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ABSTRACT: 
 
British Columba, Canada experienced its record-breaking wildfire season in 2017. The wildfire smoke is one of the main sources 
of fine particles with diameters smaller than 2.5 μm (PM2.5). The rising level of PM2.5 concentrations during the wildfire season 
would considerable increase the risk of premature death, especially for people with weak immune systems. In this study, the satellite 
optical data collected from 3 km MODIS aerosol optical depth (AOD) products were adopted to estimate PM2.5 concentration levels 
derived from wildfires in British Columbia, Canada from July to September 2017. The satellite optical data were combined with 
ground station measurements, meteorological and supplementary data to estimate PM2.5 concentrations using the geographically 
weighted regression (GWR) model. Our results demonstrated that PM2.5 concentrations were the highest in July and August based 
on the estimation results of seasonal and monthly GWR models. It indicated that the application feasibility of MODIS AOD 
products in predicting PM2.5 concentrations during the wildfire season in British Columbia. 

 

 
1. INTRODUCTION 

 
Wildfire smoke is increasingly recognized as a significant 
source of air pollution and mostly result in public health 
issues (Black et al., 2017). In the past few decades, although 
air pollution in Canada has been well controlled due to 
proper regulations, fine particulate emissions from wildfires 
show upward trends since climate change aggravates the 
frequency and likelihood of wildfires (Black et al., 2017). 
The daily fine particulate matter concentration affected by 
wildfires smoke exceeded the 24-hour standard of 28 μg/m3 
during 2015 to 2017 (Environmental Reporting BC, 2017). 
It is estimated that almost 40% of total particulate emissions 
was the result of wildfires, and over two million hectares of 
forests were annually burnt in Canada (Gralewicz et al., 
2012; Black et al., 2017). It is found that PM2.5 and ultrafine 
particles are the dominant wildfire-generated particles of 
wildfire smoke (Gralewicz et al., 2012). Since forest area 
accounts for 60% of British Columbia’s total area, wildfires 
have always been a serious problem in British Columbia due 
to both natural and anthropogenic reasons. The British 
Columbia has witnessed the record-breaking wildfire season 
from July 6, 2017 and approximately 120,000 hectares of 
forests were burnt, which accounts for 1.3% of total British 
Columbia area.   

Wildfire is considered to be the major source of PM2.5 in 
Canada. In the recent years, several studies have been 
conducted to examine the relationship between wildfire and 
PM2.5. Tian & Chen (2010) adopted a semi-empirical model 
to predict hourly PM2.5 concentrations in southern Ontario 
using MODIS aerosol optical depth (AOD) and 

meteorological data. The R2 of the model was 0.65, meaning 
that the model was able to explain 65% variability in PM2.5. 
Hystad et al. (2011) used the land use regression (LUR) 
model to estimate PM2.5 concentrations in seven Canadian 
cities, and the R2 was about 0.46. Hystad et al. (2012) 
estimated PM2.5 concentrations using the Chemical 
Transport Model (CTM), and generated a R2 of 0.67. 
Sofowote & Dempsey (2015) analyzed three wildfire events 
in July of 2011, 2012, and 2013 to identify the major source 
of high PM2.5 concentrations during the study period. It is 
found that the regions with active fires tend to display higher 
PM2.5 concentrations by examining the near-real-time 
ground-level PM2.5 data. Crouse et al. (2016) also 
implemented the CTM model combining MODIS, MISR, 
and SeaWIFS AOD to estimate PM2.5 concentration levels in 
Canada. The result of R2 was 0.58. Stieb et al. (2016) 
examined the impacts of PM2.5 using the LUR model at 
national scale in Canada, and generated a R2 of 0.59. Wang 
& Chen (2015) analyzed ground-level PM2.5 in the city of 
Montreal using the one of the CTM models (GEOS-Chem), 
and generated a R2 of 0.86. In order to examine the health 
impact of wildfire smoke, Mirzaei et al. (2018) integrated 
the LUR model and MODIS AOD products to estimate 
PM2.5 concentrations in southern Alberta, Canada affected 
by wildfires in the northwest of the United States in the 
summer of 2015. They distinguished PM2.5 from other 
sources by dividing the study period into three sub-periods, 
including pre-fire, during-fire, and post-fire. The normalized 
difference vegetation index (NDVI), AOD products from 
MODIS and the ozone monitoring instrument (OMI), 
meteorological predictors (e.g., temperature, wind speed, 
relative humidity), distance to the source of fire, and land 
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use of industrial roads were utilized to build the model. The 
R2 of the LUR model was 0.50 for this study. An important 
contribution of this study was that it can evaluate PM2.5-
related health impacts before and after wildfire by analyzing 
estimated PM2.5 distribution maps. McClure et al. 2018 
calculated PM2.5 trends in the US by using Quantile 
Regression from 1988 to 2016. Their results showed the 
positive trends in 98th quantile PM2.5 at sites within the 
Northwest United States due to wildfire activity, and also a 
negative trend at sites throughout the rest of country, likely 
duo to the reductions in anthropogenic emissions. Liu et al. 
2019 applied the GWR model to evaluate the annual average 
ground-level PM2.5 concentrations using the AOD and 
meteorological data during 2012 to 2017 in China. Their 
results showed a 31% reduction in PM2.5 concentrations 
from 69.37 to 43.85 μg/m3 over five years. Diao et al. 2019 
investigated the main approaches for producing PM2.5 
measurements, and also illustrating and comparing the 
applications of different data fusion methods. Mirzaei et al. 
(2019) used the ordinary least-squares regression (OLS) and 
the geographically weighted regression (GWR) model to 
estimate PM2.5 concentrations in Alberta affected by 
wildfires derived from British Columbia in August 2017. 
Other than AOD and meteorological variables, numerous 
variables were taken into consideration, such as distance 
from fire in British Columbia, and road length around each 
ground station. The R2 values of the OLS and GWR model 
were 0.74 and 0.84, respectively. This result indicated that 
the GWR model generated more accurate results than the 
OLS model. In addition, this study was valuable for further 
studies to assess the health impact of wildfire plumes. Liu et 
al. 2019 established a satellite-based optical-mass 
conversion algorithm which measures PM2.5 mass 
concentrations based on aerosol microphysical 
characteristics over China in 2017. The spatial pattern of 
average radius of PM2.5 was then validated by AERONET 
measurements. The results indicated that particle diameters 
in eastern part are smaller than those in other areas in China 
due to various factors including topography, meteorology, 
land use, and population density.  

The aim of this research is to estimate PM2.5 concentrations 
level during British Columbia’s wildfire season, by 
combining a set of ground monitoring PM2.5 data, satellite 
MODIS AOD measurements, meteorological, and 
supplementary data. The remainder of this paper is 
structured as follows. Section 2 describes the study area and 
the datasets used in this study, Section 3 details our method. 
Section 4 presents and discusses the results. Section 5 
concludes the paper. 

 
 

2. STUDY AREA AND DATASET 
 

British Columbia is the western most province of Canada 
with the geographical location of 53° 43' 36.0084'' North and 
127° 38' 51.4356'' West, respectively (see Fig. 1). The west 
part of British Columbia is bounded to Pacific Ocean. 
Northern, eastern, and southern region of British Columbia 
are bordered by the Yukon and Alaska, Alberta, and the 
U.S., respectively. British Columbia is composed of 27 

regional districts with a total estimated population of 5.016 
million in 2018, which is the third populous province in 
Canada after Ontario and Quebec. It is reported that British 
Columbia has experienced rapid population growth in the 
past three years due to its pleasant climate and diverse 
culture. British Columbia is famous for its rich natural 
resources, mountainous terrain, abundant forests, unique 
coastline, and numerous water resources (Ministry of Forest, 
n. d). Almost 70% of the total land area in British Columbia 
are covered by mountains, and forests account for 60% of 
mountainous area. Due to both natural (such as lightning) 
and human-caused reasons, wildfires in British Columbia 
have been increasing in recent years. 
 

 
Fig. 1. Study area: British Columbia, Canada 

 
The dataset used in this study is included satellite-based 
measurements, ground-level PM2.5 data, and meteorological 
data. The 3 km Aqua MODIS AOD products were adopted 
to estimate PM2.5 concentration levels in British Columbia 
in 2017. The AERONET AOD products were then generated 
to validate MODIS AOD retrievals, since it has five times 
higher accuracy than the satellite-derived AOD.  
 
The hourly ground-level PM2.5 measurements in 2017 were 
acquired from 66 ground stations through British Columbia 
Data Catalogue (https://catalogue.data.gov.bc.ca/dataset). 
Among three methods implemented to measure ground-
level PM2.5 levels including Tapered Element Oscillating 
Microbalance (TEOM), Beta Attenuation Monitoring 
(BAM), and Gravimetric methods, BAM1020 is the main 
instrument to measure PM2.5 in these stations. Ground-level 
PM2.5 datasets used in this study were verified by British 
Columbia’s Ministry of Environment, and has been 
validated through a Quality Assurance (QA) or Quality 
Control (QC) process. Both AOD and PM2.5 estimation 
models are influenced by meteorological data. The 
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meteorological factors used in this study include boundary 
layer height (BLH)(m), relative humidity (%), surface 
pressure, U and V wind speed (m/s), temperature (K), and 
visibility. Monthly NDVI products with 0.05° resolution 
acquired from the U.S. Geological Survey (USGS), and the 
1 km resolution elevation data derived from the digital 
elevation model (DEM) provided by Natural Resources 
Canada were the supplementary datasets applied in the 
study. 
 
 

3. METHOD 
 

The method of this study could be divided into four stages, 
including MODIS AOD validation, pre-processing, model 
construction, and output analysis. Fig. 2 shows the workflow 
of our method. Firstly, the AOD values acquired from the 
AErosol RObotic NETwork (AERONET), a network of 
ground-based sun photometers that measure 
atmospheric aerosol properties were used to validate with 
MODIS AOD after temporal and spatial matching. All 
datasets were then pre-processed through projection, 
clipping, and resampling processes. Since satellite MODIS 
data, meteorological data, and supplementary data have 
different resolutions, therefore, the next step is to resample 
meteorological and supplementary datasets to 3 km using 
bilinear interpolation in ArcGIS 10.6.1. The ground-level 
PM2.5 measurements were then used to match with MODIS 
AOD, meteorological variables, and supplementary data in a 
5 × 5pixel window around ground stations. After the removal 
of invalid matchings (pixels with no AOD data matched), the 
third step is the construction of the model. The GWR model 
was applied to estimate PM2.5 concentration levels and 
produce monthly results. Lastly, the model outputs were 
analyzed, as well as the application feasibility of MODIS 
AOD during the wildfire season in British Columbia. 
 
The GWR model is a local regression model where the 
spatial variation is considered to predict the continuous 
surface of dependent variable (Donkelaar et al. 2010). The 
GWR model can be expressed as follows:  
 

PM2.5 (i,j) = a0(i,j) + a1(i,j) AOD(i,j) + a2(i,j) V2(i,j) 
+ a2(i,j) V2(i,j) …… an(i,j) Vn(i,j)        (1) 

 
where PM2.5 (i,j)is the station-detected PM2.5at location (i,j); 
a0(i,j) is the intercept at location (i,j); V2(i,j) to Vn(i,j) are the 
values of different predictors at location (i,j); a2(i,j) to an(i,j) 
are the slope of corresponding predictors (Li et al., 2017). 
In this study, four meteorological variables were employed 
as supplementary data for the model establishment, which is 
the temperature, U and V wind speed, humidity and BLH, 
respectively. Two different bandwidth methods including 
the Akaike Information Criterion (AICc) and the Cross 
Validation (CV) were processed to search for the optimal 
neighbor parameter of the GWR model (Li et al., 2016). 

 
Fig. 2. Overview of the method. 

 
After the implementation of the model, the spatial 
autocorrelation analysis of Moran I was conducted in 
ArcGIS using the residuals of the GWR model. The 
statistical results of GWR model, validation for the GWR, 
and Global Regression model, including AIC, R2, RMSE, 
MAPE, and Moran’s I are presented in Table 1. 
 

Table. 1. Results of the GWR model, validation for  
the GWR, and Global Regression Model (GRM). 

N AIC R2 RMSE 
μg/m3 

MAPE 
(%) 

Moran’s 
I 

GWR 1914 15612.71 0.76 13.45 16.75 -0.014 
Valid
-ation 1914 - 0.74 14.26 18.94 -0.016 

GRM 1914 16638.17 0.53 29.44 35.45 - 

 
AIC is used to evaluate the relative quality between the 
models. If the difference of AICs between two models is 
larger than 3, then the model with smaller AICs has better 
performance and quality. Therefore, since the AIC in the 
GWR models is much lower than that of the Global 
Regression model, the GWR model generates better 
performance result than the Global Regression model. 

R2 reflects how close the data are to the fitted regression line. 
The R2 of the GWR model is 0.76, which means the model 
is able to explain 76% variation of response data. In contrast, 
the global regression model only has an R2 of 0.53, which is 
much lower than the GWR model. It can be seen that the 
validation for GWR has R2 of 0.74, which means that the 
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GWR model is not over-fitted. In terms of RMSE and mean 
absolute percentage error (MAPE), they are both used to 
indicate the accuracy of predicted values. The GWR model 
has the lowest values for both RMSE and MAPE by 13.45 
μg/m3 and 16.75%, respectively which all show that the 
GWR model is not over-fitted. The Moran’s I values for the 
residuals of both GWR model and validation are -0.014 and 
-0.016, respectively, which are all close to 0. It indicates the 
spatial autocorrelation barely exists among the residuals, and 
the observations are independent with each other. 

 
4. RESULTS AND DISCUSSION 

 
The annual PM2.5 concentrations generated by the GWR 
model are shown in Fig.3. The annual ground station 
measured PM2.5 distribution map is also generated to 
compare with the annual distribution map generated by the 
GWR model. The highest predicted PM2.5 value of the GWR 
model is 38.28 μg/m3, while for the annual ground station 
distribution map, the highest value is 31.29 μg/m3. As shown 
in Fig.3, the GWR model presents similar spatial distribution 
of PM2.5 concentrations as ground stations.  The regions with 
the highest PM2.5 values are concentrated in the Central 
Kootenay. Ground station in the Central Kootenay has the 
highest annual mean PM2.5 concentrations. The GWR tends 
to overestimate PM2.5 concentrations in some regions, such 
as Thompson-Nicola and Cariboo regional districts in a 
reasonable range. Both districts have higher PM2.5 
concentrations than the surrounding area. For the rest area of 
British Columbia, the annual PM2.5 concentrations are under 
both CAAQS and British Columbia’s annual standards. In 
addition, the GWR model is able to provide more variations 
than ground stations. This comparison also indicates that the 
GWR model shows a high accuracy on predicting PM2.5 
concentrations, which could be used for further analysis. 

 

 

 
 
Fig. 3. Estimated PM2.5 distribution maps generated by the 
GWR model in the year 2017 (top); Annual mean ground 
station measured PM2.5 concentrations (bottom). 

After generating the annual model, seasonal models were 
also conducted to examine PM2.5 concentrations in four 
seasons. The statistics of seasonal models are presented in 
Table 2. 
 

Table 2. Statistical results of seasonal GWR models 
 N R2 RMSE 

(μg/m3) 
MAPE 

(%) Moran’s I 

Spring 240 0.43 37.46 57.54 0.018 
Summer 1185 0.79 8.17 18.23 -0.022 
Fall 469 0.56 25.87 35.54 -0.052 
Winter  Failed to construct due to lack of training samples 
 
The summer model has the most training samples (1185) 
compared to other seasonal models. Due to lack of training 
samples in winter (i.e., only 19 samples), the GWR model in 
winter failed to construct. In terms of R2, it can be seen that 
the spring model has the lowest R2 value of 0.43, while the 
summer model displays the highest R2 value of 0.79. The 
reason of this might due to the differences in the number of 
training samples. Normally a model with more training 
samples as input will generate better performance. The 
summer model has lower RMSE value than the spring and 
fall models, which means the average magnitude error for 
the predicted values is lower than the other two models. The 
spring model reveals the highest values of RMSE and 
MAPE, which proves it to be worst model among three 
seasonal models. 
 
Figs. 4, 5, and 6 illustrate the spatial distribution maps in 
spring, summer, and fall, as well as their corresponding 
averaged PM2.5 concentrations from ground stations. For the 
spring distribution map, we can obtain that the highest PM2.5 
concentrations is 7.67 μg/m3 centered in southwest part of 
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British Columbia. By comparing to ground monitoring 
stations, PM2.5 concentrations are underestimated in the 
Thompson-Nicola region, and are overestimated in the 
Vancouver Island. It indicates that there are significant 
differences between the predicted and observed values using 
the spring GWR model, since the R2 is only 0.43. The 
summer model has the best performance. The highest PM2.5 
concentrations in summer generated by the GWR and 
ground stations are 53.95 μg/m3and 46.94 μg/m3, 
respectively. Regions with high PM2.5 concentrations are 
greater than that in spring and fall, especially centered on the 
areas with wildfires. Since summer is the season with highest 
occurrence possibility of wildfires, which indicates that 
wildfires could release much more PM2.5 than spring and fall, 
and could be considered as the main source of rapid rising 
PM2.5 concentrations in summer.  
 
According to the spatial distribution map of PM2.5 in 
summer, it can be concluded that the GWR is able to predict 
PM2.5 concentrations, because the trends of PM2.5 
distributions are almost the same in two maps. For the PM2.5 
distribution maps in fall, the highest PM2.5 concentrations are 
23.01 μg/m3 and 31.13 μg/m3, respectively, which means the 
fall GWR model underestimated PM2.5 concentrations in 
some instances. As defined before, September belongs to 
fall, which is still under British Columbia’s state of 
emergency period during the wildfire season in 2017. 
Therefore, PM2.5 concentrations in fall are higher than that in 
spring, but lower than that in summer. 
The spatial distribution maps generated by the monthly 
GWR models were built during the British Columbia’s state 
of emergency wildfire season during July, August, and 
September to estimate PM2.5 concentrations (see Figs. 7, 8, 
9). Table 3 summarizes the statistical results of monthly 
GWR models. The training samples for three monthly 
models are 421, 540, and 271, respectively. 
 

 

 
 
Fig. 4. Estimated PM2.5 generated by the seasonal GWR 
model in spring (top); and averaged PM2.5 concentrations 
from ground stations in spring (bottom). 
 
All three models perform high values of R2, and the July 
model has the highest R2 with 0.85 which demonstrates that 
GWR is suitable for conducting monthly model in July, 
August, and September. The RMSE for three models are 
3.26 μg/m3, 11.31 μg/m3, and 12.68 μg/m3, respectively. The 
July model has the lowest RMSE value, as well as the MAPE 
value (5.35%) which means that the July model has the best 
performance compared to other two monthly models. The 
average magnitude error for predicted values in July is 3.26 
μg/m3, which is the lowest among annual, seasonal, and 
monthly GWR models. The trends of RMSE and MAPE 
regarding R2 are the same for all three models, which is: 
RMSE and MAPE increases as R2 increases. In addition, 
Moran’s I was also conducted for the residuals of three 
models to examine the spatial autocorrelation. As shown in 
Table 3, Moran’s I values for the residuals of three models 
are all near 0, which indicates there are no significant spatial 
autocorrelation exist. 
 

Table 3. Statistical results of monthly GWR models 
 N R2 RMSE 

(μg/m3) 
MAPE 

(%) 
Moran’s I 

July 421 0.85 3.26 5.35 -0.032 
August 540 0.81 7.69 11.31 -0.046 
September 271 0.75 8.45 12.68 -0.11 
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Fig. 5. Estimated PM2.5 generated by the seasonal GWR 
model in summer (top); and averaged PM2.5 concentrations 
from ground monitoring stations in summer (bottom). 
 
As shown in Fig. 7, the estimated PM2.5 values in July range 
between 1.43 and 35.28 μg/m3. The regions with high PM2.5 

concentrations are centered on the Cariboo district. The 
ground-level PM2.5 concentrations agree with the estimated 
PM2.5 concentrations. As shown in Fig. 8, August has the 
most severe PM2.5 concentrations, with the highest value 
over 100 μg/m3 based on the ground station measurements. 
For estimated PM2.5 concentrations generated by the August 
GWR model, PM2.5 reaches its peak at 83.37 μg/m3. 

 

 
 

Fig. 6. Estimated PM2.5 generated by the seasonal GWR 
model in fall (top); and averaged PM2.5 concentrations from 
ground monitoring stations in fall (bottom). 
 
It can be found that most regions with active wildfire exhibit 
the highest values of PM2.5 concentrations. However, for the 
area that is lack of ground monitoring stations, the PM2.5 
concentrations are underestimated due to the insufficient 
number of control points. Therefore, more ground stations 
are helpful for increasing the accuracy of estimation. It could 
also be concluded that there is a strong correlation between 
wildfires and PM2.5 concentrations. As shown in Fig. 9, some 
underestimations of PM2.5, concentrations in September are 
revealed. The main reason for this is due to the lowest value 
of R2 for the September model. Therefore, by comparing 
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three monthly models, it can be viewed that there is an 
obvious rising trend in PM2.5 concentrations during the 
wildfire season, especially in August. 
 
 

 

 
 
Fig. 7. Estimated PM2.5 generated by the GWR model in July 
(top); averaged PM2.5 concentrations from ground 
monitoring stations in July (bottom). 
 

 

 

 
 
Fig. 8. Estimated PM2.5 generated by the seasonal GWR 
model in August (top), averaged PM2.5 concentrations from 
ground monitoring stations in August (middle), and British 
Columbia’s active wildfire distribution map (bottom) in 
August 2017. 
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Fig. 9. Estimated PM2.5 generated by the seasonal GWR 
model in September (top); averaged PM2.5 concentrations 
from ground monitoring stations in September (bottom). 

 
 

5. CONCLUDING REMARKS 
 
The main purpose of this study was to estimate 
PM2.5concentrations in British Columbia, Canada using 3 
km MODIS AOD products integrated with meteorological 
and supplementary data. Some key findings of our study can 
be summarized as follows. 
 
First, a strong correlation was observed between the MODIS 
AOD and the AERONET AOD. It was also found that the 3 
km MODIS AOD products tended to overestimate ground-
level AOD values, but most values fell within a reasonable 

range regarding AERONET AOD. It indicated that the 3 km 
MODIS AOD products were qualified to use for PM2.5 
estimations. For regions that are lack of AEORNET sites, 
MODIS AOD products could be considered as a substitute 
for further studies. 
 
Second, by comparing with ground station PM2.5 
concentrations, it can be concluded that PM2.5 concentrations 
predicted by the GWR model nearly followed the same trend 
as PM2.5 concentrations measured by ground stations. The 
summer model generated the best performance among the 
three seasonal models. The winter model was failed to 
conduct due to the lack of training samples. Three monthly 
models all performed high values of R2. Except for the 
spring and fall models, the rest GWR models were able to 
generate accurate PM2.5 distribution maps that followed the 
same trend as the PM2.5 concentrations measured by ground 
stations. 
 
Third, by examining PM2.5 concentrations during the 
wildfire season, it was found that there was a rapid 
increasing trend in PM2.5 concentrations. According to the 
spatial distribution map generated by the August model, 
PM2.5 concentrations were the highest in August, especially 
in regions with active wildfires. It can be concluded that the 
integration of MODIS AOD products and the GWR model 
was capable of estimating PM2.5 concentrations accurately 
during the wildfire season in British Columbia, which 
indicated a high application feasibility for the future studies 
in other regions. This study is also valuable for the 
Provincial Government of British Columbia to conduct 
research related to air pollution and public health 
perspectives. Although this study achieved its main 
objectives and made some contributions, some limitations 
still exist, which are summarized as follows. First, in order 
to match with Aqua’s overpassing time at 13:30, 
meteorological data were retrieved at the same time in this 
study. The estimatedPM2.5 concentrations in this study were 
based on 13:30, while PM2.5 concentrations at other times 
are note valuated. Second, due to the lack of collocations 
between MODIS AOD and the AOD from the Saturn_Island 
AERONET site, there might exist some bias regarding AOD 
validation and PM2.5 estimations. The unevenly distribution 
of PM2.5 ground stations would also affect PM2.5 estimations 
in this study. Third, the GWR model was failed to conduct 
in winter due to the lack of training samples. The theoretical 
model was built based on several assumptions. It assumes 
that the distribution of aerosols is even in the atmospheric 
vertical direction, and the shape of aerosol particles is all 
spherical. Lastly, the meteorological and supplementary data 
used in this study were just for model constructions. The 
impact of each parameter on PM2.5 estimations is not 
discussed. The dispersion and accumulation of PM2.5 
concentrations were not presented. 
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