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Abstract: Automatic building extraction from satellite images, an open research topic in remote
sensing, continues to represent a challenge and has received substantial attention for decades.
This paper presents an object-based and machine learning-based approach for automatic house
detection from RGB high-resolution images. The images are first segmented by an algorithm combing
a thresholding watershed transformation and hierarchical merging, and then shadows and vegetation
are eliminated from the initial segmented regions to generate building candidates. Subsequently,
the candidate regions are subjected to feature extraction to generate training data. In order to capture
the characteristics of house regions well, we propose two kinds of new features, namely edge
regularity indices (ERI) and shadow line indices (SLI). Finally, three classifiers, namely AdaBoost,
random forests, and Support Vector Machine (SVM), are employed to identify houses from test
images and quality assessments are conducted. The experiments show that our method is effective
and applicable for house identification. The proposed ERI and SLI features can improve the precision
and recall by 5.6% and 11.2%, respectively.

Keywords: building extraction; object recognition; machine learning; image segmentation; feature
extraction; classification

1. Introduction

Automatic object extraction has been a popular topic in the field of remote sensing for decades,
but extracting buildings and other anthropogenic objects from monocular remotely sensed images
is still a challenge. Due to the rapid urbanization and sprawl of cities, change detection and urban
monitoring play increasingly important roles in modern city planning. With the rapid progress of
sensors, remotely sensed images have become the most important data source for urban monitoring
and map updating in geographic information systems (GIS) [1]. Buildings are the most salient objects
on satellite images, and extracting buildings becomes an essential task. Although building detection
has been studied for several decades, it still faces several challenges. First, buildings take various
shapes, which makes them difficult to extract using a simple and uniform model. Second, aerial and
satellite images often contain a number of other objects (e.g., trees, roads, and shadows), which make
the task harder. Third, some buildings may be occluded by high trees or other buildings, which poses
a great challenge. Finally, high-definition details in images provide more geometric information but
also more disturbance. Consequently, the increasing amount of textural information does not warrant
a proportional increase in accuracy but rather makes image segmentation extremely difficult.

Although many approaches have been proposed and important advances have been achieved,
building detection is still a challenging task [2]. No perfect solution has been developed to guarantee
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high-quality results over various images. To distinguish buildings from non-building objects in aerial
or satellite images, a variety of clues, including color, edges, corners, and shadows, have been exploited
in previous work. Due to the complex background of the images, a single cue is insufficient to identify
buildings under different circumstances and existing methods are not flexible enough to extract objects
from high-resolution images. Recent works increasingly focus on combining multiple clues; thus,
designing more useful feature descriptors becomes crucial to building detection.

In recent years, extracting buildings from LiDAR points has attracted substantial attention
because LiDAR data can provide useful height information. Despite great advantages of LiDAR data,
this approach is largely limited by little data availability. LiDAR data are not easily accessed and
the cost is much more than that of high-resolution aerial or satellite imagery. Among the data
sources for building extraction, high-resolution images are the most easily accessed and widely
applicable. Detecting buildings using optical images alone is a challenge and exerting the potential of
high-resolution images is worth continuing to study.

With the rapid development of machine learning (ML), data-driven methods begin to attract
increasing attention. The performance of ML largely depends on the quality of the feature extraction,
which is quite challenging. Occlusion is another challenge in the particular case of building detection,
and especially in residential areas, where some houses are often occluded by trees and only partial
roofs can be seen on the images. This paper concentrates on how to extract useful features for a
machine learning based approach to detect residential houses from Google Earth images, which are
easily accessible and sometimes are the only data source available. Google Earth images generally
contain only three channels (red, green, and blue) and cannot provide large spectral information.
Therefore, we try to exploit multiple features, especially geometric and shadow features, to extract
houses from RGB images. This approach is an integration of object-based image analysis (OBIA) and
machine learning. Our work is expected to provide some valuable insights for object extraction from
high-resolution images.

The rest of this paper is organized as follows: Section 2 presents a summary of related works with
respect to building extraction from remotely sensed images. Section 3 details the proposed approach
for house detection, including image segmentation, feature extraction, candidate selection, and training.
Section 4 presents the results of experiments and performance evaluation. Finally, Section 5 provides
some discussions and conclusions.

2. Related Works

Automatic building extraction has been a challenge for several decades due to the complex
surroundings and variant shapes of buildings. In the past few years, researchers have proposed a
number of building extraction methods and approaches. Some studies have focused on building
extraction from monocular images, while others have focused on stereo photos and LiDAR points.
We can generally divide the techniques into several categories.

2.1. Line- or Edge-Based Approaches

The idea of this type of approach is that straight lines are distinct characteristics of anthropogenic
objects, such as buildings, roads, and bridges. Due to the lack of spectral information, most early
methods of building extraction from monochrome images are based on edge detection, line extraction,
and polygon generation. In general, this approach involves two main steps. (1) Edges are detected
or the line segments are extracted from the original image; (2) Parallel and perpendicular lines are
searched and matched to generate polygons, which are the assumed shapes of buildings. In order to join
line segments into polygons, different algorithms can be employed, such as perceptual grouping [3,4],
graph theory-based searching [5], and the Hough transformation [6]. This approach is designed for
early monochrome images and only the straight-line clue is utilized. This approach cannot take full
advantage of color, texture, and other features and is no longer used alone.



Remote Sens. 2018, 10, 451 3 of 24

2.2. Template Matching Approach

Template matching-based object detection is the simplest and earliest method for object
extraction [7]. This category of approaches involves two main steps. (1) Template generation: a template
for each to-be-detected object class is manually created; (2) Similarity measurement: this step matches
the stored templates onto the source image at each possible position to find the best matches according
to maximum correlation or minimum difference. Two types of methods are commonly used for
building detection.

The first category is rigid template matching and the most popular method is morphological
hit-or-miss transformation (HMT). Lefèvre et al. [8] present an adaptive binary HMT method for
building extraction from Quickbird images. In order to improve the results, Stankov et al. [9,10]
exploit the multispectral information and apply a grayscale HMT to building detection. Rigid template
is effective, but it has a shortcoming that requires the template to be very precise [7]. Therefore,
this approach is not reliable for building extraction.

The second category is deformable template matching. One of the most popular methods is the
active contour model, also known as a “snake” model. A “snake” is an energy-minimizing contour
controlled by three forces or energies that make the contour elastic and deformable. A snake model
is commonly used to extract the boundaries of buildings [11–13]. Although the deformable template
is flexible than the rigid template, it needs more prior information and parameters [7]. In addition,
different models have to be designed for different applications and the computational cost is very high,
which lower the capability of processing large data.

2.3. OBIA Approach

With the increasing utilization of high-resolution images, object-based image analysis (OBIA) has
entered mainstream usage for object extraction [14]. OBIA provides a framework for overcoming the
limitations of conventional pixel-based image classification approaches and has been widely used
in remotely sensed image processing. In general, OBIA involves two steps: image segmentation
and classification. In the first step, the image is segmented into homogeneous regions called objects.
The second step is to extract object features, such as color, texture, shape, and contextual semantic
features. Subsequently, these features are fed to a classifier for classification. In recent years, the OBIA
technique has continued to be studied in building extraction. Ziaei et al. [15] present a comparison
between three object-based models for urban feature classification from WorldView-2 images.
Based on a Markov random field model, Grinias et al. [16] present a novel segmentation algorithm for
building and road detection.

OBIA is the most common and powerful technique for processing high-resolution images, but it
still faces two challenges: (1) Image segmentation is a necessary prerequisite and no perfect solution
has been developed. Although eCognition software can provide Multi-resolution segmentation (MRS)
algorithm, it is difficult to determine the tree parameters required by the algorithm. How to select
objective values of these parameters is still a hot topic in OBIA [7,14]; (2) How to define classification
rules is still subjective [7].

2.4. Knowledge-Based Approach

The knowledge-based detection method is another type of popular approach for extracting
buildings from optical remotely sensed images. This approach includes two steps: the establishment
of knowledge and hypotheses testing. For building detection, there are two types of commonly used
knowledge: geometric and contextual information. A building always appears in a regular geometry,
such as a rectangle. Due to the regularity of shapes, geometric knowledge is widely used in building
extraction by many researchers [17]. Contextual knowledge, such as shadow information, is another
type of helpful cue for building extraction. In the early years, researchers exploited the relationship
between buildings and their shadows to predict the locations and shapes of buildings [18,19].
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Until recent years, the shadow is still a useful and potential cue for building extraction. Sirmacek
et al. [20] use multiple cues, including shadows, edges, and invariant color features, to extract
buildings. Huang et al. [21] and Benarchid et al. [22] also use shadow information to extract buildings.
According to the locations of shadows, Chen et al. [23] accomplish the coarse detection of buildings.

Although knowledge is helpful to verify the building regions, it is worth noting that it is difficult
to transform implicit knowledge into explicit detection rules. Too strict rules result in a number of
missed target objects and too loose rules cause too many false objects [7].

2.5. Auxiliary Data-Based Approach

In order to improve the accuracy of building detection, other auxiliary information is introduced
into object extraction. In general, two kinds of auxiliary data can be used for building extraction, namely,
vector data derived from GIS and digital surface model (DSM) data generated from LiDAR points.

The GIS data can provide geometric information along with the relevant attribute data,
which allows for simplification of the building extraction task. Some studies have demonstrated
the advantage of integrating GIS data with imagery for building extraction. Durieux et al. [24] propose
a precise monitoring method for building construction from Spot-5 images. Sahar et al. [25] use vector
parcel geometries and their attributes to help extract buildings. By introducing GIS data, Guo et al. [26]
propose a parameter mining approach to detect changes to buildings from VHR imagery.

With the rapid development of LiDAR technology, building extraction from LiDAR points has
become a popular subject. The LiDAR data provide height information for salient ground features,
such as buildings, trees, and other 3D objects. The height information provided by LiDAR data is
more helpful in distinguishing ground objects than spectral information. G. Sohn and I. Dowman [27]
present a new approach for the automatic extraction of building footprints using a combination of
IKONOS imagery and low-sampled airborne laser scanned data. Based on the use of high-resolution
imagery and low-density airborne laser scanner data, Hermosilla et al. [28] present a quality assessment
of two main approaches for building detection. To overcome some limitations in the elimination of
superfluous objects, Grinias et al. [16] develop a methodology to extract and regularize buildings using
features from LiDAR point clouds and orthophotos. Partovi et al. [29] detect rough building outlines
using DSM data and then refines the results with the help of high-resolution panchromatic images.
Chai [30] proposes a probabilistic framework for extracting buildings from aerial images and airborne
laser scanned data.

Existing GIS data and LiDAR points can provide prior knowledge about the area and can
significantly simplify the object extraction procedures, but these auxiliary data are not always available
or are very expensive. Due to the strict requirements for auxiliary data, this approach is limited in
practical applications.

2.6. Machine Learning Approach

Due to the novelties and advantages of machine learning (ML), this approach receives increasing
attention in object detection. ML generally involves two main steps: a training step and a predicting
step. The training step is to select samples and extract features, which impose great influence on
the accuracy of the final results. Subsequently, a classifier is trained on the training data and then
used to identify objects. In recent years, ML has become one of the most popular approaches in
building extraction from remotely sensed images. Vakalopoulou et al. [31] propose an automatic
building detection framework from very high-resolution remotely sensed data based on deep CNN
(convolutional neural network). Guo et al. [32] propose two kinds of supervised ML methods for
building identification based on Google Earth images. Cohen et al. [33] describe an ML-based algorithm
for performing discrete object detection (specifically in the case of buildings) from low-quality
RGB-only imagery. Dornaika et al. [34] propose a general ML framework for building detection
and evaluates its performance using several different classifiers. Alshehhi et al. [35] propose a single
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patch-based CNN architecture for the extraction of roads and buildings from high-resolution remotely
sensed data.

ML-based approaches regard object detection as a classification problem and have achieved
significant improvements. ML actively learns from limited training data and can often successfully
solve difficult-to-distinguish classification problems [36]. On the other hand, ML usually suffers from
insufficient samples and inappropriate features [37]. In order to obtain high-quality results, sample
selection and feature extraction need to be studied further.

3. The Proposed Approach

3.1. Overview of the Approach

The flowchart of the proposed approach is illustrated in Figure 1. The left part of the flowchart
displays the training procedure. The sample database contains all training orthophotos along with
corresponding building mask images. Building mask images indicate the exact location and shape
of all buildings on an orthophoto. In the segmentation step, the input image is segmented into
small homogeneous regions, often called objects or patches. In the candidate selection procedure,
some definite non-house objects are eliminated and only candidate objects are left. In the feature
extraction step, multiple features are extracted to describe each candidate object. Finally, the classifier
model is trained and saved for use in the future. The right part describes the detection (predicting)
procedure. Segmentation, candidate selection, and feature extraction are first applied to the test
orthophotos. Once the features are generated, the previously trained classifier model is employed
to classify the candidate objects into two categories: house and non-house. In the end, the detection
results are validated and evaluated.

Figure 1. Flowchart of the proposed approach.

3.2. Image Segmentation

This paper employs OBIA to extract objects and the first step is image segmentation. Watershed
transformation (WT) is employed to segment the orthophotos due to the efficiency and easy usage
of this algorithm [38]. The WT can coincide well with the object edges in the original image, but it
usually produces severe over-segmentation results when applied to high-resolution remotely sensed
images. To achieve better results, we use a threshold to suppress minor gradient before performing WT,
and merge similar adjacent regions using a hierarchical merging algorithm after the WT segmentation.

WT suffers from over-segmentation due to a large number of minor gradient values. By carefully
tuning, an appropriate threshold Tg = 5 is determined to suppress these minor values. Before WT,
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the gradient values less than Tg are set to 0. After the initial WT segmentation, a hierarchical merging
algorithm begins to merge these regions from finer levels to coarser levels [39]. The merging process
continues until no pair of regions can be merged. A threshold Tc is selected to determine whether
two adjacent region can be merged. In this paper, Tc is set to 15, at which the algorithm can produce
satisfying results. Figure 2 presents an example of the WT segmentation and hierarchical merging
result. Figure 2b,c indicate that the segmentation result has been improved after merging and the roofs
in the image are well segmented.

Figure 2. Image segmentation based on watershed transformation and hierarchical merging algorithm.
(a) Original image; (b) Thresholding watershed segmentation; (c) Results after the hierarchical merging.

3.3. Candidate Selection

The selection of candidate regions, which aims to discover potential buildings, can help reduce
the search space and simplify the task. As a result of segmentation, the orthophoto is divided into
small homogeneous regions, including houses, roads, lawns, trees, and other objects. If all the objects
are passed to the next step, it will take a great amount of time to extract features and train the model.
It is worth noting that a large number of regions can be definitely determined as non-house objects
which will cause imbalanced positive and negative samples if they are not eliminated. Therefore, some
domain-specific knowledge is introduced to detect vegetation and shadows [40]. Similar to the studies
by Sirmacek et al. [20] and Shorter et al. [41], the color invariance model is used to identify vegetation
and shadows.

3.3.1. Vegetation and Shadow Detection

Vegetation is a typical landcover and can be relatively easy to identify via the color invariance
model originally proposed by Gevers et al. [42]. The color invariance model, defined in Equation (1),
is independent of viewpoint, illumination intensity, illumination direction, highlights, and surface
orientation.

v =
4
π
· arctan(

G− B
G + B

). (1)

where G and B are the green and blue channels of the image. The color-invariant image v (Figure 3b) is
computed via the green and blue channels from the original orthophoto (Figure 3a) and then Otsu [43]
thresholded to obtain a vegetation mask. This process produces a binary image with white pixels
corresponding to vegetation candidates and black pixels corresponding to non-vegetation candidates.

In remote sensing applications, shadow is one of the major problems that hampers object
recognition and change detection (Figure 3a). Shadow detection is still an important research topic,
particularly for high-resolution images in urban areas [44]. Among the several shadow detection
methods, the color invariance models can be easily used for color aerial images. In our experiments,
the following model proposed by Cretu et al. [40] is used to detect shadows.
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s =
4
π
· arctan(

I −
√

R2 + G2 + B2

I +
√

R2 + G2 + B2
). (2)

where I is the global intensity of the image, and (R, G, B) are the red, green, and blue components of
the given pixel, respectively. After the shadow-invariant image s is computed (Figure 3c), the Ostu
thresholding operation is applied to s to produce a binary shadow mask image.

Due to the noise in the image, the vegetation and shadow detection results contain a lot of isolated
pixels that do not actually correspond to vegetation and shadows. Subsequently, an opening and
a closing morphological operation [45] are employed to eliminate these isolated pixels. After these
operations, the results can coincide well with the actual boundaries of the vegetation and shadow
regions, as shown in Figure 3d.

Figure 3. Candidate selection via vegetation and shadows detection. (a) RGB orthophoto; (b) Color-
invariant image of vegetation; (c) Color-invariant image of shadows; (d) Vegetation and shadow
detection results (red areas are shadows and green areas are vegetation); (e) Segmentation results;
(f) Candidate regions selected from (e).

3.3.2. Choosing Candidate Regions

After the vegetation and shadows are detected, the binary vegetation mask (MaskV) and the
shadow mask (MaskS) are used together to select the candidates from all the regions produced in the
segmentation. Let Regi represent the ith region and A(Regi) represent the area (number of pixels in the
whole region) of this region. Overlapping MaskV and MaskS with the segmented image (Figure 3e),
the number of vegetation and shadow pixels located in Regi can be counted and are denoted as
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AV(Regi) and AS(Regi) respectively. If the ratio AV(Regi)
A(Regi)

> 0.6 or AS(Regi)
A(Regi)

> 0.6, Regi is considered to
be a non-house object that can be eliminated.

After the removal of vegetation and shadow regions, there still exist some tiny regions that
are meaningless for further processing and can be removed. Given a predefined area threshold TA,
those segmented regions with an area less than TA are eliminated. In this study, a TA of 100 is used.
After these processes, all the remaining regions in the segmented image are considered candidates that
may be house or non-house objects, as shown in Figure 3f.

3.4. Feature Descriptors for Regions

Feature descriptors have a significant impact on the recognition of ground objects. Good features
should be non-ambiguous despite changes in angle, illumination, and scale. In classification and object
detection, several types of features have been developed, including color features, texture features,
and geometric features. In this section, we will present some feature descriptors used in our work as
well as some implementation details.

3.4.1. Color Descriptors

Color is one of the most common features used to characterize image regions. The images used in
our experiments contain only 3 channels; therefore, objects in the images can be distinguished using
only red, green, and blue colors. In general, the color feature of a region is represented by the mean
color value of all the pixels inside. Due to the variability of color, the mean value cannot fully capture
the exact color characteristics. In order to measure the color distribution in an image region, we use
color moments to describe the color feature. In our experiments, 1st- and 2nd-order moments are used,
as follows: 

ei =
∑N

j=1 pij
N .

σi =

√
∑N

j=1(pij−ei)2

N .
(3)

where pij is the value of the j-th pixel of the object in the i-th color channel; N is the total number of
pixels; ei is the mean value (1st-order moment) in the i-th channel; and σi is the standard deviation
(2nd-order moment).

In our work, color moments are computed in both RGB and HSV (hue, saturation, and value)
color space. In each color channel, two values (ei, σi) are computed for each object. In both the RGB
and HSV color space, we can obtain two 6-dimensional features, denoted as (RGB_mo1, RGB_mo2, . . . ,
RGB_mo6) and (HSV_mo1, HSV_mo2 , . . . , HSV_mo6), respectively.

3.4.2. Texture Descriptors

Local binary patterns (LBP) was first described by Ojala et al. [46] and has proven to be a powerful
feature for texture classification. Due to its discriminative power and computational simplicity, LBP has
been seen as a unifying approach to traditional statistical and structural models. The original LBP
proceeds as illustrated in Figure 4a: Each pixel value is compared with its neighbors; the neighbors
that have greater values than the central pixel are set to bit 1, and others having less or equal values
are set to bit 0. One can generate a binary bit serial by concatenating all the bits of the neighbors in a
clockwise manner. The binary bits serial is then converted to a decimal LBP code of the central pixel.
After processing all the pixels in this way, an LBP map is produced. The histogram calculated over the
LBP map image can be used as the descriptor of the original image.

Such an LBP defined on 3× 3 neighbors does not have a good discrimination; therefore, a rotation-
invariant and uniform LBP, denoted as LBPriu2

P,R , is developed [47]. LBPriu2
P,R is calculated on resampling

points along P symmetric directions at a radius of R from the central point. By right-shifting the LBP
binary code, one can get different values, of which the minimum is selected as the final LBP code. In
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Figure 4b, the rotation-invariant uniform LBP map image (middle) is computed on the image of a tree
canopy (left) with the parameters of P = 8 and R = 1. The corresponding histogram of the LBP map is
shown on the right.

Figure 4. Local binary patterns (LBP) texture. (a) Principle of LBP; (b) LBP texture of the canopy image.

3.4.3. Geometric Descriptors

Various types of geometric features have been designed to describe the geometric property of an
object. These features can be divided into two categories: simple geometric index and complex shape
descriptor. The simple geometric index is a type of feature that can be represented by a single scalar,
such as area, circularity, and eccentricity, while the complex shape descriptor is usually described by a
vector. This subsection coves some simple geometric indices used in this study.

1. Area
Area is the number of pixels located inside the region boundaries. Here, area is denoted as Ao.

2. Eccentricity
Eccentricity is defined as the ratio of the major axis of a region to its minor axis, described as:

Eccentricity = AM/Am. (4)

where AM and Am are the length of the major axis and that of the minor axis, respectively.

3. Solidity
Solidity describes whether the shape is convex or concave, defined as:

Solidity = Ao/Ahull . (5)

where Ao is the area of the region and Ahull is the convex hull area of the region.

4. Convexity
Convexity is defined as the ratio of the perimeter of the convex hull Phull of the given region over
that of the original region Po:

Convexity = Phull/Po. (6)

5. Rectangularity
Rectangularity represents how rectangular a region is, which can be used to differentiate circles,
rectangles and other irregular shapes. Rectangularity is defined as follows:

Rectangularity = As/AR. (7)



Remote Sens. 2018, 10, 451 10 of 24

where As is the area of the region and AR is the area of the minimum bounding rectangle of the
region. The value of rectangularity varies between 0 and 1.

6. Circularity
Circularity, also called compactness, is a measure of similarity to a circle about a region or a
polygon. Several definitions are described in different studies, one of which is defined as follows:

Circularity = 4πAo/P2. (8)

where Ao is the area of the original region and P is the perimeter of the region.

7. Shape Roughness
Shape roughness is a measure of the smoothness of the boundary of a region and is defined
as follows:

Shape_Roughness =
Po

π(1 + (AM + Am)/2)
. (9)

where Po is the perimeter of the region and AM and Am are the length of the major axis and that
of the minor axis, respectively.

3.4.4. Zernike Moments

Moment is a typical kind of region-based shape descriptor widely used in object recognition.
Among the commonly used region-based descriptors, Zernike moments are a set of excellent shape
descriptors based on the theory of orthogonal polynomials [48]. The two-dimensional Zernike moment
of order p with repetition q for an image function I(ρ, θ) in polar coordinates is defined as follows:

Zpq =
p + 1

π ∑
ρ

∑
θ

I(ρ, θ)[Vpq(ρ, θ)]∗, s.t.ρ ≤ 1. (10)

where Vpq(ρ, θ) is a Zernike polynomial that forms a complete orthogonal set over the interior of
the unit disc of x2 + y2 ≤ 1. [Vpq(ρ, θ)]∗ is the complex conjugate of Vpq(ρ, θ). In polar coordinates,
Vpq(ρ, θ) is expressed as follows:

Vpq(ρ, θ) = Rpq(ρ)exp(−jqθ). (11)

where j =
√
−1; p is a non-negative integer; and q is a non-zero integer subject to the constraints that

p− |q| is even and |q| < p; ρ is the length of the vector ρ from the pixel (x, y) to the origin (0, 0) and
ρ =

√
x2 + y2; and θ is the angle between the vector ρ and the x axis in a counter clockwise direction.

Rpq(ρ) is the Zernike radial polynomial defined as follows:

Rpq(ρ) =
(p−|q|)/2

∑
s=0

(−1)s(p− s)!

s!( p+|q|
2 − s)!( p−|q|

2 − s)!
ρ(p−2s). (12)

The Zernike moments are only rotation invariant but not scale or translation invariant. To achieve
scale and translation invariance, the regular moments, shown as follows, are utilized.

mpq = ∑ ∑ xpyq f (x, y). (13)

Translation invariance is achieved by transforming the original binary image f (x, y) into a new one
f (x + xo, y + yo) where (xo, yo) is the center location of the original image computed by Equation (13)
and m00 is the mass (or area) of the image. Scale invariance is accomplished by normalizing the original
image into a unit disk, which can be done using xnorm = x/m00 and ynorm = y/m00. Combing the
two points mentioned above, the original image is transformed by Equation (14) before computing
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Zernike moments. After the transformation, the moments computed upon the image g(x, y) will be
scale, translation and rotation invariant.

xo = m10/m00, yo = m01/m00. (14)

g(x, y) = f (
x

m00
− xo,

y
m00
− yo). (15)

3.4.5. Edge Regularity Indices

Compared to other objects, parallel and perpendicular lines are more likely to appear around
anthropogenic objects such as houses, roads, parking lots, and airports. In order to measure how
strongly these lines are perpendicular or parallel to each other, we developed a group of indices called
ERI (edge regularity indices) that can describe the spatial relations between these lines. The whole
procedure can be divided into two steps.

(1) Local Line Segment Detection

The first step is local line segment detection, in which line segments are extracted within each
candidate region. In general, Hough transformation (HT) is the most common method used to detect
line segments. Different from the previous methods, in our work, HT is applied only to each local region
instead of the whole image. A local region is defined by the MBR (minimum bounding rectangle) of
each segmented region. Figure 5b gives some examples of the MBR of the candidate region in Figure 5a.
Before the local HT, a binary edge image is calculated by a Canny edge detection operation (Figure 5c).
In the local HT, two parameters are set as follows: HOUG_LEN = 15 and HOUG_GAP = 2.
The HOUG_LEN means that only line segments over 15 pixels length are extracted, and HOUG_GAP
means that gaps less or equal 2 pixels between two line segments will be filled and that the two
segments will be connected. One of the local line segment detection results is shown in Figure 5d;
line segments along the house boundaries and on the roofs are detected and delineated in cyan.

Figure 5. Local line segment detection. (a) Candidate regions; (b) Minimum bounding rectangles
(MBRs) of the candidate regions; (c) Canny edge detection; (d) Line segments detected by local Hough
transformation.
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(2) Calculation of Indices

The second step is to calculate the ERI values. Two scalar values (PerpIdx, ParaIdx) are designed
to measure the degree to which these line segments are perpendicular or parallel to each other, and three
statistical values (LenMean, LenStd, LenMax) are selected to describe the statistical characteristics of
these line segments.

(a) PerpIdx is short for perpendicularity index, which describes how strongly the line segments
are perpendicular to each other. Take one pair of line segments as an example (Figure 6a). The angle
between the two line segments is defined as follows (only the acute angle of the two line segments
is considered):

Ang(i, j) = arccos(
|Vi ·Vj|
|Vi||Vj|

). (16)

where Vi and Vj are the ith and jth line segments, respectively, which are represented as vectors.
For the current local region with n line segments, the total number of these angles can amount
to Sumtol = n× (n− 1)/2. If Ang(i, j) ≥ 70× pi/180, the ith and jth line segments are considered
perpendicular to each other. Then, we can sum the number of such approximate right angles as follows:

CNperp(i, j) =

{
1, Ang(i, j) > 70 ∗ pi/180.

0, others.
(17)

Sumperp =
n−1

∑
i=1

n

∑
j=i+1

CNperp(i, j). (18)

The ratio between Sumperp and Sumtol is defined as PerpIdx of the region.

PerpIdx =
Sumperp

Sumtol
. (19)

Take the line segments in Figure 6b as an example. There are 5 line segments and 6 pairs of line
segments that are perpendicular to each other, namely, (L1, L3), (L1, L5), (L2, L3), (L2, L5), (L4, L3),
and (L4, L5). The total number of pairs is 5× 4/2 = 10, and the perpendicularity index is 6/10 = 0.6.

Figure 6. The principle of ERI (edge regularity indices) calculation. (a) Angle between two edges;
(b) An example of ERI calculation.

(b) ParaIdx denotes the parallelity index, which is similar to the perpendicularity index but
describes how strongly the line segments are parallel to each other. Two line segments are considered
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parallel to each other only when the angle between them is less than 20 degrees. Thus, the parallelity
index of a group of line segments can be computed as follows:

CNpara(i, j) =

{
1, Ang(i, j) < 20 ∗ pi/180.

0, others.
(20)

Sumpara =
n−1

∑
i=1

n

∑
j=i+1

CNpara(i, j). (21)

ParaIdx =
Sumpara

Sumtol
. (22)

For example, Figure 6b contains 4 pairs of parallel line segments: (L1, L2), (L1, L4), (L2, L4),
and (L3, L5); and the parallelity index is 4/10 = 0.4.

(c) LenMax, LenMean, and LenStd are the statistics of these line segments. The lengths of all the
line segments, denoted as l1, l2, ..., lm, are used to calculate the following statistics.

LenMean = ∑m
i=1(li)

m .

LenStd = std(l1, l2, ..., lm).

LenMax = max(l1, l2, ..., lm).

(23)

3.4.6. Shadow Line Indices

In most cases, buildings are always accompanied by shadows adjacent to them (Figure 7b).
Therefore, the shadow clues represent useful prior knowledge for building detection and are commonly
exploited by researchers [23,49]. Different from previous works, we do not directly extract buildings
from shadow clues. Instead, we extract shadow line indices (SLI) from shadows and use them in the
training process. Furthermore, we found that the edges between a building and its shadow often
appear as straight lines. The more numerous and longer straight lines there are in the area adjacent to
an object, the more likely the object is to be a building. A feature descriptor that captures the geometric
characteristics of shadows can be used to discriminate buildings from other objects. The process of SLI
extraction is divided into two steps.

Figure 7. Principle of SLI (shadow line indices) calculation. (a) Detected shadows; (b) Detected line
segments at the shadow borders.

The first step is to detect straight line segments along the edges of shadows in the binary mask
image (the red pixels in Figure 7a). It should be noted that the edges here are not edges of the whole
image but of only shadows, as shown in Figure 7b.

After the line segments in each region have been extracted, the SLI can be calculated for these
lines. In this study, we select and design 5 scalar values to represent the SLI. Let Li, i = 1, . . . , n denote
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n line segments. The lengths of these line segments are denoted as l1, l2, . . . , ln. The SLI values are
computed as follows: 

l_sum = ∑n
i=1(li)

n .

l_mean = l_sum
n .

l_std = std(l1, l2, . . . , ln).

l_max = max(l1, l2, . . . , ln).

l_r = l_max
equ_dia .

(24)

where equ_dia is the diameter of a circle with the same area as the current region and l_r represents
the ratio between the length of shadow lines and the region size.

3.4.7. Hybrid Descriptors

As mentioned above, different features are extracted from each candidate region. Color features
in both RGB and HSV color spaces are two 6-dimensional descriptors denoted as RGB_moi, i = 1, . . . , 6
and HSV_moi, i = 1, . . . , 6. The LBP texture with 8 neighbors is used, and the dimension of the LBP
descriptor is 8, denoted as LBPi, i = 1, . . . , 8. The Zernike moments are the shape descriptors with the
dimension of 25, denoted as Zeri, i = 1, . . . , 25. ERI is a 5-dimensional descriptor and denoted as a
vector (PerpIdx, ParaIdx, LenMean, LenStd, LenMax). SLI is a descriptor with 5 dimensions, denoted
as: (l_sum, l_mean, l_std, l_max, l_r). Together with other simple geometric indices, including area,
eccentricity, solidity, convexity, rectangularity, circularity, and shape roughness, all these descriptors
can be concatenated to obtain a long hybrid descriptor, which can enhance the discrimination ability
and improve the accuracy of the classification.

3.5. Training and Testing

3.5.1. Labeling and Training

After removing vegetation and shadow regions, the remaining regions are either house or
non-house (Figure 8a). By manually delineating the exact house footprints in each training orthophoto,
we can generate the ground-truth mask map (Figure 8b) in which the white pixels indicate the house
position. This mask is then overlapped with the corresponding candidate regions in Figure 8a. The label
of each candidate region can be inferred by the size of intersection with the ground-true mask regions.
A candidate region for which the intersection with the ground-truth mask exceeds 80% of the area is
then labeled as a house (positive sample). After all the positive samples (house regions) are labeled,
the remaining candidate regions are labeled as negative samples. As shown in Figure 8c, the positive
and negative samples are delineated by red and yellow outlines, respectively. Therefore, in the training
process, we need to only manually delineate the house position on the orthophotos, and the positive
and negative samples will be automatically generated by the program.

Figure 8. Labeling training samples. (a) Candidate regions; (b) House ROI mask (white = house);
(c) Positive (house) and negative (non-house) samples (red = house, yellow = non-house).
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3.5.2. Testing

In the testing process, the input images are processed in the same pipeline. First, the images
are preprocessed and segmented using the same algorithms employed in the training process. Then,
the vegetation and shadow regions are detected and removed from the initial segmented results. In the
next step, features are extracted over each candidate region. Finally, the feature vectors are fed into the
classifier trained in the training process to identify houses.

4. Experiments

4.1. Introduction of Data

The training dataset used in our experiments consists of about 47 orthophotos from Google
Earth in the region of Mississauga City (Figure 9a), which is situated beside Lake Ontario in Canada.
Figure 9b presents 9 of these orthophotos, which were acquired in October 2016 and mainly contain
residential houses and business buildings. The background includes vegetation, roads, parking lots,
vehicles, waters, and other objects. On these training orthophotos, all the houses and buildings have
been manually delineated (Figure 9c).

Figure 9. Training data. (a) The location of Mississauga; (b) Training images; (c) Delineated houses.

4.2. Evaluation Metrics

There are several possible approaches to evaluate the building detection results. Area- and
object- based evaluation are probably the most common approaches to measure the rate of detected
buildings. Compared to the area-based method, the object-based method is less sensitive to errors at the
building outlines [50]. By overlapping the automatically detected results with the ground-truth map,
these regions can be divided into four categories: (1) true positive (TP), house regions that are identified
as houses; (2) false positive (FP), non-house regions that are identified as houses; (3) true negative
(TN), non-house regions that are identified as non-house; and (4) false negative (FN), house regions
that are identified as non-house. In order to calculate TP, FP, TN, and FN, it is necessary to define some
rules for judging what type a region in the detected results belongs to. After classification, the regions
in the detected results are classified into two types: building and non-building. Let Rb denote a region
that is identified as building, and Rn denote a region identified as non-building. If Rb overlaps with
one reference building (denoted as RBR), the percentage of the area of Rb that overlaps with RBR is
calculated. If the percentage is no less than Tper, Rb is a TP; if not, it is a FP. In this study, the threshold
Tper is set to 60%. According to the same rule, a region Rn can be classified as an FN or a TN. Thus,
the numbers of TP, FP, TN, and FN can be calculated and 5 evaluation metrics are computed as follows:

ACC = (TP + TN)/(TP + FP + TN + FN).
PPV = TP/(TP + FN).
TPR = TP/(TP + FP).
TNR = TN/(TP + TN).

(25)
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F1_score =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (26)

Accuracy (AAC) is the proportion of all predictions that are correct, used to measure how good
the model is. Precision (PPV), a measurement of how many positive predictions are correct, is the
proportion of positives that are actual positives. Recall (TPR), also called sensitivity or true positive
rate, is the proportion of all actual positives that are predicted as positives. Specificity (TNR) is the
proportion of actual negatives that are predicted negatives. F1 score can be interpreted as a weighted
average of the precision and recall.

In order to evaluate the model performance, ROC (receiver operating characteristic) curve is
generated by plotting TPR against (1-TNR) at various threshold setting [51]. The closer the curve
follows the left-top border, the more accurate the test is. Therefore, the area under the ROC curve
(AUC) is used to evaluate how well a classifier performs.

4.3. Results and Quality Assessment

In order to test the effectiveness of our approach and those features we selected or designed,
we conducted an experiment using three different classifiers, namely AdaBoost, RF (Random
Forests), and SVM (Support Vector Machine). The parameters of these classifiers are selected through
optimization, as listed in Table 1. The basis estimator of AdaBoost is set as decision tree, and RBF
kernel is used in SVM.

Table 1. Parameters of classifiers.

Classifier Parameters Description

AdaBoost n_max = 90 (optimized) The maximum number of estimator at which boosting is terminated.
rate = 0.412 (optimized) Learning rate.

SVM
Kernel = ‘RBF’ Ridial basis function is used as the kernal.
γ = 0.021 (optimized) γ defines the influence distance of a single example.
C = 4.281 (optimized)

RF n_trees = 45 (optimized) Total number of trees in the random forest.
n_sel = 26 (optimized) The number of tried attributes when splitting nodes.

From the training images, we selected 820 house and building samples. In the test process,
we selected another 8 orthophotos (denoted as test01, test02, . . . , test08) in Mississauga. The 8
orthophotos are preprocessed and segmented using the same algorithms employed in the training
process. Then features are extracted and fed to the three classifiers to identify the houses. Compared
with the ground-truth images, the detection results can be evaluated. Table 2 shows all the evaluation
indices of the three classifiers for each test orthophoto. In the table, each line represents the values of
these indices, namely accuracy, precision, recall, specificity, F1 score, and AUC. From the table, we
can see that the accuracy varies from 77.4% to 92.6%. For object detection missions, we care more
about precision and recall rather than accuracy. The best precision, 95.3%, is achieved by RF on test05,
and the worst, 73.4%, is achieved by AdaBoost on test03. The highest recall 92.5% is achieved by SVM
on test06, and the worst recall is 45.9% achieved by AdaBoost on test08. The last column shows that all
AUC values can reach over 86.0% and indicates that all the classifiers perform well in the classification.

A classifier does not always perform the best on each of the orthophotos. In order to get an overall
evaluation, we average these indices over all the test orthophotos and present the final results in the
’Overall’ rows in Table 2. Among the three classifiers, SVM achieves the best precision (85.2%) and
recall (82.5%), while AdaBoost achieves the worst precision (78.7%) and recall (67.1%). Furthermore,
the F1 score and AUC also indicate that SVM performs best and that AdaBoost performs the worst.
Figure 10 presents the detection results of two of these images, test01 and test08, which are relatively
the best and worst results, respectively. Compared with other images, test08 (the second row) contains
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some contiguous houses and many small sheds. In addition, the roof structures are more complex.
As a result, the precision and recall are not as good as that of others.

Table 2. Quality evaluation of the results.

Method Data Acc. Prec. Rec. Spec. F1 Score AUC

AdaBoost

test01 0.889 0.811 0.896 0.885 0.851 0.951
test02 0.852 0.735 0.781 0.882 0.758 0.934
test03 0.839 0.734 0.746 0.880 0.740 0.915
test04 0.833 0.831 0.673 0.923 0.744 0.918
test05 0.850 0.900 0.692 0.951 0.783 0.901
test06 0.877 0.750 0.792 0.907 0.771 0.926
test07 0.774 0.792 0.514 0.923 0.623 0.870
test08 0.778 0.829 0.459 0.949 0.591 0.860

Overall 0.829 0.787 0.671 0.909 0.725 0.900

RF

test01 0.926 0.879 0.906 0.936 0.892 0.965
test02 0.898 0.825 0.825 0.928 0.825 0.953
test03 0.905 0.855 0.803 0.945 0.828 0.948
test04 0.840 0.830 0.682 0.925 0.749 0.918
test05 0.902 0.953 0.788 0.975 0.863 0.934
test06 0.911 0.807 0.868 0.927 0.836 0.950
test07 0.825 0.870 0.563 0.957 0.684 0.900
test08 0.821 0.816 0.593 0.934 0.687 0.883

Overall 0.872 0.848 0.731 0.938 0.785 0.926

SVM

test01 0.926 0.903 0.875 0.952 0.889 0.966
test02 0.907 0.821 0.873 0.922 0.846 0.958
test03 0.915 0.866 0.829 0.949 0.847 0.959
test04 0.873 0.854 0.766 0.930 0.808 0.947
test05 0.910 0.900 0.865 0.938 0.882 0.958
test06 0.921 0.803 0.925 0.920 0.860 0.973
test07 0.901 0.868 0.831 0.936 0.849 0.939
test08 0.867 0.824 0.763 0.919 0.792 0.929

Overall 0.898 0.852 0.825 0.933 0.838 0.951
Bold is the highest value in each column and Underline is the lowest.

In order to test how well our model can perform on different orthophotos, we selected another
4 orthophotos containing business buildings. In this experiment, we test only the SVM classifier,
which performed the best in the first experiment. Figure 11 presents the detection results. Compared
with the manually created ground-truth maps, the evaluation results for each individual image
are presented in Table 3, and the last row is the overall evaluation of all the images together.
The AUC values indicate that the SVM classifier can still perform well on these images. From the
overall evaluation, we can see that the average precision, recall, and F1 score reach 90.2%, 72.4%,
and 80.3%, respectively.

Table 3. Quality evaluation of the detection results (SVM).

Data Acc. Prec. Rec. Spec. F1 Score AUC

test09 0.950 0.875 0.875 0.969 0.875 0.986
test10 0.867 0.917 0.688 0.966 0.786 0.878
test11 0.927 0.923 0.750 0.981 0.828 0.915
test12 0.887 0.886 0.646 0.971 0.747 0.899

Overall 0.910 0.902 0.724 0.973 0.803 0.915
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Figure 10. House detection results on image test1 (first row) and test8 (second row). (a) Original
images; (b) Results of AdaBoost; (c) Results of Random Forest (RF); (d) Results of Support Vector
Machine (SVM).

Figure 11. Results of building Detection. (a) Test09; (b) Test10; (c) Test11; (d) Test12.

4.4. Evaluation of Different Features

In this experiment, we will evaluate the contribution of each type of features in the house detection
task. We can group all the features into 5 categories: (1) Color features: RGB_moi, i = 1, . . . , 6 and
HSV_moi, i = 1, . . . , 6; (2) LBP texture: LBPi, i = 1, . . . , 8; (3) Zernike moments: Zeri, i = 1, . . . , 25;
(4) ERI + SLI: (PerpIdx, ParaIdx, LenMean, LenStd, LenMax) and (l_sum, l_mean, l_std, l_max,
and l_r); and (5) Geometric indices: area, eccentricity, solidity, convexity, rectangularity, circularity
and shape roughness. Random forest is employed in this experiment because RF can provide the



Remote Sens. 2018, 10, 451 19 of 24

importance value of each feature during the training. This can help evaluate how much one feature
contribute to the classification. We performed the RF training procedure 10 times and calculate the
mean importance value for each group feature mentioned above, presenting the result in Table 4.
The result shows that ‘ERI + SLI’ has the highest importance, and ‘Geometric indices’ and ‘Zernike
moments’ follow with nearly the same importance.

The above evaluation just indicates the importance of each group feature in the training procedure.
In order to further test the performance of each group feature, we employ each group feature alone to
detect houses from the test images (test09–test12). Each time, only one group of features is selected to
train and test. Besides the 5 groups of features mentioned above, we also use 2 groups of combined
features. One is the whole combination of all features, denoted as ‘All’, and the other is the all
combination except ERI and SLI, denoted as ‘All-(ERI + SLI)’. Figure 12 shows the detection results
produced by different feature groups, and the quality assessment results are presented in Table 5.
The classification accuracy of all the feature groups can reach over 76.6% and the AUC can reach
over 74.7%. For object detection, precision, recall, and F1 Score are more indicative than other quality
assessment indices. Among the 5 individual feature groups, ‘ERI + SLI’ achieves the highest precision
87.6% and the highest recall 55.5%; ‘ERI + SLI’ achieves the highest F1 score 67.0% and ’Geometric
indices’ follows with a value of 63.8%. Overall, our proposed features ‘SLI + ERI’ outperform the other
features Color, LBP texture, Zernike moments and Geometric indices, when employed alone.

Furthermore, the first two rows of Table 5 show that our proposed features ‘ERI + SLI’ can help
improve the quality of detection results. ‘All-(ERI + SLI)’ means that all other features except ERI
and SLI are used in the experiment, and ‘All’ means that all features including ERI and SLI are used.
Comparing the two rows, we can see that the precision, recall and F1 score increase by 5.6%, 11.2% and
9.0%, respectively, when the ERI and SLI are used together with other features. The evaluation results
indicate that the proposed features are effective for house detection.

Table 4. Importance of features.

Features Color LBP Geometric Indices Zernike Moments ERI + SLI Sum.

Importance 0.1269 0.1845 0.2030 0.2011 0.2845 1.0000

Table 5. Evaluation of features.

Features Acc. Prec. Rec. Spec. F1 Score AUC

all 0.905 0.896 0.765 0.961 0.825 0.935
All-(ERI + SLI) 0.861 0.840 0.653 0.947 0.735 0.903

ERI + SLI 0.841 0.876 0.555 0.954 0.670 0.875
Color 0.771 0.642 0.432 0.896 0.486 0.793
LBP 0.767 0.666 0.452 0.887 0.520 0.789
Geo 0.825 0.825 0.527 0.945 0.638 0.848
Zer 0.766 0.713 0.374 0.923 0.480 0.747
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Figure 12. Building detection results using different features. (a) All features; (b) All-(edge regularity
indices (ERI) + shadow line indices (SLI)); (c) ERI + SLI; (d) Color; (e) local binary patterns (LBP);
(f) Geometric indices; (g) Zernike moments.

4.5. Discussion

We utilized 3 machine learning methods, namely, AdaBoost, RF, and SVM, to test our approach.
As shown in Table 2, all the classifiers can obtain an overall accuracy from 82.9% to 89.8% and an
overall AUC from 86.0% to 97.3%, and the results indicate that our approach performs well for house
detection. The precision and the recall are commonly used to measure how well the method can
identify the objects. Overall, the precision values of AdaBoost, RF, and SVM can reach 78.7%, 84.8%,
and 85.2%, respectively; and the recall values of the three classifiers can reach 67.1%, 73.1%, and 82.5%,
respectively. Combined with SVM, the proposed approach can achieve the best precision of 85.2% and
the best recall of 82.5%.

The evaluations show that our proposed ERI and SLI features perform well on house detection,
achieving the highest score among the 5 individual feature groups. When combined with other features,
the ERI and SLI can improve the precision, recall, and F1 score by 5.6%, 11.2%, and 9.0%, respectively.
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From the detection results (Figure 12), we can see that color, texture features cannot distinguish roads
from buildings. Geometric and shadow clues can help discriminate objects having the similar spectral
characteristics and thus improve the precision.

The precision of identification is also impacted by the image segmentation, which is crucial for
object-based image analysis. In our experiments, the segmentation results are still far from being
perfect and unavoidably results in inaccurate detection. From Figures 10–12, we can see that some
roofs are not delineated as a whole due to the inaccurate segmentation.

5. Conclusions

In this paper, we propose an OBIA and machine learning based approach for detecting houses
from RGB high-resolution images. The proposed approach shows the ability of machine learning
in object detection domain, which is proven by the results of experiments and evaluations. In order
to capture geometric features and exploit spatial relations, we propose two new feature descriptors,
namely, ERI (edge regularity indices) and SLI (shadow line indices), which help to discriminate houses
from other objects. Evaluation results show that the two combined features ‘ERI + SLI’ outperform
other commonly used features when employed alone in house detection. Further evaluations show
that ‘ERI + SLI’ features can increase the precision and recall of the detection results by about 5.6% and
11.2%, respectively.

The approach has several advantages that make it valuable and applicable in automatic object
detection from remotely sensed images. First, the whole process, from inputting training data to
generating output results, is fully automatic, meaning that no interaction is needed. Certainly, some
parameters should be predefined before executing the programs. Second, the proposed method needs
only RGB images without any other auxiliary data that sometimes are not easy to obtain. Without
limitations from the data source, this approach is valuable in practical applications. Third, this approach
has low requirements for training data. In our experiments, 47 Google Earth image patches containing
about 820 house samples are selected to train the model, implying that it is easy to collect sufficient
training data.

This approach is mainly tested on detecting residential houses and business buildings in suburban
areas, and it is effective and applicable. The approach can also be extended to house mapping or rapid
assessment of house damage caused by earthquakes in suburban or rural areas. Although this study
indicates that the proposed approach is effective for house identification, further exploration is still
required. The image segmentation algorithm tends to segment a whole roof into separate segments
due to variable illumination. Therefore, more robust and reliable algorithms should be developed to
improve the segmentation results. In the experiments, we found that some roads and concrete areas are
still misclassified as house roofs because current features are not powerful enough to discriminate one
from another. Therefore, more powerful and reliable features need to be explored further. To test the
approach’s stability, some more extended and sophisticated areas, for example high-density building
urban areas, need to be tested.
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Abbreviations

The following abbreviations are used in this manuscript:

AdaBoost adaptive boost
AUC area under the curve
CNN convolutional neural network
DSM digital surface model
ERI edge regularity indices
GIS geographic information systems
HMT hit-or-miss transformation
HT Hough transformation
LBP local binary patterns
ML machine learning
OBIA object-based image analysis
RF random forests
RGB red, green, and blue
ROC receiver operating characteristic
SLI shadow line indices
SVM support vector machine
VHR very high resolution
WT watershed transformation
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