Furthermore, some street light
poles are surrounded and even lower than trees. The two kinds

Fig. 14. Comparative segmentation results. (a) Ground truth. (b) Results of the
min cut segmentation method. (c) Results of our guided segmentation.

of street light poles might result in over-segmentation results
[see Fig. 11(a)]. On the other hand, some street light poles are
far away from scanners and occluded by other objects, resulting
in seriously incomplete data [see Fig. 11(b)]. These factors will
introduce street light pole extraction failures, and finally make
the recall results worse than the pole-like object localization
results for street light poles.

The street light pole extraction examples on the three datasets
are shown in Figs. 12 and 13. Since our localization algo-
rithm is robust to occlusion (see Section IV-D2), the proposed
guided based segmentation method achieves good performance
(see Section IV-C1). Besides, since the pole and whole object
are significantly different, two types of features for object
description are suitable for classification. On the other hand,
the SVM and random forests are well-investigated classi-
fiers. Consequently, the proposed method achieved promising
results even on point clouds with significant occlusions (as
shown in Fig. 13).

C. Comparative Studies

1) Segmentation Performance: In order to evaluate the per-
formance of our guided segmentation, the min cut algorithm
[14] was used for comparison. Several complex scenes in
the three datasets were used for the comparative experiments.
These results are shown in Fig. 14. The min cut method was
carried out by manually selecting a point in a street light pole as
a seed point. It achieved promising results in our test examples,
but it failed in highly occluded environment [see Figs. 14 (3)
and (4)]. Since this approach is a greedy algorithm. It is impos-
sible to select a distance threshold to cluster foreground points
in the connected component without clustering background
points in occluded scenes. The method is sensitive to those



302 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2017

TABLE VI
COMPARISON OF EVALUATION RESULTS ACHIEVED ON THE

YDT DATASET

points between the foreground and background. Our guided
segmentation method takes advantage of the prior information
of detected positions. Therefore, in our first step of segmen-
tation, it can achieve accurate results and capture most points
in street light poles [see Fig. 6(d)]. In summary, our guided
segmentation method is more suitable for the segmentation of
street light poles than the min cut algorithm.

2) Classification Performance: Our algorithm using random
forests was further compared to Hu’s DoPP method [13] and
Yu’s shape template matching method [3]. The YDT dataset
was used in the comparative experiment. The key step for the
DoPP method is to set an appropriate height threshold. If the
largest z value in a grid is above the pre-defined threshold,
the points in the grid are considered as belonging to a street
light pole. Otherwise, these points are removed. The threshold
has to be manually determined and some other objects higher
than street light poles can easily be recognized as street light
poles, resulting in a large number of false positives (as shown
in Table VI). The Ncut method used in [3] needs manual de-
termination for object segmentation. Besides, this method does
not use any prior information of positions and the segmentation
performance in occlusion is relatively poor. Based on the good
segmentation performance and the two types of well-designed
features, random forests can achieve highly distinctive classifi-
cation results. Since the DoPP and the shape template matching
methods do not require any training stages, each method was
tested on the whole test data in a time. In contrast, our methods
require model training, the whole test data were tested in
10 times using 1/10 of the data for each time. Since the overall
test data are the same for all these methods, the comparison is
fair. The comparative results are presented in Table VI. From
theory analyses and experimental results, it is clear that our
algorithm outperforms the two existing algorithms.

D. Parameter Tunning

1) The Size of Supervoxels: Since our method is based on
supervoxels, the size of supervoxels rs was firstly tested. We
set the supervoxel size to 0.03 m, 0.05 m, 0.1 m, 0.15 m, and
0.2 m. The F1-meausre performance of the proposed algorithm
under different values of supervoxel size is shown in Fig. 15.
The F1-measure performance decreased dramatically when the
supervoxel size was increased from rs = 0.15 m to rs = 0.2 m.
Less points share similar features with the increase of the size
of supervoxels. As a result, less points can be used to generate
local features and the performance of our guided segmentation
method was decreased. Consequently, we set the supervoxel
size to 0.05 m in this paper.

Fig. 15. F1 measure achieved by our method with different sizes of
supervoxels.

2) Localization-Related Parameters: The localization step
is important for our method and several parameters have been
used in this step. Different values of the four important param-
eters (i.e., the threshold intensity pt, the point number ng , the
effective count nf , and the height offset ho) were used to test
the robustness of our localization algorithm, their results are
shown in Fig. 16. pt was set to 10, 20, 30, 40, 50 and ng was set
to 50, 60, 80, 100, 120. The localization detection performance
achieved by our method with different values of pt and ng is
very stable. The variation of detection rates is less than 3%. We
then set nf to 3, 5, 7, 9, 11, the results in Fig. 16(c) show that
the location detected rate decreased with nf . A set of values
(1, 3, 5, 7, 9) was used for ho, it is clear from Fig. 16(d) that the
location detection rate increased with ho. The location detection
rates achieved in the four experiments are higher than 90%. It
can be concluded that our method is very robust to different
parameter settings.

E. Time Performance

The proposed algorithm was implemented in C++ with a
single thread on a PC with an Intel Core i5− 3470H CPU.
The CPU clock frequency is 3.20 GHz, and the memory size is
8 GB. The time costed by each stage of our method is shown
in Table VII. On each dataset, more than four fifths of the
total time was costed in the ground filtering and supervoxel
generation stages. The remaining time was mainly costed by
localization, segmentation, and feature calculation stages. The
proportion of training time is minor. The total running time
on the three datasets was less than one hour. Since the non-
ground points are first segmented into supervoxels, the number
of processing units is greatly reduced. It is fully demonstrated
that our algorithm is very efficient and suitable for large-scale
point cloud processing.

V. CONCLUSION

In this paper, we presented an automated and robust al-
gorithm to extract street light poles from large-scale mobile
LiDAR point clouds. Our method is robust to occlusion and
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Fig. 16. Localization performance achieved by our method with different parameter settings. (a) Performance with different values of threshold intensity pt.
(b) Performance with different values of point number ng . (c) Performance with different values of effective counts nf . (d) Performance with different values of
height offset ho.

TABLE VII
RUNNING TIME COSTS BY EACH STAGE OF OUR METHOD

highly efficient. Our approach was evaluated on three datasets
with significant occlusion. Experimental results and theory
analyses show that our localization method is very robust. Our
localization method achieves an average recall of 98.8%. It
is demonstrated by experimental results and theory analyses
that our guided segmentation method outperforms the min cut
method for the task of street light pole segmentation. Besides,
our SVM based algorithm achieves an average recall, precision,
and F1-measure of 96.3%, 97.0%, and 96.6%, respectively.
Our random forest based method obtains an average recall,
precision, and F1-measure of 95.9%, 99.2%, and 97.5%, re-
spectively. Our proposed method is therefore, superior to the
Hu’s DoPP method and the Yu’s shape matching method.
Experimental results also demonstrate that our algorithm can
efficiently extract street light poles from large-scale point
clouds using a normal machine. Overall, the proposed method is
highly accurate, efficient and robust to occlusion. In our future
work, we will run our method on more large-scale point clouds

acquired from other cities and countries to further demonstrate
the effectiveness of the method.
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