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The extraction of geospatial features from remotely sensed imagery remains the primary means by which
to create or update geospatial databases, in particular, for complex urban areas with rapid and frequent
changes. This paper presents a novel scalable edge model for rectifying straight lines and spline curves in
three-dimensional (3D) object space. It can be used for accurate extraction of 3D linear features and build-
ings from a stereo pair of aerial images. Least-squares adjustment is employed to iteratively rectify a shifted
initial line to the precise 3D position. The adjustment procedure is integrated with a scalable slope edge pro-
file model and an adaptive template generation process, which can be used to locate the edge position by
the ‘zero-crossing’property of the model. The experimental results using synthesized image and real stereo aer-
ial image pairs show that this approach is effective and has potential advantage.

Introduction

Reliable and up-to-date information on the rapid
and frequent changes of urban environment are
critical to various applications ranging from city
planning, environmental impact assessment, micro-
climate simulation and disaster management.
However, the application of the conventional classi-
fication methods that rely on pixel-based processing
methods encounters many difficulties in the extrac-
tion of land cove and land-use information from
high-resolution, remotely sensed imagery, in partic-
ular, for accurate extraction of three-dimensional
(3D) features such as 3D buildings. Linear features
(e.g., road, object edge, etc.) play an important role
in geographical information collection and applica-
tion. Accurate extraction of linear features from
remotely sensed imagery is useful for applications
such as data acquisition, data (vector-image) regis-
tration and change detection. Linear feature extrac-
tion from a single remotely sensed image has been

extensively studied. Given initial ‘seeds’ or the
approximate position of a line, the precise shape
and position are consequently extracted by the
designed algorithm. This approach is termed ‘semi-
automatic’ extraction, which is essential for rectify-
ing an inaccurate linear feature to its exact position.
To date, optimization-based methods have been
used frequently to extract features by finding opti-
mal ‘routes’ depending on global geometric and
radiometric constraints of the feature. Dynamic
programming [Grün and Li 1995], active contour
models (snakes) [Trinder and Li 1995], least-
squares template matching (LSTM) [Grün and
Agouris 1994; Hu et al. 2004; Kim et al. 2004], and
least-squares B-spline snake (LSB-snake), a com-
bined LSTM and snakes method [Grün and Li
1997] are essentially optimization-based methods
that minimize ‘cost’ or ‘energy’ or ‘least-squares
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L’extraction d’éléments géospatiaux à partir d’images obtenues par télédétection  demeure la principale
façon de créer ou de mettre à jour des bases de données géospatiales, en particulier pour les régions
urbaines complexes qui changent souvent et rapidement. Cet article présente un nouveau modèle de contours
adaptables pour rectifier les lignes droites et les courbes splines en objets spatiaux tridimensionnels (3-D). Il
peut être utilisé pour extraire les éléments linéaires et les bâtiments avec exactitude à l’aide d’un couple
stéréo d’images aériennes. On utilise la méthode des moindres carrés pour rectifier itérativement une ligne
initiale déplacée dans sa position 3-D exacte. La procédure d’ajustement est intégrée à un modèle de profils
de contours en pente adaptables et à un processus de production de gabarit adaptatif, qui peuvent être utilisés
pour localiser la position du contour à l’aide de la fonction « croisement zéro » du modèle. Les résultats des
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photos aériennes démontrent que cette approche est efficace et possède un avantage potentiel.
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error’ in order to obtain a globally optimized and
reliable result. In their methods, the radiometric
model (or constraint) is relatively simple, for exam-
ple, maximizing the sum of the gradient magni-
tudes of the edge. An explicit edge model is useful
for obtaining a more accurate result. To optical
remotely sensed imagery, there is a broad range of
edge scales and noisy levels. Ye et al. [2005] used a
blurred edge model and a least-squared error-based
method to detect edges in subpixel accuracy. Their
experimental results indicate that the proposed
model and method has better results in terms of
accuracy and anti-noise capability compared with
using the moment-based method [e.g., Shan and
Boon 2000] and interpolation method [Steger 1998;
Steger 2000]. 

This paper deals with rectification of three-
dimensional (3D) linear features showing intensity
gradient (edge) on stereo aerial images. The men-
tioned optimization-based methods, for example,
LSB-snake [Grün and Li 1997], can be extended to
rectify 3D features, but few of them take into
account the rigorous edge model for the purpose of
achieving higher accuracy. The model-based fitting
using edge information presented by Lowe [1991]
suggests minimizing the non-linear error function
in the image domain. In this fitting model, the per-
pendicular distance between the projected model
line and extracted edge point is minimized. The
correct model line to image edge correspondence is
found by selecting the one that has the shortest per-
pendicular distance, which is dependent on the
approximate model position. Vosselman and
Veldhuis [1999] followed the procedure of Lowe
[1991], with the exception that Lowe [1991] uses
edge information and a minimization of error func-
tion, whereas they use gradient values as weights in
observation equations in the least-squares system.
Tseng and Wang [2003] also employed least-
squares adjustment to fit the building wireframe
model to the edge points extracted from stereo aer-
ial images. There could be a drawback in this edge
point fitting method when the extracted edge pixels
are not accurate in geometry due to the varying
edge scales and noises. In this paper, instead of
using perpendicular distance as the observations in
the least-squares adjustment, we integrate a
scaleable slope (blurred) edge model with least-
squares template matching (LSTM) to accurately
rectify linear features from stereo aerial images,
overcoming negative effects of varying edge scales
and noises. The computational model is derived
and experimental results are given, also showing that
the potential of the proposed method in computer
vision applications as the image formation geometry
is essentially the same as the stereo aerial images.

The objective of the method is to develop a robust
and user-friendly tool that can be integrated into a
digitizing production with high reliability, efficiency
and accuracy [Hu et al. 2004].

Strategy for Semi-automatic
3D Line Extraction

There were two major research directions in
which image-based feature extraction strategies
and systems were developed: fully automated and
semi-automated. A fully automated system, con-
ceptually, produces a scene model in which no user
interaction is required. By contrast, a semi-automat-
ed system requires user and automated processes in
the system to work in sequence. The semi-automat-
ed method attempts to integrate the intelligence of
our human visual system with an ability to recog-
nize the object robustly and the computer system
with an ability to perform fast feature extraction
and accurate shape representation. To ensure that
the semi-automated extraction can be applied in an
operational environment, the method needs to guar-
antee better performance in terms of (1) reliability:
extraction should be non-sensitive to noise such as
shadows and occlusions, editing for correction of
the extracted results should be minimized; (2) accu-
racy: the geometric error of the extracted results
should be minimized and the extracted results
should be at least comparable to that of manual dig-
itizing; (3) efficiency: the extraction time should be
much less than that required by manual operation;
(4) interactivity: the extraction should be an inter-
active process in which the human operator is able
to correct wrongly extracted results immediately.
High efficiency is also dependent on reliability,
accuracy and interactivity. Interactivity with timely
feedback from the automated process is an impor-
tant factor influencing high extraction efficiency
[Hu et al. 2004]. 

Given the importance of linear features, this
paper deals mainly with the algorithm development
of semi-automatic 3D line extraction. The main
feature of the proposed 3D line extraction strategy
is that, based upon photogrammetric geometry, it
utilizes a scalable edge model for rectifying straight
lines and spline curves in 3D object space. The
method can be used for accurate extraction of 3D
building roofs from a stereo pair of aerial images.
Least-squares template matching (LSTM) is
employed to iteratively rectify a shifted initial line
to the precise 3D position. The LSTM procedure is
integrated with an adaptive template generation
process, which can be used to locate the edge posi-
tion by the ‘zero-crossing’ property of the model.
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LSTM for 3D Linear Feature
Rectification 

Figure 1 depicts the formation of a pair of stereo
aerial images. The object reconstruction from stereo
aerial images is based on project geometry expressed
by the following collinearity equations [Wolf and
Dewitt 2000]

(1)

(2)

where xa and ya are the photo coordinates of image
point a; Xp, Yp, and Zp are the object space coordi-
nates of the corresponding point a; XL, YL, and ZL

are the object space coordinates of the exposure
station; f is the camera focal length; x0 and y0 are
the coordinates of the principal point (usually
known from camera calibration); and the mij, where
i = 1, 2, 3, and j = 1, 2, 3, are the functions of three
rotation angles, ω, φ, and x. The collinearity equa-
tions are nonlinear and can be linearized by using
Taylor’s theorem. If ω, φ, x and XL, YL, ZL and are
known, using the known image coordinates on the
stereo pair, we can obtain the object space coordi-
nates, Xp, Yp, and Zp of the ground point P.
Consequently, the errors of a point position on the
image, dxp and dyp, are caused by the errors of the
point position in object space, dXp, dYp, and dZp.
The linearized error equations are expressed as 

(3)

(4)

where AX, AY, AZ, BX, BY, and BZ are the linearized
coefficients based on the Taylor series. The detailed
description on the linearization of the collinerity
equations can be found in Wolf and Dewitt [2000].
In this paper, 3D linear feature rectification
depends on equations (3) and (4).

We first derive the computational model to rec-
tify straight lines in 3D, followed by the derivation
of the rectification of 3D spline. As shown in
Figure 2, the solid line lies in the initial position
and needs to be rectified to its exact position indi-
cated by the dashed lines in both image and object
space. The length of the line on an image is L. dyn0

and dyn1 is the shift along the normal direction at
the end point of the line. For a pixel p close to the
initial line and located in d, let its gray level be g
and its position error in the normal direction be dyn.
Assuming the image template indicating the exact
local edge model is already known (the gray value
on the corresponding pixel is gT), in order to obtain

of a pixel inside the template, we have gT = g(yn +
dyn) and the error function

(5)
where gy is the gray gradient in the normal direction,
lg is the error of the gray value between the pixel and
the corresponding template pixel, and dyn is the shift
along the normal direction. From 
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xa–x0=– f
m11 Xp–XL +m12 Yp–YL +m13 Z p–Z L

m31 Xp–XL +m32 Yp–YL +m33 Z p–Z L

ya–y0=– f
m21 Xp–XL +m22 Yp–YL +m23 Z p–Z L

m31 Xp–XL +m32 Yp–YL +m33 Z p–Z L

dyp=–
∂ f y

∂X
dX p +

∂ f y

∂Y
dYp +

∂ f y

∂Z
dZ p = BxdX p

+BydYp +BzdZ p

dxp=–
∂ f x

∂X
dX p +

∂ f x

∂Y
dYp +

∂ f x

∂Z
dZ p = A xdX p

+A ydYp +AzdZ p

vg=
∂g
∂yn

∂yn – gT – g + gydyn – lg

minimal Σ
i

gT – g 2, where i indicates the number

Figure 1: Illustration of 3D restitution of stereo images.

Figure 2: 3D Straight line rectification.
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dyn = (d / L) . dyn0 + ((L – d) / L) . dyn1 (6)

and equation (5), we have

(d / L) . gy dyn0 + ((L – d) / L) . gy dyn1 = lg (7)

As shown in Figure 2, we know 

dyn0 = – dx0 / sin θ (8)
or 

dyn0 = -dy0 / cos θ (9)

θ is the angle of the line on the image. When | sin θ
|>| cos θ | we use equations (3), (4), (7), and (8) to
derive the adjustment model to rectify the 3D line:

m0
. dX0 + m1

. dY0 + m2
. dZ0 + m3

. dX1 + m4
. dY1

+ m5
. dZ1 =lg (10)

where 

m0 = – ((d / L)gy Ax) / sin θ
m1 = – ((d / L)gy Ay) / sin θ
m2 = – ((d / L)gy Az) / sin θ
m3 = ((d – L) / L) gy Ax ) / sin θ
m4 = ((d – L) / L) gy Ay ) / sin θ
m5 = ((d – L) / L) gy Az ) / sin θ

when | sin θ | ≤ | cos θ |, using equations (3), (4), (7),
and (9), we can derive a similar model for the rec-
tification. We can iteratively shift the end point of
the line with (dX0, dY0, dZ0) and (dX1, dY1, dZ1)

until the terminating condition is satisfied.
The interpolation spline, cardinal spline, is

used to represent 3D curves. A cardinal spline is a
cubic Hermite spline whose tangents are defined by
points and a tension parameter. A cardinal spline
takes the positions of the current point and, along
with the previous and next points, averages the
positions using the tension parameter. This
smoothes the line and denotes a path that is gently
curved through the points rather than zigzagging
through them. As shown in Figure 3, a piece of the

cardinal spline defined by the four continuous con-
trol points Pi-1, Pi, Pi+1, and Pi+2 by

P(u) = Pi –1 (– su3 + 2su2 – su) + Pi[(2 – s)u3

+ (s – 3)u2 + 1] + Pi+1 [(s – 2)u3 + (3 – 2s)u2 +su]
+Pi+2(su3 – su2) = Pi–1c0(u) +Pic1(u) + Pi+1c2(u)
+ Pi+2c3 (u) (11)

where u is the parameter and 0≤u≤1, s = (1 – t) / 2,
t is the tension parameter. Similar to the derivation
of the 3D straight line rectification, to the pixel p
close to the initial curve on an image whose error in
the normal direction is dyn, we have 

gT = g (yn + dyn) (12)

(13)
and 

(14)

(15).

gyn
is the gray gradient in the normal direction.

From equation (11), the errors, dx and dy, of p in
the x and y direction are given by

dx = c0 (u) . dxi–1 + c1 (u) . dxi + c2 (u) . dxi+1

+ c3 (u) . dxi+2 (16)

dy = c0 (u) . dyi–1 + c1 (u) . dyi + c2 (u) . dyi+1

+ c3 (u) . dyi+2 (17)

The deformation of a cardinal spline on the
stereo images is from the geometric error of the
curve in 3D object space. When | cos θ |>| sin θ |,
equations (3), (4), (13), (14), (16) and (17) can be
used to derive the model rectifying the 3D curve

(18)

where the coefficients are

Cx(k) = gyn cr (u)Bx / cos θ (19)
Cy(k) = gyn cr (u)By / cos θ (20)
Cz(k) = gyn cr (u)Bz / cos θ (21)

r = 0,1, 2, 3 when k = i-1, i , i+1, i+2, respectively.
When | sin θ |≤| cos θ |, equations (3), (4), (13),
(15), (16) and (17) are used to derive a similar
model for the rectification.
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vg =
∂g

∂yN
. dyN – gT – g = gyn

dyn – lg

dyn =
d y

cos θ

or dyn = –
d x

sin θ

Figure 3: 3D spline rectification.

Σ
k = i – 1

i + 2
cx k . dXk + Σ

k = i – 1

i + 2
cy k . dYk

+ Σ
k = i – 1

i + 2
cy k . dZk = lg
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Scalable Slope Edge Model
Thus far we have derived the rectification model

equations (10) and (18). Assuming the rotation
angles (ω, φ, x) of the stereo images and the coordi-
nates of the camera centre (XL, YL, ZL) are known, in
the equations the gray value of the template pixel gT

has to be obtained, which is based on a scalable
slope edge model and adaptive template generation. 

Figure 4 depicts the explicit model of the scal-
able slope edge profile based on an exponential
function, which is profile model along the edge
direction. The model is defined as 

(22)

where h and k are the intensity of the background
and the contrast, respectively. a controls the ‘scale’
of the edge. Larger a results in steeper edge while
smaller a means that the edge occurs in a less steep
edge. As shown in Figure 3, the strict geometric
position of the edge locates at the ‘zero crossing’
position which is defined by the second derivative
of the profile model or the maximum of the first
derivative. As discussed in [Elder and Zucker
1998], the standard approach to edge detection is
based on a model of edges as large-step changes in
intensity. This approach fails to reliably detect and
localize edges in natural images where blur scale
and contrast can vary over a broad range. On
remotely sensed images we can find a wide range
of edge blur scales and the blur effect of the optical
imaging system tends to be the Gaussian blur. This
explicit model can be seen as an approximation to
the Gaussian edge model employed by other appli-
cations [Elder and Zucker 1998; Shan and Boon
2000; Ye et al. 2005]. 

Adaptive Generation of
Edge Template

In order to integrate the edge model into the
derived models of linear feature rectification, we
have to generate automatically the edge template for
each observation pixel. In other words, each edge
template is generated locally and adaptively by
estimating the three parameters indicating the
intensity, contrast and scale of the edge on the pixel. 

• Step 1. Generate the default edge templates gT

(s) based on fixed h and k and varying a. For
example, setting h = 50, k = 50 and a = 2.0, 1.0,
0.5, we get three edge-profile templates corre-
sponding to three different edge scales.

• Step 2. In the normal direction of the current
point of the linear feature, slide a chosen tem-
plate and do cross correlation with the corre-
sponding image window whose size is the
same as the template. Find the maximal corre-
lation coefficient ρm and record the correspon-

ding α, let α0 = α. If ρm < ρT (e.g., ρT = 0.80),
we discard the observation because of the low
possibility for the existence of an edge. Note
that we need to reverse the template gT (s) to gT

(–s) and do cross correlation again to find ρm

which is correspondent to the edge in the oppo-
site edge direction. From the image window gm

correspondent to, ρm we can estimate the initial
intensity h0 by averaging the low gray value
pixels and the initial contrast k0 by subtracting
h0 from the average high gray value.

• Step 3. As shown in Figure 5, we use the pixels
in the image window gm for estimating the
accurate edge model in the local position.
According to the edge model (8), the error
between the pixel gm and the corresponding
value in the template gT is
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g s = h + k
1 + exp – as

∆g = gT – gm = ∆h +
∆k

1 + exp – α0s
+

k 0α0exp – α0s

1 + exp – α0s 2 ∆α

Figure 4: Scalable slope edge model.

Figure 5: Adaptive generation of edge template.

(23)
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This is the adjustment model for rectifying the
initial parameters (h0, k0, a0) to the least-squares
error-based values. The rectified edge profile
model forms the template by the updated h, k, and
a. The adaptively generated template thus fits to the
local intensity, contrast and the scale of the edge. 

Experiments on 2D and 3D
Using a Commercial Digital
Photogrammetric System

The proposed algorithm was tested with 20-cm
resolution black and white stereo aerial images.
The iterative adjustment procedure is terminated
when the maximal position error of the end points of
the straight line or the control points of the cardinal
spline is less than 0.02 pixel. To adaptively generate
the edge templates, the sliding correlation men-
tioned before has to be done. The search range of
the sliding correlation limits the ‘pull-in’ range of
the line rectification. In our implementation we set

the search range R = 17 pixels in the two opposite
directions. We generate the default templates by
setting h = 50, k = 30 and a = 3.0, 1.0, 0.6, and 0.4;
so the four different scale templates serve as the ini-
tial templates. Our edge model is essentially a profile
model along the edge direction. Here we choose a W
by H size for the generated templates. W = 3 is the
width of the template and H is defined by the edge
scale. In the implementation, we use a fixed scale
of 7 pixels to generate a template, so H = 2x7+1 =
15, and the edge position is centred in the template.
The 3 by 15 size template is better than the one-
dimensional template in obtaining more reliable
results in cross correlation and estimation of the
accurate edge model due to the abundant observa-
tions. For the cardinal spline extraction, we use the
tension parameter t = 0.5. 

The proposed algorithm was compared with
the edge point fitting method by using a synthetic
image. The edge point fitting method is based on
minimizing squared errors of the distance from the
detected edge points to the line. It is reasonable that
we evaluate the accuracy using a single image,
because the accuracy of 3D rectification depends
on the accuracy of the rectification on each single
image and the resolution (scale) of the stereo aerial
images. For straight line extraction, we created an
original image with the dimension of 256 by 256. A
diagonal edge is created by setting pixels at the
opposite side as low and high grey value 0 and 255,
while setting the grey values on the diagonal line as
128. Apparently the accurate straight line is y = x,
as shown in Figure 6. We change the contrast of the
edge and blur the edge using Gaussian filtering
based on various deviations ranging from 0.8 to 4.0
(along the edge and from low-left to upper-right).
The additive Gaussian noise is also included in the
image, with a mean of zero and a range of standard
deviations related to noise ratios (NR) 10% defined
by Ye et al. [2005]. Fifty initial lines are randomly
created around the accurate line position. For each
line we employ the two methods to rectify it. For
the edge point fitting method, the Canny operator
[Canny 1986] is used to detect all edge points (see
Figure 7). Figure 8 shows an example of the adap-
tive edge template generation when the image is
noisy and the edge scale varies at different loca-
tions. The errors of the end points of the 50 inputted
initial lines are shown in Figure 9a. For each recti-

rectified line and the real line y = x are computed.
For each pixel on the line, the error can be obtained
by computing the distance from the point to the real

the two methods. By the proposed method, the
38

Figure 7: Edge detection to the test image by the Canny
operator.

Figure 6: A test image for  straight line rectification.

fication, the mean error d per pixel between the

line. Figure 9b shows the comparision of d using
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pixel error by the fitting method. Simply fitting the
detected edge pixels could lead to inaccurate results
due to the unreliable edge detection, especially on
noisy images and varying slope edge scales. In the
proposed method, the edge detection is carried out
internally based on template matching by cross cor-
relation, in which the edge scale is modelled. Based
on least-squares errors, the edge templates are gen-
erated locally and adaptively to fit the edge contrast
and scale. The proposed method produces higher
accuracy from both single and stereo images, and
logically higher accuracy can be expected in 3D
rectification. 

The experiments on 3D line extraction were
carried out using a commercial digital photogram-
metric system, VirtuoZo, developed by Supresoft
Inc, Wuhan, China. The proposed algorithms were
implemented based on the derived equations (10)
and (18). In order to ease the 3D feature collection
from stereo aerial imagery, the system first does
relative and absolute orientations (which uses
GCPs) to generate an epipolar image pair, from
which one only needs to adjust parallax in the
direction of image row to get the elevation of a
point. A user can input the initial linear feature
roughly by clicking a few ‘key’ points or drag an
initial known wireframe to the approximate posi-
tion on the epipolar image pair. The inaccurate lin-
ear feature or the wireframe can be automatically
rectified to its accurate position. Note that the
geometry of an epipolar image pair and 3D object
space is slightly different with the ones expressed
in equations (1) and (2); we revised and simplified
the final versions of equations (10) and (18)
accordingly. In general, equations (10) and (18) are
the basis of developing more complex algorithms
using LSTM for 3D line extraction. 

Figure 10 shows an example of 3D spline rec-
tification from an epipolar image pair. The inputted
approximate polygon defines the initial 3D cardinal
spline by using the vertices of the polygon as the

control points of the spline. It is rectified to the
accurate position regardless of the casting of shad-
ows on the edges. The accurate 3D spline can be
directly collected, as shown in the zoomed image
windows and 3D curve shown in Figure 10a and
10b, respectively. 
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Figure 8: An example of edge template generation. In (a), (b) and (c) the axis
of the horizontal plane is the image row and column, respectively, and the ver-
tical axis is the gray value of the image pixel.

Figure 9: Fifty tests for comparing LSTM method and edge points fitting. The
horizontal axis is the times of generating random initial lines, while the verti-
cal axis is the position error in pixel unit.

Figure 10: 3D spline rectification from aerial stereo images.

average d can reach 0.069 pixel compared to 0.34

(a) Gaussian blurred
slope edge.

(a) Initial errors of the two end points.

(b) Rectified curve in the 3D object space (ground coordinate system).(a) Inputted approximate polygon and the rectified spline on the images.

(b) 10% NR Gaussian
noise added to (a).

(c) Adaptively generated
edge template from (b).

(b) Mean errors of the points on the
llines rectified by LSTM and edge
points fitting.
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A semiautomatic building extraction system is
developed by extending the proposed straight line
rectification algorithm to extract the edges of build-
ings. In the system, the initial known wireframe
model of the building is input by the user with his
visual recognition; the approximate model is then
rectified based on the proposed 3D straight line rec-
tification algorithm. How to use minimal input
(mouse ‘clicking’) to obtain initial 3D roof models
is another topic we are addressing, using model-
driven perceptual grouping explained in a separate
paper. Figure 11 illustrates the result of building
extraction. The result indicates that the building
edges are accurately positioned on the stereo
images, overcoming the varying edge blur scales
and random noises. In this paper, only visual
inspection on the extraction results was used to
judge the performance of 3D building extraction, in
part because the performance of the proposed semi-
automated object extraction method is highly
dependant on the user’s measurement skill.

Conclusions 
Based on 2D analysis of edge models, a new

semi-automated 3D feature extraction algorithm
has been presented in this paper. The 3D lines are
extracted by using template matching based on
least-squares correlation adjustment. In order to
improve the edge point fitting method, a rigorous
edge model with varying scales was utilized, which
leads to the higher accuracy of rectification.
Examples of 3D line and building extraction are
given using a pair of high-resolution aerial stereo
images. The results indicate that the derived com-
putational models for 3D rectification of straight
lines and splines are feasible and effective. As the
imaging geometry of optical images is essentially

identical to the image formation of aerial images, the
proposed method is capable of dealing with related
computer vision problems in which high-accuracy
feature extraction is important.

Further research should be carried out in sever-
al directions:

1. Speeding up the convergence of the least-
squares adjustment. The searching range of the
edge matching by cross correlation (‘pull-in’
range of the adjustment process), formation of
the edge templates and the number of the
observations are critical elements for conver-
gence. Assigning weights to the observations,
using multi-scale method (coarse-to-fine) to do
edge matching, simplifying the edge template
generation, and reducing the number of the
pixels used for constructing the adjustment
model—for example, just using one pixel to be
an observation in a template could be helpful for
faster convergence. We need to find a trade-off
of the performance in accuracy and speed.

2. Taking into account more local feature models.
There are many more features than slope edges
on images. Modeled novel features can be
immediately integrated into the proposed
model to 3D feature rectification. 

3. In the proposed method, we assume that the
geometric error of the initial linear feature is
from the point error of the line in the normal
direction. This may logically lead to the failure
of rectification when the initial linear feature is
far from shifted deformation. Novel strategies
are worth developing to handle these scenarios.
Also, error propagations throughout the process,
for instance, errors introduced by orientation,
were not fully considered in the model. More
sophisticated models need to be developed to
address all the sources of geometric errors. 

4. We have evaluated the accuracy of our algo-
rithms in 2D but not in 3D. Besides visual
inspection, quantitative accuracy and precision
assessment of 3D line extraction should be
developed to evaluate the method. 
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