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Abstract— Periodical road manhole cover measurement is
extremely important to ensure road safety and reduce traffic
disasters. This letter proposes an effective method for delineating
road manhole covers from mobile laser scanning point cloud data.
To improve processing efficiency, first, road surface points are
segmented and rasterized into georeferenced intensity images.
Then, object-oriented patches are generated through superpixel
segmentation and further fed to a convolutional capsule network
classifier for manhole cover detection. Finally, manhole covers are
accurately delineated through a marked point process of disks.
Quantitative evaluations on three data sets show that an average
completeness, correctness, quality, and F1-measure of 0.965,
0.961, 0.929, and 0.963, respectively, are obtained. Comparative
studies with three existing methods confirm that the proposed
method performs superiorly in delineating manhole covers of
varying conditions and on complex road surface environments.

Index Terms— Convolutional capsule network, manhole cover,
marked point process, mobile laser scanning, point cloud.

I. INTRODUCTION

MONITORING road surface conditions is greatly impor-
tant for many transportation-related activities. The real-

time and accurate information regarding road marks, road
infrastructures, and road surface distresses can be used to
regulate traffic flows, conduct driving behaviors, and avoid
potential traffic accidents. Automated delineation of road sur-
face fixtures is also a necessary input for many intelligent
transportation systems, such as driver assistance and safety
warning systems [1] and autonomous driving systems [2].
Therefore, to smooth transportation-related activities, to reduce
serious casualties, and to improve road safety, periodical road
asset surveys and road maintenance should be carried out.

Manuscript received January 16, 2019; revised April 13, 2019 and
April 20, 2019; accepted May 6, 2019. This work was supported in part by the
Natural Science Foundation of Jiangsu Province under Grant BK20160427,
in part by the National Natural Science Foundation of China under
Grant 61603146 and Grant 41671454, and in part by the Natural Sci-
ence Research in Colleges and Universities of Jiangsu Province under
Grant 16KJB520006. (Corresponding author: Yongtao Yu.)

Y. Yu and C. Jin are with the Faculty of Computer and Software
Engineering, Huaiyin Institute of Technology, Huaian 223003, China (e-mail:
allennessy.yu@gmail.com).

H. Guan is with the School of Remote Sensing and Geomatics Engineering,
Nanjing University of Information Science and Technology, Nanjing 210044,
China (e-mail: guanhy.nj@nuist.edu.cn).

D. Li is with the State Key Laboratory of Information Engineering in
Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430072,
China (e-mail: scholar.dll@gmail.com).

C. Wang and J. Li are with the Fujian Key Laboratory of Sensing and
Computing for Smart Cities, School of Information Science and Engineering,
Xiamen University, Xiamen 361005, China (e-mail: cwang@xmu.edu.cn;
junli@xmu.edu.cn).

Color versions of one or more of the figures in this letter are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LGRS.2019.2916156

As a common type of infrastructure on urban roads, road
manholes are usually used to conduct rainwater, discharge
sewage, bitt power, and telecommunication cables. Generally,
for safety and beauty purposes, road manholes are covered
with removable covers made of metals, concretes, or rein-
forced plastics. However, if the covers are stolen by thieves,
broken by heavy trucks, or removed by workers, they form
threatens to the moving vehicles and pedestrians and might
cause severe traffic disasters and loss of life and property.
Thus, timely and efficiently conducting manhole cover mea-
surement is necessary for transportation management depart-
ments to perform road maintenance and repairs to ensure road
safety, as well as for many intelligent transportation systems
to recognize road distresses and direct driving behaviors.

Traditional means for road manhole cover measurements are
usually carried out through onsite inspections of workers. Such
methods are labor-intensive, time-consuming, and unsafe,
especially on busy roads or in tunnels. Fortunately, due to
the advances in optical imaging and data collection systems,
collecting high-resolution road scene images can be rapidly
and cost-effectively accomplished using mobile mapping sys-
tems or unmanned aerial vehicles. Consequently, manhole
cover delineation using image processing techniques has been
exploited in the literature. In [3], two methods were tested
for detecting manhole covers. The first method adopted a
geometrical filter to ascertain circular-shaped objects. The sec-
ond method used a machine learning model to describe the
texture features of manhole covers. In [4], the texture and
intensity features of superpixels were computed and fed into a
support vector machine classifier to detect candidate regions.
The consistency and context of the candidate regions were
analyzed using conditional random filed. A multiview manhole
cover detection and localization method was proposed in
[5]. In this method, manhole covers were first detected from
single-view images through segmentation and filtering. Then,
multiview processing was carried out to compute accurate
locations of manhole covers. By combining improved Hough
transform and image contrast, broken manhole covers were
identified in [6]. In [7], a convolutional neural network was
presented to detect and localize manhole covers. In addition,
multisensor data fusion was also exploited for manhole cover
detection [8].

Due to the advantages of mobile laser scanning systems
in rapidly collecting real-world scale-invariant, 3-D, and
rich-detailed road scene data with laser reflection properties,
methods, and techniques based on the point cloud data
have been developed for road scene object detection and
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Fig. 1. Illustrations of (a) segmented road surface points (red) and (b)
generated georeferenced intensity image.

recognition [9], [10], such as road markings, vehicles, light
poles, and traffic signs. Consequently, manhole cover detection
has also been conducted using mobile laser scanning data.
In [11], to facilitate data processing, road surface points were
first segmented and interpolated into georeferenced feature
images. Then, distance-dependent thresholding and multiscale
tensor voting were applied to segment manhole cover candi-
dates. Finally, manhole covers were detected using distance-
based clustering and morphological techniques. A marked
point process of disks was developed in [12] to detect circular-
shaped manhole covers. In this method, manhole covers were
modeled using marked points of disks and a Bayesian
model. The marked point process was optimized based on the
reversible jump Markov chain Monte Carlo algorithm. In [13],
a multilayer feature generation model was constructed to
depict high-order features of image patches. The detection of
manhole covers was completed using a random forest model.

In this letter, we develop an effective method for delineating
manhole covers from mobile laser scanning point cloud data.
The proposed method performs superiorly in handling man-
hole covers of varying conditions and on different road sur-
face environments. The contributions include: 1) a superpixel
segmentation strategy for object-oriented patch generation;
2) a deep convolutional capsule network classifier with cap-
sule convolution operations for manhole cover detection; and
3) a marked point process of disks for accurate manhole cover
delineation.

II. METHODOLOGY

A. Road Segmentation and Intensity Image Generation

The collected mobile laser scanning data contain a large
volume of 3-D points covering the entire road scene. In order
to narrow the searching region and improve the efficiency,
we only focus on the processing of road surface points.
In this letter, we adopt the curb-line-based road segmentation
method [14] to separate road surface points from the entire
point cloud data. In this method, assisted by the vehicle
trajectory, curb points are first located via profile analysis.
Then, curb-lines fitted from the detected curb points are used
to segment road surface points. The road surface segmentation
result is illustrated in Fig. 1(a).

Instead of processing the discrete, unordered road surface
points in 3-D space, we rasterize them into a 2-D georef-
erenced intensity image using the inverse distance weighted
interpolation method [15]. In this method, first, road surface
points are vertically partitioned into a series of grids with a
specific spatial resolution (e.g., 2.5 cm). The spatial resolution
is determined according to the point cloud density and the

measurement accuracy tolerated. Then, the points within a
grid are interpolated into a single pixel whose gray value
is determined according to the distances to the grid center
and intensities of these points. If a grid contains no points,
the associated pixel value is set to be zero. The generated
georeferenced intensity image is illustrated in Fig. 1(b).

B. Manhole Cover Detection
To accurately detect manhole covers from the intensity

image, we construct a convolutional capsule network classifier.
Different from conventional neural networks that consist of
scalar neurons to encode the probabilities of the existence of
specific features, a capsule network is composed of entity-
oriented vectorial capsules. A capsule can be viewed as a
vectorial combination of a set of neurons [16]. The instan-
tiation parameters of a capsule represent a specific type of
entity; the length of the capsule encodes the probability of the
existence of that entity. Capsule networks have been proven
to be more powerful and robust than conventional scalar
neuron-based deep learning models in extracting intrinsic
features [16]–[18]. Therefore, to obtain promising manhole
cover detection performance, we extend the original capsule
network to design a multilayer convolutional capsule network
classifier.

Fig. 2 shows the complete architecture of our proposed con-
volutional capsule network classifier, which contains two con-
ventional convolutional layers (Conv1 and Conv2), a primary
capsule layer (PrimCap), two convolutional capsule layers
(ConvCap1 and ConvCap2), and two fully connected capsule
layers (FullCap1 and FullCap2). The two conventional con-
volutional layers function to extract low-level texture features
from the input data. These features are further encoded into
high-order capsules to represent different levels of entities.
The Conv1 layer contains Dm feature maps, each of which
is generated with a kernel size of Km × Km × 1. The
Conv2 layer includes Dc feature maps, each of which is
generated with a kernel size of Kc × Kc × Dm . For these
two convolutional layers, we adopt the widely used ReLU as
the activation function.

The PrimCap layer is a primary capsule layer that converts
the scalar feature representations into the vectorial entity
representations. The PrimCap layer is composed of Dp entity
maps of Sp-dimensional capsules. It is constructed based on
a conventional convolution operation on the Conv2 layer with
a kernel size of K p × K p × Dc and a feature map number of
Dp × Sp . After convolution operations, the generated feature
maps are partitioned into groups to form Dp entity maps, each
of which contains a set of capsules with a dimension of Sp .
These capsules can not only estimate the probability of the
existence of a specific entity through the vector length but
also describe the attributes of that entity using the instantiation
parameters.

The two convolutional capsule layers are used to extract
high-order entity features from low-order entities encoded by
capsules. This is carried out by performing capsule convolution
operations and characterizing the extracted features using a
new capsule. The ConvCap1 layer contains D f entity maps
of S f -dimensional capsules generated with a kernel size of
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Fig. 2. Architecture of the convolutional capsule network classifier.

K f × K f × Dp . The ConvCap2 layer contains Ds entity maps
of Ss -dimensional capsules generated with a kernel size of
Ks × Ks × D f . For the convolutional capsule layers, the total
input to a capsule j is a weighted sum over all predictions
from the capsules within the convolution kernel in the lower
layer as follows:

C j =
∑

i
ai j · Û j |i (1)

where C j is the total input to capsule j ; ai j is the coupling
coefficient indicating the degree of contribution that capsule i
in the layer below activates capsule j ; Û j |i is the prediction
from capsule i to capsule j and it is calculated as follows:

Û j |i = Wi j · Ui (2)

where Ui is the output of capsule i and Wi j is the network
weight on the edge connecting capsules i and j . Specifically,
the coupling coefficients between capsule i and all its con-
nected capsules in the layer above sum to 1 and are determined
by an iterative dynamic routing process [16]. Recall that we
use the length of a capsule to evaluate the probability of
the existence of an entity. Therefore, the nonlinear squash-
ing function [16] is adopted as the activation function in
the convolutional capsule layers to ensure that the shorter
the capsules’ lengths, the lower the probability estimations;
whereas the longer the capsules’ lengths, the higher the
probability estimations. The squashing function is formulated
as follows:

U j =
∥∥C j

∥∥2

1 + ∥∥C j
∥∥2 · C j∥∥C j

∥∥ . (3)

By such a conversion, short capsules are shrunk to almost
zero length and long capsules approach to a length close to 1.

The two fully connected capsule layers combine all the
capsules in the layer below to construct a high-level entity
abstraction. The FullCap1 layer consists of F capsules, each
of which has a dimension of Sm . The FullCap2 layer is a
classification layer composed of two Sc-dimensional class-
oriented capsules representing the manhole cover and the road
surface, respectively. In these two layers, dynamic routing
between capsules and the squashing function are also used
to cast predictions and normalize the outputs of capsules.

The parameters of the convolutional capsule network classi-
fier are iteratively adjusted through the error backpropagation
process. In our implementation, the numbers of positive train-
ing samples of manhole covers and negative training samples
of road surface are 2200, respectively. To effectively train the
convolutional capsule network classifier toward classification
tasks, we use the margin loss coupled with reconstruction

Fig. 3. Illustration of superpixel-based patch generation. (a) Road surface
intensity image. (b) Superpixel segmentation result and generated patches.

Fig. 4. Illustration of marked point process-based manhole cover delin-
eation. (a) Detected manhole covers using the convolutional capsule network
classifier. (b) Initial marked points. (c) Optimized marked points.

regularization [16] as the objective function to direct the error
backpropagation process.

After the convolutional capsule network classifier is con-
structed, we apply it to the road surface intensity image to
detect manhole covers. Instead of using the sliding window
approach [13] to blindly move across the image, we propose
a superpixel-based strategy to generate object-oriented mean-
ingful and nonredundant patches. As shown in Fig. 3(b), first,
the intensity image is segmented into a group of connected
superpixels using the simple linear iterative clustering (SLIC)
method [19]. Then, a square patch is generated centered at
each superpixel. The generated patches are further input to
the convolutional capsule network classifier to categorize them
into manhole covers or the road surface. We use the length of
the capsule in the FullCap2 layer to represent the certainty of
a patch being an instance of a specific class. The class label
of a patch is determined as follows:

L∗ = arg max
k

‖Uk‖ (4)

where Uk is the output of a capsule in the FullCap2 layer.
Fig. 4(a) illustrates the patches labeled as manhole covers.

C. Manhole Cover Delineation
To accurately delineate manhole covers and their locations,

we adopt a marked point process [20]. In our implementation,
a manhole cover is represented by a disk, which is modeled
by a location coordinate and a radius. Let X be a marked point
process of disks living in the following bounded space:

S = [xmin, xmax] × [ymin, ymax] × [rmin, rmax] (5)
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where [xmin, xmax] × [ymin, ymax] and [rmin, rmax] correspond
to the location space and the mark space, respectively. Then,
the determination of the optimal set of marked points to
delineate manhole covers in the intensity image is converted
into the problem of minimizing the Gibbs energy function
U (X) composed of a data energy term and an interaction
energy term

U(X) = D(X) + R(X) (6)

where D(X) is the data energy term describing the consistency
between the manhole covers and the intensity image; R(X)
denotes the interaction energy term indicating the locations of
manhole covers without overlaps. The data energy term D(X)
is the accumulation of each individual energy associated with
a marked point. The interaction energy term R(X) considers
pairwise interactions between two marked points. More details
about the formulations of the Gibbs energy function and its
two energy terms can be referred to [20].

Since the number of manhole covers and their potential
regions have been detected using the convolutional capsule
network classifier. Thus, we generate a set of marked points
of disks centered at the patches labeled as manhole covers.
As shown in Fig. 4(b), for a marked point, the location is
initialized as the center of the corresponding patch; the radius
is randomly initialized in the mark space [rmin, rmax] following
a uniform distribution. The adjustment and optimization of
the parameters associated with each marked point are accom-
plished based on a simulated annealing assisted diffusion
dynamic process [20]. After optimization, the location of
each marked point is treated as the location of the associated
manhole cover and the radius of the marked point indicates the
size of the manhole cover. Fig. 4(c) illustrates the optimized
marked points of disks delineating the tight contours and
accurate locations of manhole covers.

III. RESULTS AND DISCUSSION

A. Data Sets

The mobile laser scanning point cloud data used in this
letter were acquired using the RIEGL VMX-450 mobile laser
scanning system mounted on the roof of a Buick minivan
driving at a speed of about 50 km/h on the urban roads in
Xiamen, China. To evaluate the performance of our proposed
manhole cover delineation method, we applied it to three
selected mobile laser scanning point cloud data sets covering
the road areas of Siming Road South (SRS), Software Park
Phase II (SPP), and International Conference and Exhibition
Center (ICEC). The remainder of the point cloud data was
used to train the convolutional capsule network. The SRS data
set covered an old four-lane asphalt-paved road segment of
about 2998 m. The SPP data set covered a two-lane cement-
paved road segment of about 3105 m. The ICEC data set cov-
ered a two-lane asphalt-paved road segment of about 2947 m.
These three selected road sections covered typical urban roads
paved with different materials (cement and asphalt) and with
different geometric and road surface conditions (e.g., cracks).

B. Manhole Cover Detection and Delineation
To evaluate the manhole cover delineation performance,

we applied our proposed method to the three point cloud

TABLE I

PARAMETER SETTING OF THE CONVOLUTIONAL CAPSULE NETWORK

TABLE II

MANHOLE COVER DETECTION RESULTS AND QUANTITATIVE

EVALUATIONS OF DIFFERENT METHODS ON THE
THREE TEST DATA SETS

data sets. Through computational and classification perfor-
mance analysis, the parameters of the convolutional capsule
network classifier were configured as in Table I. Table II
details the manhole cover detection results achieved using
the proposed method on the three data sets. In Table II,
true positive (TP) and false positive (FP) denote the num-
bers of detected manhole covers and generated false alarms,
respectively. As reflected in Table II, for each of the data
sets, the majority of the manhole covers were correctly
detected with quite a small proportion of false alarms. For
visual inspections, Fig. 5 presents a subset of manhole cover
delineation results. As shown in Fig. 5, benefiting from the
development of the convolutional capsule network classifier
and the marked point process of disks, the manhole covers
of different conditions and on different road surface environ-
ments were effectively located and delineated. Specifically,
the manhole covers partially painted by road markings and
the manhole covers on crack-damaged roads were correctly
detected and delineated. However, as shown by the manhole
covers highlighted by blue circles in Fig. 5, these manhole
covers exhibited extremely low contrast to the road surface and
almost hided in the background. Caused by heavy traffic flows
on this road segment and other natural factors, these manhole
covers were covered with thick dusts and muds. Therefore, the
proposed method failed to detect them. In addition, due to the
high similarities of some road surface objects (e.g., large-area
asphalt blocks) to manhole covers, these objects were falsely
detected as manhole covers.

To quantitatively evaluate the manhole cover delin-
eation results, the following four measures are adopted:
completeness (cpt), correctness (crt), quality (qat), and
F1-measure (fmr) [13]. Table II details the quantitative
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Fig. 5. Illustration of a subset of manhole cover delineation results.

evaluations on the three point cloud data sets. Specifically,
the proposed method obtained an average completeness, cor-
rectness, quality, and F1-measure of 0.965, 0.961, 0.929, and
0.963, respectively, in detecting manhole covers from the three
data sets.

C. Comparative Study

To further evaluate the efficiency and accuracy of our
proposed method in detecting manhole covers from mobile
laser scanning data, we conducted a set of comparative studies
with the following three methods: the tensor voting based
method [11], the marked point process-based method [12], and
the deep learning based method [13]. We applied these three
methods to the three test data sets to perform manhole cover
detection. Table II lists the manhole cover detection results
and the quantitative evaluations. Among these three methods,
the tensor voting-based method obtained a lower performance
and generated more false alarms than the other two methods;
whereas the deep learning based method achieved a promising
and similar performance to our proposed method. In fact,
depending on intensity thresholding and segmentation tech-
niques, the tensor voting-based method lacked effective capa-
bilities to handle manhole covers of varying conditions and
on complex road surface environments. In contrast, the deep
learning-based method exploited deep feature representations
of manhole covers, thereby improving the detection perfor-
mance. However, compared with the other two methods,
the deep learning-based method cannot effectively delineate
the shape and contour of a manhole cover. Comparatively, our
proposed method was more robust and outperformed the other
three methods in accurately detecting, locating, and delineating
manhole covers from mobile laser scanning data.

IV. CONCLUSION

This letter has presented a complete workflow for delin-
eating road manhole covers from mobile laser scanning data.
Based on the superpixel-based patch generation strategy,
the convolutional capsule network classifier, and the marked
point process of disks, the proposed method performed effec-
tively in delineating manhole covers of varying conditions and
on complex road surface environments. Quantitative evalua-
tions on three test data sets showed that the proposed method
achieved an average completeness, correctness, quality, and
F1-measure of 0.965, 0.961, 0.929, and 0.963, respectively.
Comparative studies with three existing methods demonstrated

that the proposed method was more robust and outperformed
the other three methods in accurately and correctly detecting,
locating, and delineating manhole covers from mobile laser
scanning point cloud data. However, the limitation of capsule
networks is the relatively lower computational efficiency com-
pared with the scalar neuron-based models. Our future work
will explore radiometric calibration and fuse image data to
further improve manhole cover delineation performance.
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