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Segmentation of SAR Intensity Imagery With a
Voronoi Tessellation, Bayesian Inference, and

Reversible Jump MCMC Algorithm
Yu Li, Jonathan Li, Member, IEEE, and Michael A. Chapman

Abstract—This paper presents a region-based approach to seg-
mentation of the satellite synthetic aperture radar (SAR) inten-
sity imagery. The approach is based on a Voronoi tessellation,
the Bayesian inference, and the reversible jump Markov chain
Monte Carlo (RJMCMC) algorithm. By Voronoi tessellation, the
approach partitions a SAR image into a set of polygons corre-
sponding to the components of the segmented homogenous re-
gions. Each polygon is assigned a label to indicate a homogeneous
region. The labels for all the polygons form a label field, which
is characterized by an improved Potts model. The intensities of
pixels in each polygon are assumed to satisfy identical and inde-
pendent gamma distributions in terms of their label. Following the
Bayesian paradigm, the posterior distribution that characterizes
the SAR image segmentation can be obtained up to the integration
constant. Then, a RJMCMC scheme is designed to simulate the
posterior distribution and estimate its parameters. Finally, an
optimal segmentation is obtained by the maximum a posteriori al-
gorithm. The results obtained on both real Radarsat-1/2 and simu-
lated SAR intensity images show that our approach works well and
is very promising.

Index Terms—Bayesian inference, image segmentation, maxi-
mum a posteriori (MAP), reversible jump Markov chain Monte
Carlo (RJMCMC), synthetic aperture radar (SAR), Voronoi
tessellation.

I. INTRODUCTION

G ENERALLY speaking, segmentation of remotely sensed
data is a procedure of partitioning a given scene into

meaningful regions that correspond to land use and land cover
(LULC) classes or a part of them in the scene. To this end,
it is necessary to investigate the imaging properties of LULC
classes and infer constraints to characterize them. The chal-
lenges lie in translating these constraints into criteria applicable
at data level, e.g., modeling the segmentation problem by using
these criteria and proposing a scheme to obtain an optimal
segmentation for a given data set. Perhaps the most commonly
used criterion is homogeneity, which is derived from Marr’s
idea on the coherency of matter [1]. In the data processing
of satellite synthetic aperture radar (SAR) intensity imagery
(hereafter referred to as the SAR imagery), segmentation is
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the most critical task as the quality of the segmentation stage
is essential for further high-level data processing tasks such
as feature extraction, object recognition, and classification. It
also has prominent effects on the global quality of all remotely
sensed data interpretation system [2]. SAR image segmentation
is by far still a very difficult task. The difficulties stem from
both the intractability of the segmentation problem itself and
the effect of speckle noise in SAR imagery. According to [3],
a mathematical problem is well posed only if its solution exists
and is unique and robust to noise. While SAR imaging is shown
to be a well-posed direct problem, SAR image segmentation is
considered as an inverse ill-posed problem since its solution is
usually not unique [4]. The speckle phenomenon due to the co-
herent nature of radar backscatters in SAR imagery [5] causes
inaccurate measurements of backscatter coefficients, which is
proportional to the measured power of the received microwave
given by the square of its amplitude. Several techniques have
been developed for suppressing speckle noise [2]. The more
commonly used technique is known as multilooking [2], [5].
In this technique, the Doppler spectrum is equivalently split
into several adjacent subsets, each of which occupies a different
part of the Doppler spectrum. Each of these subsets can be used
to form a separate image (or a look). Then, by averaging the
looks on power, the radiometric accuracy of the measurements
is improved but at the cost of resolution [2].

Following the above multilook processing, there are numer-
ous algorithms for SAR image segmentation published in the
literature. All of them can broadly be categorized into three
groups: 1) clustering-based segmentation algorithm [6]–[9];
2) edge-based segmentation algorithm [10], [11]; and 3) region-
based segmentation algorithm [12]–[15].

The Markov random field (MRF) provides a mathematical
formulation for modeling local spatial interactions between
locations. Currently, MRF has been proved to be a powerful
tool for solving the SAR image segmentation problem by
taking into account the multiplicative nature of speckle noise
in a statistically optimal way and also provides an efficient
regularization framework [16]. Various MRF models have been
developed for SAR image segmentation. A Markov random
field model on the region adjacency graph was defined in [17]
so that the erroneous segmentation caused by speckle noise in
SAR imagery can be avoided and the number of configurations
for combinatorial optimization can be reduced. A discontinuity-
adaptive MRF (DA-MRF) model was developed in [18] to
penalize irregularities but accounts for strong discontinuities.
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The DA-MRF model integrates the gamma distribution in an
objective function for SAR image segmentation. In [19], a
simple MRF model with a new implementation scheme was
proposed for unsupervised segmentation based on image fea-
tures. In their new implementation scheme, a function-based
weighting parameter between the two components in the tra-
ditional two-component MRF model is introduced. In [20],
a hidden-class-label MRF model in the wavelet domain was
proposed to suppress the effect of speckle noise. They used
multiscale segmentation with overlapping window to segment
the finest scale of the stationary wavelet transform domain.

We aim to develop a novel region-based approach to SAR
image-segmentation-based MRFs. It follows the Bayesian par-
adigm for image processing [21] and consists of four stages:
1) The construction of prior probability distribution for captur-
ing general and scene-specific knowledge about a given SAR
image and is governed by an unknown set of parameters. By
Voronoi tessellation, the domain of the given SAR image is par-
titioned into a set of polygons corresponding to the components
of the segmented homogenous regions. Associated with each
polygon is a label indicating the homogenous region to which
the polygon belongs. The labels for all the polygons form a
label field that is modeled by a Markov random field model.
2) The formation of the joint probability density function (pdf)
for SAR image representation called the likelihood. The inten-
sities of pixels in each homogenous region are modeled by a
strictly stationary random field (RF), in which their intensities
are considered to satisfy identical and independent gamma dis-
tributions. 3) The combination of prior distribution and the like-
lihood by Bayes’ theorem to form the posterior distribution of
labels, partitions, and distribution parameters conditional on the
SAR imagery. 4) The creation of an inference about the labels
based on the posterior distribution. A reversible jump Markov
chain Monte Carlo (RJMCMC) algorithm is employed to sim-
ulate the posterior distribution, and the maximum a posteriori
(MAP) scheme is used to find the optimal segmentation.

The remainder of this paper is organized as follows:
Section II details the proposed segmentation algorithm.
Section III presents and discusses the experimental results
obtained using real and simulated SAR image, respectively.
Section IV draws some conclusions and addresses future as-
pects of this research.

II. DESCRIPTION OF PROPOSED ALGORITHM

A. Partition Model

The microwave scattered from a spatial domain D ⊂ R2

can be expressed by a bivariate random function Z(x, y),
where (x, y) ∈ D is a spatial location in the image domain D.
Digitization of the function Z(x, y) is a process of discretely
sampling all possible locations and gives rise to a set of ran-
dom variables, which is called a RF, Z = {Zi = Z(xi, yi); i =
1, 2, . . . , n}, where n is the number of sampling points (pixels),
i is the index of sampling points, and (xi, yi) are the geo-
referenced ground points regularly arranged on D. Therefore,
a given SAR image can be viewed as a realization of the RF Z.

In this paper, a Voronoi tessellation [22] is explored for
partitioning D into subregions. Given a set of points, which are

called generating points, G = {(uj , vj) ∈ D; j = 1, . . . , m},
where m is the number of generating points, the Voronoi
tessellation divides D into a set of polygons, which are
called Voronoi polygons, P = {Pj ; j = 1, . . . , m}, in which
the jth Voronoi polygon Pj associated with the generating point
(uj , vj) consists of the points nearest to (uj , vj) than to any
other generating point in G, i.e.,

Pj =
{

(x, y) ∈ D; |(x, y) − (uj , vj)|

< min
(uj′ ,vj′ )∈G/(uj ,vj)

|(x, y) − (uj′ , vj′)|
}

(1)

where Pj is the convex polygon bounded by a set of bisectors
for the links of pairs of generating points [22], [23].

B. Image Model

Assume that a SAR image contains a known number of
homogeneous regions k and is partitioned into an unknown
number of polygons m a priori by Voronoi tessellation,
where m possesses a prior distribution with pdf p(m). As-
sociated with each polygon, there is a random label variable
that indicates the homogenous region to which the polygon
belongs, and label variables for all polygons form a label
field L = {Lj ; j = 1, . . . , m}. A realization of L, l = {lj ∈
{1, . . . , k}; j = 1, . . . , m}, corresponds to a segmentation of
the image. In a given polygon Pj , the intensity values of pixels
Zj = {Zi; (xi, yi) ∈ Pj} are conditionally characterized by
identical and independent gamma distributions on the label
Lj = lj with the pdf as follows:

p(Zj |Lj ,θlj )=
∏

(xi,yi)∈Pj

1
Γ(αlj )

β
−αlj

lj
Z

αlj−1

i exp
(
− Zi

βlj

)
(2)

where θlj = (αlj , βlj) is the parameter vector, and αlj and βlj

are the shape and scale parameters of the gamma distribution,
respectively. The joint pdf of Z, given m, L, G, and the pa-
rameters of gamma distributions for all homogeneous regions,
becomes

p(Z|m,L,G,θ)=
m∏

j=1

p(Zj |Lj ,θlj )

=
k∏

l=1

∏
(xi,yi)∈Δl

1
Γ(αl)

β−αl

l Zαl−1
i exp

(
−Zi

βl

)

(3)

where θ is the gamma distribution parameter vector, i.e., θ =
{θl = (αl, βl); l = 1, . . . , k}, and Δl is the set of polygons
with the same label l, i.e., Δl = {Pj ; lj = l, j = 1, . . . , m}.

C. Bayesian Model

Using Bayes’ rule, the posterior distribution of m, L G, and
θ given Z can be written as

p(m,L,G,θ|Z)∝p(Z|m,L,G,θ)p(G|m)p(θ)p(L|m)p(m).
(4)
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In (4), assume that θ is independent of L and m. To model
the correlation of labels for neighbor polygons, the stationary
second-order Potts model is used [24], [25]. Given a polygon
Pj , let Nj = (j′;Pj ∼ Pj′), j, j′ ∈ {1, 2, . . . ,m} and j′ �= j,
be the set of labels for its neighbor polygons, where the
operator ∼ donates a neighborhood relationship. The polygons
Pj and Pj′ are neighbors Pj ∼ Pj′ if and only if Pj and Pj′

share a mutual boundary. The conditional distribution of the
label variable for the polygon Pj given the labels of its neighbor
polygons can be expressed as

p(Lj |Lj′ , j′ ∈ Nj) =

exp

(
c

∑
j′∈Nj

t(Lj , Lj′)

)

k∑
l=1

exp

(
c

∑
j′∈Nj

t(l, Lj′)

) (5)

where c > 0 is a constant that controls the neighborhood de-
pendences between a pair of neighbor polygons [26], and t is
an indicator function, i.e.,

t(x, y) =
{

1, if x = y
0, otherwise.

(6)

The joint pdf of the label field L can be expressed as

p(L|m) =
m∏

j=1

p(Lj |Lj′ , j′ ∈ Nj)

=
m∏

j=1

exp

(
c

∑
j′∈Nj

t(Lj , Lj′)

)

k∑
l=1

exp

(
c

∑
j′∈Nj

t(l, Lj′)

) . (7)

However, if some interaction between generating points is
necessary, then the following processes that model the inter-
action can be considered, such as Gaussian perturbed points
[27], the nearest-neighbor Markov process [28], and the Strauss
process [29]. The prior distribution for the number of generat-
ing points is assumed to satisfy the Poisson distribution with a
mean λ. Its pdf can be written as

p(m) =
λm

m!
exp(−λ). (8)

The shape and scale parameters of the gamma distribution
are assumed to be identical independent Gaussian distributions,
i.e., α ∼ N(ξ, κ), and truncated α > 0, β ∼ N(ω, γ), where
ξ, κ, ω, and γ are constants. The joint pdf’s of α = {αl; l =
1, . . . , k} and β = {βl; l = 1, . . . , k} can be written, respec-
tively, as

p(α) =
k∏

l=1

1√
2πκ

exp

[
− (αl − ξ)2

2κ2

]
(9)

p(β) =
k∏

l=1

1√
2πγ

exp

[
− (βl − ω)2

2γ2

]
. (10)

For a generating point (uj , vj) uniformly distributed on D,
its pdf can be expressed as

p(uj , vj) =
1
|D| (11)

where |D| denotes the area of the domain D. Assuming that all
the generating points are independently drawn from D, the joint
pdf of G is given by

p(G|m) =
m∏

j=1

p(uj , vj) =
1

|D|m . (12)

The posterior distribution defined in (4) can be rewritten as

p(m,L,G,θ|Z) ∝ (Z|m,L,G,θ)p(G|m)p(θ)p(L|m)p(m)

=
k∏

l=1

∏
(xi,yi)∈Δl

1
Γ(αl)

β−αl

l Zαl−1
i exp

(
−Zi

βl

)

×
m∏

j=1

exp

(
c

∑
j′∈Nj

t(Lj , Lj′)

)

k∑
l=1

exp

(
c

∑
j′∈Nj

t(l, Lj′)

)

×
k∏

l=1

1√
2πκ

exp

[
− (αl − ξ)2

2κ2

]

×
k∏

l=1

1√
2πγ

exp

[
− (βl − ω)2

2γ2

]

× λm

m!
exp(−λ) × 1

|D|m . (13)

D. Simulation

To segment a SAR image, it is necessary to simulate from
the posterior distribution defined in (13) and estimate its pa-
rameters. Let Θ = (m,L,G,θ) be the parameter vector of
the posterior distribution. It is noteworthy that when m is a
variable, the dimension of the parameter vector Θ varies. In
this paper, the RJMCMC algorithm [30] is used to simulate de-
pendent samples from the posterior distribution of Θ, whereas
the parameter space is variable during sampling. According
to Green [30], a new candidate Θ∗ for Θ is proposed at
each iteration by an invertible deterministic function Θ∗ =
Θ∗(Θ, s) (assume that the dimension of Θ∗ is higher than that
of Θ), where s is a random vector defined for accomplishing a
transition from (Θ, s) to Θ∗ with the dimension satisfying the
dimension matching condition, i.e., |Θ| + |s| = |Θ∗| [30]. The
appropriate acceptance probability for the proposed transition
from Θ to Θ∗ is given by

α(Θ,Θ∗) = min
{

1,
p(Θ∗|Z)r(Θ∗)

p(Θ|Z)r(Θ)q(s)

∣∣∣∣ ∂ (Θ∗)
∂ (Θ, s)

∣∣∣∣
}

(14)

where q(s) is the pdf of s, and r(Θ∗) and r(Θ) are the proba-
bilities of a given move type in states Θ∗ and Θ, respectively.
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The Jacobian |∂(Θ∗)/∂(Θ, s)| is due to the change of variable
from (Θ, s) to Θ∗.

The move types designed in this paper include the following:
Move 1: updating gamma distribution parameters. The pa-

rameter vector for gamma distributions can be written
as θ = {θl; l = 1, . . . , k}, where θl = (αl, βl). Assume
that the probability distributions for the proposals α∗

l

and β∗
l are Gaussian distributions with means αl and

βl and standard differences εα and εβ , respectively,
i.e., α∗

l ∼ N(αl, εα) and β∗
l ∼ N(βl, εβ). The accep-

tance probability for the proposals α∗
l and β∗

l can be
obtained as

aα,β (θl,θ
∗
l ) = min

⎧⎨
⎩1,

∏
j∈Jl

p (Zj |θ∗
l ) × p (θ∗

l )
p(Zj |θl) × p(θl)

⎫⎬
⎭ (15)

where Jl = {j′; lj′ = l}.
Move 2: updating labels. A polygon Pj with label lj is

randomly drawn. To update its label, a new label l∗j is
then uniformly drawn from {1, . . . , k}. The acceptance
probability for l∗j can be written as

αl

(
lj , l

∗
j

)
= min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1,

∏
(xi,yi)∈Pj

1

Γ

(
αl∗

j

)β
−αl∗

j

l∗
j

Z
αl∗

j
−1

i exp
(
− Zi

βl∗
j

)
∏

(xi,yi)∈Pj

1
Γ(αlj

)β
−αlj

lj
Z

αlj
−1

i exp
(
− Zi

βlj

)

×
exp

(
c

∑
j′∈Nj

t(l∗j , lj′)

)

exp

(
c

∑
j′∈Nj

t(lj , lj′)

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (16)

Move 3: moving position of generating points. One of the
generating points in G = {(uj , vj); j = 1, . . . ,m} is
drawn at random, for example, (uj , vj). A proposed
generating point (u∗

j , v
∗
j) is uniformly drawn from its

corresponding polygon Pj . The new generating point
gives rise to the local changes of Pj and its neigh-
bor polygons NPj = {Pj′ ; j′ ∈ Nj} to P ∗

j and NP ∗
j =

{P ∗
j′ , j′ ∈ Nj}. The acceptance probability for the move

turns out to be

αgp

(
(uj , vj),

(
u∗

j , v
∗
j

))

=min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1,

∏
j′∈{j,N∗

j
}

∏
(xi,yi)∈Pj′∗

1
Γ(αlj

)β
−αl∗

j

l∗
j

Z
αl∗

j
−1

i exp
(
−Zi

βlj

)
∏

j′∈{j,Nj}

∏
(xi,yi)∈Pj′

1
Γ(αlj

)β
−αlj

lj
Z

αlj
−1

i exp
(
−Zi

βlj

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(17)

Move 4: birth or death of generating points. Suppose that
the current number of generating points is m, and let
the probabilities of proposing a birth or death opera-
tion be bm or dm, respectively. Consider a birth op-
eration that increases the number of generating points
from m to m + 1, and assume that the new gen-

erating point is identified with m + 1 and its lo-
cation (um+1, vm+1) is uniformly drawn from D.
Let the polygon induced by (um+1, vm+1) be Pm+1

and its label lm+1 is uniformly drawn from {1, . . . , k}.
The set of labels of Pm+1’s neighbor polygons
is Nm+1 = {j′;Pj′ ∼ Pm+1}. The Voronoi tessella-
tion is modified by adding the proposed generat-
ing point from P = {P1, . . . , Pj′ , . . . , Pm} to P ∗ =
{P1, . . . , P

∗
j′ , . . . , Pm, Pm+1}, where j′ ∈ Nm+1.

It is evident that the birth or death of a generating
point does not affect the gamma distribution parameters
in θ. As a result, the parameter vector for the birth op-
eration becomes Θ∗ = (k,m + 1,L∗,G∗,θ), where G∗ =
((u1, v1), . . . , (um, vm), (um+1, vm+1)), and L∗ = (L1, . . . ,
Lm, Lm+1). The acceptance probability for the birth operation
can be written as

αb(Θ,Θ∗) = min{1, Rb} (18)

where

Rb =
p(Z|m + 1,L∗,G∗,θ)p(m + 1)p(G∗|m + 1)

p(Z|m,L,G,θ)p(m)p(G∗|m + 1)

× p(L∗|m + 1)rbm
(Θ∗)

p(L|m)rdm+1(Θ)q(s)

∣∣∣∣ ∂(Θ∗)
∂(Θ, s)

∣∣∣∣ (19)

where rbm = bm, rdm+1 = dm+1/(m + 1), s = lm+1, and the
other terms in (19) can be expressed as

p(Z|m + 1,L∗,G∗,θ)
p(Z|m,L,G,θ)

=

∏
j∈{m+1,Nm+1}

∏
(xi,yi)∈Pj

1
Γ(αlj

)β
−αl∗

j

l∗
j

Z
αl∗

j
−1

i exp
(
− Zi

βlj

)
∏

j∈Nm+1

∏
(xi,yi)∈Pj

1
Γ(αlj

)β
−αlj

lj
Z

αlj
−1

i exp
(
− Zi

βlj

)
(20)

p(L∗|m + 1)
p(L|m)

=

∏
j∈{m+1,Nm+1}

exp

(
c

∑
j′∈N∗

j

t(lj ,lj′ )

)

k∑
l=1

exp

(
c

∑
j′∈N∗

j

t(l,lj′ )

)

∏
j∈Nm+1

exp

(
c

∑
j′∈Nj

t(lj ,lj′ )

)

k∑
l=1

exp

(
c

∑
j′∈Nj

t(l,lj′ )

)
(21)

p(m + 1)
p(m)

=
λ

m + 1
;

p(G∗|m + 1)
p(G|m)

=
1
|D| ;

∣∣∣∣ ∂(Θ∗)
∂(Θ, s)

∣∣∣∣ = 1; q(s) =
1
k

. (22)
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Fig. 1. Satellite SAR images used for testing the proposed algorithm.

The acceptance probability for the death of generating point
is given by

αd(Θ,Θ∗) = min{1, Rd} and Rd = R−1
b . (23)

For any given proposal with acceptance probability α, it is
accepted if and only if α ≥ η, where η is uniformly drawn from
[0, 1], i.e., η ∼ U(0, 1).

E. Optimization for Segmentation

Assume that a set of approximate and dependent samples
{Θ(t), t = 1, . . . , Tm}, where Tm is the number of predefined
iterations, is drawn from the joint pdf p(Θ|Z) by the RJMCMC
scheme. The MAP estimation [31] is used to obtain optimal
parameters defined in the joint pdf. The optimal segmentation
represented by the label field LMAP under the MAP estimate
can be written as

LMAP = arg max {p(m,L,G,θ|z)} . (24)

III. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed algorithm is tested with three real Radarsat-1/2
SAR images. In addition, a simulated SAR image is also used
to quantitatively evaluate the proposed algorithm.

A. Real SAR Imagery

Fig. 1 shows three real Radarsat-1/2 SAR images with di-
mensions of 256 × 256 pixels. Among them, part (a) presents
a Radarsat-2 standard mode image with HV polarization and
spatial resolution of 25 m, which covers part of Stanley Park,
Vancouver, British Columbia, Canada, including urban area
(white), forest (gray), and waters (black); and part (b) shows
a Radarsat-1 image of a coastal scene with VV polarization
and spatial resolution of 30 m. Visually, both of them include
three homogeneous regions. Part (c) also presents a Radarsat-1
4-look image with VV polarization and spatial resolution of
50 m, which reveals four types of sea ice structures in Ungava
Bay, Quebec, Canada. In the remainder of this paper, we use
a, b, and c indicate the test images shown in Fig. 1(a)–(c), and
1, 2, 3, and 4 denote the homogenous regions in the decreasing
order of their means in each test image.

The constants used for testing the proposed segmentation
algorithm are listed in Table I.

The constant c is the coefficient for characterizing the de-
pendence of neighbor polygons in the improved Potts model
defined in (5), in which the conditional probability of the label

TABLE I
CONSTANT USED TO TEST THE PROPOSED ALGORITHM

Fig. 2. Results of final partition (a1)–(c1) and optimal segmentation (a2)–(c2).

for a polygon is a monotonic function of c. Depending on the
labels for the polygon and its neighbor polygons, the function
would be monotone increasing or decreasing with c. From a
number of experiments, the interval [0.5, 1.5] for the constant c
is recommended. In this experiment, the constant c is set to be 1.
The constants ξ and ω are the means of shape parameter α
and scale parameter β of the gamma distributions in (2) and
(3), respectively, i.e., ξ = E(α) and ω = E(β), where E(·) is
the mean operator. Given a multilook SAR image in which the
intensities of pixels are characterized by gamma distribution,
the shape parameter α is equal to the number of its looks.
In this paper, since α is considered as a random variable, the
value ξ is set as the number of looks. For a gamma distribution
with shape parameter α and scale parameter β, the product of
the two parameters α · β is equal to its mean. Then, the value
ξ · ω = E(α)E(β) = E(α · β) (the last equation is true, since
α and β are independent) is taken 128 = 256/2 (i.e., the mid-
point of 256 gray levels) since the pixel intensities in a gray-
scale image vary in the range of 0 and 255. The constant λ is
the mean of a Poisson distribution from which the number of
generating point m is drawn. In a certain range, the value of
λ does not affect the segmentation results. The constants εα

and εβ are the proposal variances for α and β, respectively,
which affect the sampling and convergence of the algorithm
under the Markov chain Monte Carlo scheme [26]. It was
suggested in [32] to choose the proposal variances so that the
acceptance probability lies in the interval (0.3–0.7). However,
we have found that the proposal variances causing the accep-
tance probability of around 0.1 still make the algorithm work
well. For simplicity, the number of homogeneous regions k for
the scene presented in a SAR image is determined by manual
inspection a priori. In practice, selecting the number is not very
reliable as it depends on the experience of human operators
and is sometimes impossible since the ground true is always
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TABLE II
ESTIMATED PARAMETERS

Fig. 3. Histograms and gamma distributions with estimated parameters of segmented regions (1, 2, 3, and 4) in test image Fig. 1(c).

unknown in advance. Therefore, an algorithm for automatically
identifying the number of homogenous regions is necessary.

The initial partitions of image domain D are carried out by
Voronoi tessellation, in which the number of generating points
m0 is drawn from the Poisson distribution with the mean of 96,
and the locations of m0 generating points are uniformly drawn
from D. The initial segmentation is performed by randomly
assigning a label to each polygon in the initial partition of
D from the Bernoulli distribution with probabilities pj = 1/k,
where j = {1, . . . , m}, and k is the number of homogeneous
regions in each test image. We found that there is no notable
impact of the initial segmentation on the final segmentation.
Fig. 2(a1), (b1), and (c1) shows the results of the final partitions
of D with 146, 140, and 104 polygons, respectively. Fig. 2(a2),
(b2), and (c2) shows the results of the optimal segmentation in
terms of the MAP estimation after all iterations obtained at the
7997th, 3978th, and 3984th out of a total of 4000 iterations,
respectively, where the tone of each region is represented by its
estimated mean.

Table II summarizes estimated shape parameters α1,...,k and
scale parameters β1,...,k for the gamma distributions corre-
sponding to the segmented homogenous regions.

Figs. 3 and 4 shows the histogram of intensities and gamma
distributions with the estimated shape and scale parameters

of the segmented homogeneous regions for test images (a)
and (b) in Fig. 4 and for test image (c) in Fig. 3. As shown
in Fig. 4(a1) and (b1), the curves of gamma distributions
for regions with maximum estimated means do not fit their
histograms well. As shown in Fig. 1(a) and (b), there are many
light pixels in these regions, which make the distributions of
intensities in the regions out of gamma distributions. Never-
theless, our algorithm still accurately identifies these regions.
In other cases, the histograms match the gamma distribu-
tions well.

For a visual assessment of whether the result is accurate, the
outlines of the segmented homogeneous regions are delineated
and then overlaid on the original images. As shown in Fig. 5, the
delineated outlines match those of the real homogenous regions
quite well.

B. Simulated SAR Imagery

Fig. 6 shows a simulated SAR image, which is generated
based on the partition of a domain, as shown in Fig. 6(a).
In the simulated image in Fig. 6(b), the intensity values for
pixels in each homogeneous region are drawn from gamma
distributions with shape parameters equal to 3, 4, and 5, and
the scale parameters equal to 24, 32, and 40, respectively.
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Fig. 4. Histograms and gamma distributions with estimated parameters of segmented regions (1, 2, and 3) in test images in Fig. 1(a) and (b).

Fig. 5. Delineated outlines (a1)–(c1) and overlaid on test images (a2)–(c2).

Fig. 6. (a) Partition of domain. (b) Simulated SAR image.

In the experiment using the simulated image, the constants
used in our algorithm are the same as those listed in Table I.
Fig. 7 shows the changes of the shape and scale parameters
during 4000 iterations and reveals that the estimated parameters
finally converge their stable values.
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Fig. 7. Changes of estimated (a) shape parameters and (b) scale parameters during 4000 iterations.

TABLE III
ESTIMATED MODEL PARAMETERS AND ERRORS

Table III gives the estimation values of the shape parameters
(α’s) and scale parameters (β’s) and their percentage error (eα

and eβ), respectively. In Table III, the minimum accuracy of
those estimated parameters is larger than 93% (≈ 100−6.55).
It can be concluded that the estimated values of the shape and
scale parameters are close to their real values.

Fig. 8 shows the histograms and gamma distributions with
the real and estimated parameters. It can be seen that the
histograms and distributions of pixel intensities for each homo-
geneous region match very well.

Our algorithm was developed using MATLAB running on
a DELL Optiple GX 745 computer. The average time spent
by one iteration was around 3.6 s, in which all four moves
are accepted. As a result, the average computation time for
4000 iterations was about 240 min. The computation burdens
for updating the model parameter, updating the label, moving
the generating point, and the birth and death of polygon account
for 5%, 20%, 35%, and 40%, respectively, since the operations
in the experiment for Voronoi tessellation and finding neighbor
polygons are time consuming.

In this paper, two assessment schemes are carried out
for quantitative evaluation, i.e., the statistical-measure-based
scheme [33] and the buffer-zone-based scheme [34]. In the
statistical-measure-based scheme, some common measures are
used for accuracy assessment, including producer’s accuracy,
user’s accuracy, overall accuracy, and Kappa coefficient [33].
Table IV presents an error matrix, where C1, C2, and C3 indi-
cate the homogenous regions, and ΣCr and ΣCs are the row and
column totals. According to this error matrix, the producer’s
accuracy, the user’s accuracy, the overall accuracy, and the

Kappa coefficient [33] are calculated. In the worst case, the
producer’s accuracy of 97.36% of real pixels (7478 out of 7681)
in the lightest block on the bottom of the simulated image is
correctly segmented. The algorithm incorrectly omitted 2.64%
of pixels (203 out of 7681) in the worst case. Correspondingly,
the user’s accuracy of 97.84% of pixels (7478 out of 7560)
segmented in the same region are correctly identified, and only
2.16% of pixels (401 out of 7560) are incorrectly segmented
to other homogenous regions. In a similar way, the segmented
results for the other homogeneous regions in the simulated
image can be evaluated. As a conclusion, the high segmentation
accuracy is anticipated when the proposed algorithm is applied.
The overall accuracy is 98.28%, and the Kappa coefficient
for the segmented result is up to 0.968. According to the
general interpretation rules for thematic accuracy assessment,
the Kappa coefficients 0.81–1.00 can be interpreted as almost
perfect [35].

Another scheme for the accuracy assessment of the proposed
algorithm is based on the degree to which the delineated
or extracted outlines of the segmented homogeneous regions
match their alternatives delineating the real regions, which is
measured by the count of pixels of the extracted outlines laying
on the buffer zone around the real outlines of the homogenous
regions [34]. Fig. 9 shows the extracted outlines (black) of the
segmented homogenous regions lying in the buffer zone (gray)
with 4-pixel width around the real outlines at each side. It can
clearly be seen that almost all of the extracted outlines of the
segmented regions lay within the buffer zone.

Table V presents the percentage of extracted outlines on
each buffer layer, where B0 denotes the percentage of extracted
outlines of the segmented homogenous region exactly matching
the real outlines. The Bi’s, where i = 1, 2, 3, 4, represent the
percentages of extracted outlines of the segmented homogenous
regions lying on the ith buffer layer of the real outlines. Table V
also shows the accumulated Σi = B0 + B1 + · · · + Bi. Over
80% of the extracted outlines of the segmented homogenous
regions are within the buffer zone with one pixel width around
the real outlines, and almost all the extracted outlines (around
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Fig. 8. Histogram and curves of gamma distributions with real and estimated model parameters.

TABLE IV
ERROR MATRIX

Fig. 9. Extracted outlines overlaid on the buffer zones around the outlines of
real regions.

TABLE V
PERCENTS OF THE EXTRACTED OUTLINES ON EACH BUFFER LAYER

99%) are on the buffer zone with 4 pixels in width around the
real outlines.

IV. CONCLUSION

The segmentation of satellite SAR intensity imagery is a
very challenging task due to the speckle effect. This paper
has presented a new segmentation approach based on Voronoi
tessellation, the Bayesian inference, and the RJMCMC algo-
rithms. The approach has been evaluated based on extensive
experiments using both real Radarsat-1/2 and simulated SAR
images. The experimental results show the efficiency of the
proposed segmentation approach.

In this paper, the number of homogenous regions existing in
SAR imagery is assumed to be known a priori. Unfortunately, it

is difficult to specify a desired number for homogenous regions
a priori. In the future work, the number will be considered as
a variable. There are two major issues for developing such al-
gorithms: 1) the simulation scheme and 2) label switching. The
RJMCMC algorithm [30] is an ideal solution to the simulation
scheme because of its ability and flexibility in simultaneously
performing model selection and parameter estimation. For the
variable number, the numerical labeling of the homogenous
regions is arbitrary. For example, the region labeled 1 at a
certain point in a time will usually represent a completely
different region at a later time. To overcome this problem, some
algorithms have been proposed, e.g., ordering the labels in the
relative order of the means or variables was considered [36].
A relabeling algorithm using decision theory was proposed
[37]. It is also well known that the distribution of homogenous
regions in a multilook SAR image can be characterized by
gamma, Gaussian, or K distributions. Therefore, it is necessary
to investigate SAR image segmentation using those distribu-
tions in future work.

ACKNOWLEDGMENT

The authors would like to thank Dr. Z. Ou of the Canadian
Ice Service for providing Radarsat-1/2 SAR images and the
anonymous reviewers for their valuable comments.

REFERENCES

[1] D. Marr, Vision: A Computational Investigation into the Human Rep-
resentation and Processing of Visual Information. San Francisco, CA:
Freeman, 1982.

[2] C. Oliver and S. Quegan, Understating Synthetic Aperture Radar Images.
Boston, MA: Artech House, 1998.

[3] J. S. Hadamard, Lectures on the Cauchy’s Problem in Linear Partial
Differential Equations. New York: Dover, 1952.

[4] T. Poggio, C. Koch, and V. Torre, “Computational vision and regulariza-
tion theory,” Nature, vol. 317, no. 6035, pp. 314–319, Sep. 1985.

[5] J. S. Lee, I. Jurkevich, P. Dewaele, P. Wambacq, and A. Oosterlink,
“Speckle filtering of synthetic aperture radar images: A review,” Remote
Sens. Rev., vol. 8, pp. 313–340, 1994.

[6] L. G. Shapiro and G. C. Stockman, Computer Vision. Englewood Cliffs,
NJ: Prentice-Hall, 2001.

[7] R. Touzi, A. Lopes, and P. Bousquet, “A statistical and geometrical edge
detector for SAR images,” IEEE Trans. Geosci. Remote Sens., vol. 26,
no. 6, pp. 764–773, Nov. 1988.

[8] D. M. Smith, “Speckle reduction and segmentation of synthetic aperture
radar images,” Int. J. Remote Sens., vol. 17, no. 11, pp. 2043–2057,
Jul. 1996.



LI et al.: SEGMENTATION OF SAR INTENSITY IMAGERY 1881

[9] J. J. Quan, X. B. Wen, and X. Q. Xu, “Multiscale probabilistic neural
network method for SAR image segmentation,” Appl. Math. Comput.,
vol. 205, no. 2, pp. 578–583, Nov. 2008.

[10] R. Fjørtoft, A. Lopes, P. Marthon, and E. Cubero-Castan, “An optimum
multiedge detector for SAR image segmentation,” IEEE Trans. Geosci.
Remote Sens., vol. 36, no. 3, pp. 793–802, May 1998.

[11] O. Germain and P. Refregier, “Edge location in SAR images: Performance
of the likelihood ratio filter and accuracy improvement with an active
contour approach,” IEEE Trans. Image Process., vol. 10, no. 1, pp. 72–
78, Jan. 2001.

[12] W. Li, G. B. Benie, D. C. He, S. Wang, D. Ziou, Q. Hugh, and J. Gwyn,
“Watershed-based hierarchical SAR image segmentation,” Int. J. Remote
Sens., vol. 20, no. 17, pp. 3377–3390, Nov. 1999.

[13] F. Galland, N. Bertaux, and P. Refregier, “Minimum description length
synthetic aperture radar image segmentation,” IEEE Trans. Image
Process., vol. 12, no. 9, pp. 995–1006, Sep. 2003.

[14] D. Cremers, M. Rousson, and R. Deriche, “A review of statistical ap-
proaches to level set segmentation: Integrating color, texture, motion and
shape,” Int. J. Comput. Vis., vol. 72, no. 2, pp. 195–215, Apr. 2007.

[15] I. B. Ayed, A. Mitiche, and Z. Belhadj, “Multiregion level-set partition of
synthetic aperture radar images,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 5, pp. 793–800, May 2005.

[16] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. PAMI-6, no. 6, pp. 721–741, Nov. 1984.

[17] G. S. Xia, C. He, and H. Sun, “Integration of synthetic aperture radar im-
age segmentation method using Markov random field on region adjacency
graph,” IET Radar Sonar Navig., vol. 1, no. 5, pp. 348–353, Oct. 2007.

[18] P. C. Smits and S. G. Dellepiane, “Synthetic aperture radar image segmen-
tation by a detail preserving Markov random field approach,” IEEE Trans.
Geosci. Remote Sens., vol. 35, no. 4, pp. 844–857, Jul. 1997.

[19] H. Deng and D. A. Clausi, “Unsupervised image segmentation using a
simple MRF model with a new implementation scheme,” Pattern Recog-
nit., vol. 37, no. 12, pp. 2323–2335, Dec. 2004.

[20] M. Li, Y. Wu, and Q. Zhang, “SAR image segmentation based on mixture
context and wavelet hidden-class-label Markov random field,” Comput.
Math. Appl., vol. 57, no. 6, pp. 961–969, Mar. 2009.

[21] J. Besag, “Towards Bayesian image analysis,” J. Appl. Stat., vol. 16, no. 3,
pp. 395–406, 1989.

[22] A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. Chichester, U.K.: Wiley, 1992.

[23] P. J. Green and R. Sibson, “Computing Dirichlet tessellation in the plane,”
Comput. J., vol. 21, no. 2, pp. 168–173, 1978.

[24] J. Besag, “On the statistical analysis of dirty picture (with discussion),”
J. R. Stat. Soc., B, vol. 48, no. 3, pp. 259–302, 1986.

[25] D. J. Strauss, “Clustering on coloured lattices,” J. Appl. Prob., vol. 14,
no. 1, pp. 135–143, Mar. 1977.

[26] I. Dryden, M. R. Scarr, and C. C. Taylor, “Bayesian texture segmentation
of weed and crop image using reversible jump Markov chain Monte Carlo
methods,” J. R. Stat. Soc., Ser. C, Appl. Stat., vol. 52, no. 1, pp. 31–50,
Jan. 2003.

[27] I. L. Dryden, M. R. Faghihi, and C. C. Taylor, “Procrustes shape analysis
of spatial point pattern,” J. R. Stat. Soc., B, vol. 59, no. 2, pp. 353–374,
1997.

[28] A. Baddeley and J. Møller, “Nearest neighbour Markov point processes
and random sets,” Int. Stat. Rev., vol. 57, pp. 89–121, 1989.

[29] B. D. Ripley, Spatial Statistics. New York: Wiley, 1981.
[30] J. Green, “Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination,” Biometrika, vol. 82, no. 4, pp. 711–732,
1995.

[31] J. M. Bernardo and A. F. M. Smith, Bayesian Theory. New York: Wiley,
1994.

[32] J. Besag, P. Green, D. Higdon, and K. Mengersen, “Bayesian computation
and stochastic systems (with discussion),” Stat. Sci., vol. 10, pp. 3–66,
1995.

[33] R. G. Congalton and K. Green, Assessing the Accuracy of Remotely
Sensed Data: Principles and Practices. Boca Raton, FL: CRC Press,
2008.

[34] Y. Li, J. Li, and Y. Lu, “A fuzzy segmentation based approach to extraction
of coastlines from IKNOS imagery,” Geomatica, vol. 62, no. 4, pp. 396–
408, 2008.

[35] J. L. Fleiss, “Measuring agreement between two judges on present or
absent of a trait,” Biometrics, vol. 31, pp. 651–659, 1975.

[36] S. Richardson and P. J. Green, “On Bayesian analysis of mixtures with an
unknown number of components (with discussion),” J. R. Stat. Soc., B,
vol. 59, no. 4, pp. 731–792, 1997.

[37] M. Stephens, “Dealing with label switch in mixture models,” J. R. Stat.
Soc., B, vol. 62, no. 4, pp. 795–809, 2000.

Yu Li received the B.Eng. degree in electronic en-
gineering from Xidian University, Xi’an, China, in
1984 and the M.A.Sc. degree in geomatics engineer-
ing from Ryerson University, Toronto, ON, Canada,
in 2004. He is currently working toward the Ph.D.
degree in geomatics with the University of Waterloo,
Waterloo, ON, Canada.

He has published more than 30 papers in refer-
eed journals, books, and proceedings. His research
interests are remotely sensed data segmentation and
classification, spatial statistics, and its application to

image analysis.

Jonathan Li (M’00) received the Ph.D. degree in
geomatics engineering from the University of Cape
Town, Cape Town, South Africa, in 2000.

He is currently an Associate Professor with the
Department of Geography and Environmental Man-
agement, University of Waterloo, Waterloo, ON,
Canada. He has published more than 150 papers
in refereed journals, books, and proceedings, and
coedited six books. His current research interests
are in the areas of information extraction and carto-
graphic mapping from very high resolution satellite

multispectral and SAR imagery as well as LiDAR point clouds.

Michael A. Chapman received the Ph.D. degree
in photogrammetry from Laval University, Quebec
City, QC, Canada, in 1989.

He is currently a Professor with the Department
of Civil Engineering, Ryerson University, Toronto,
ON, Canada. He has published more than 100 pa-
pers in refereed journals, books, and proceedings.
His current research interests include algorithms and
processing methodologies for airborne sensors using
GPS/INS, geometric processing of digital imagery in
industrial environments, terrestrial imaging systems

for transportation infrastructure mapping, and algorithms and processing strate-
gies for biometrology applications.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


