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Abstract—This paper proposes a novel algorithm for extracting
street light poles from vehicleborne mobile light detection and
ranging (LiDAR) point-clouds. First, the algorithm rapidly detects
curb-lines and segments a point-cloud into road and nonroad
surface points based on trajectory data recorded by the integrated
position and orientation system onboard the vehicle. Second, the
algorithm accurately extracts street light poles from the segmented
nonroad surface points using a novel pairwise 3-D shape context.
The proposed algorithm is tested on a set of point-clouds acquired
by a RIEGL VMX-450 mobile LiDAR system. The results show
that road surfaces are correctly segmented, and street light poles
are robustly extracted with a completeness exceeding 99%, a
correctness exceeding 97%, and a quality exceeding 96%, thereby
demonstrating the efficiency and feasibility of the proposed algo-
rithm to segment road surfaces and extract street light poles from
huge volumes of mobile LiDAR point-clouds.

Index Terms—Light pole extraction, mobile light detection and
ranging (LiDAR), point-cloud, road surface segmentation, shape
context.

I. INTRODUCTION

IN THE past two decades, light detection and ranging
(LiDAR) technology has rapidly developed and been used

to acquire geospatial information for a variety of applications:
urban planning, environmental impact assessment, cultural her-
itage documentation, intelligent transportation systems, and
disaster management. Both airborne LiDAR and vehicleborne
mobile LiDAR systems have been widely used for surveying
and mapping purposes [1], [2]. From the point-cloud data
acquired by the aforementioned systems, algorithms have also
been developed for the computerized extraction of buildings
[3]–[7], trees [8]–[11], pedestrians [12], [13], roads [14], [15],
and digital elevation models [16], [17]. Differing from its air-
borne counterparts, mobile LiDAR systems have the following
advantages: 1) good view of the pavement; 2) direct view of
vertical surfaces such as building façades; 3) closer to ground
objects; 4) higher point density such as 4000 points/m2 with a
vehicle moving speed of 50 km/h or higher; and 5) visible from
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the roadway. Thus, accurately extracting objects from mobile
LiDAR point-clouds has attracted more and more attention
in remote sensing and mapping communities. As an essential
component of the transportation infrastructure, street light poles
function to provide vehicles and pedestrians with illumination
at night. Cost-effectively monitoring and managing street light
poles are important to the transportation management depart-
ment. Therefore, our interest focuses on the extraction of street
light poles from mobile LiDAR point-clouds.

Existing methods for extracting pole-like objects (e.g., light
poles) from point-clouds are based on machine learning [18],
[19], shape features [20], [21], and prior knowledge [14], [22],
[23]. Shape features provide important clues to detect and ex-
tract pole-like objects. Such features have been considered and
integrated into a principal component analysis (PCA) method in
some studies. In [20], based on shape and context features, pole-
like objects with tilt angles and various radii were automatically
detected using a PCA approach. Shape features of each pole-
like object were calculated by height, number of segments, and
structure types; however, context features were computed by
the surrounding distributions of pole-like objects. Similarly, a
covariance-based procedure was presented in [21] to detect road
light poles based on eigenvalue analysis. However, instead of
analyzing the spatial features of point-clouds in 3-D space, all
clustered objects were projected onto a horizontal plane [24].
The distribution of each object was captured by decomposing
the covariance matrix of 2-D points into principal components.
Objects with linear features (e.g., light poles) were simply
detected by comparing the associated eigenvalues.

According to the design and construction manuals for street
lighting systems, light poles always have predefined shapes,
heights, and sizes that provide essential prior knowledge for
the detection and extraction of the light poles. A percentile-
based algorithm was introduced in [14] for the recognition of
light poles. Instead of analyzing the whole object segment, the
segment was first divided into four quartiles [25]. Considering
the impact of the shrubs attached at the bottom of a light
pole, as well as other attachments to the pole, such as traffic
signs and advertising boards, the third quartile was selected and
divided into horizontal slices. Finally, light poles were recog-
nized based on the detection of vertical pole-like structures.
In [22], a density of projected points (DoPP) algorithm [26],
[27] was applied to extract street light poles from point-clouds.
First, point-clouds were divided into voxels on the XY plane.
Then, the maximum height of each voxel was calculated, and a
height threshold, based on the height data, was subsequently
determined. Finally, by classifying point-clouds into ground,
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Fig. 1. Flowchart of the proposed algorithm.

low ground, and high ground points, light poles were extracted
by simply applying the height threshold.

In general, in order to better capture the surrounding geospa-
tial information, a line scan mode is designed for vehicleborne
mobile LiDAR systems. As a result, vertical scan lines were
used in [28] to extract utility poles based on the detection
of point groups that formed independent vertical scan lines
on profiles. Similarly, by using the scan line information on
profiles, pole-like objects were extracted by grouping points of
each profile and clustering extracted sweeps to form poles [29].

In this paper, we propose a novel algorithm for segmenting
road surfaces and extracting street light poles from mobile
LiDAR point-clouds. As shown in Fig. 1, the algorithm is
carried out based on the following stages: 1) a series of road
profiles is generated along the vehicle’s trajectory, which is
acquired by the integrated global navigation satellite system
(GNSS) receiver and inertial measurement unit (IMU); 2) curb-
lines are extracted based on profile analysis and then used
to segment the point-clouds into road and nonroad surface
points; 3) ground points are further removed from nonroad
surface points using a voxel-based elevation filter; 4) the filtered
point-clouds are clustered into groups based on a Euclidean
distance clustering method; 5) the clusters that contain more
than one object are further segmented using a normalized cut
segmentation method; and 6) light poles are finally extracted
using a novel pairwise 3-D shape context, which is defined for
modeling the geometric structure of a 3-D point-cloud object.
In summary, the contributions of this paper are as follows: 1) a
framework of road surface segmentation based on trajectory
and profile analysis; 2) a voxel-based elevation filter for re-
moving ground with strong fluctuations; 3) a voxel-based nor-
malized cut segmentation method for segmenting overlapping
objects; and 4) a pairwise 3-D shape context, capable of partial
object matching and retrieval, for extracting street light poles.

The remainder of this paper is organized as follows. Section II
presents the road surface segmentation method. Section III
describes the light pole extraction method. Section IV reports
and discusses the experimental results obtained using the
RIEGL VMX-450 point-clouds. Finally, Section V gives the
concluding remarks.

II. ROAD SURFACE SEGMENTATION

Road surface points can be separated from nonroad surface
points based on the following two facts: 1) road locations can
be determined by the vehicle’s trajectory, and 2) curbs that are

Fig. 2. Point-cloud profiling. (a) Profiling model. (b) Point-cloud with trajec-
tories. (c) Set of profiles shown in (b).

usually located at a height of 10–20 cm above the road surface
are designed to separate roads from sidewalks.

A. Profile Generation and Principal Point Sampling

As shown in Fig. 2(a), the raw point-clouds are cross-
sectioned into a series of profiles with a certain width (Sg)
at a certain distance interval (Rg) perpendicular to the trajec-
tory. Fig. 2(b) shows an example of a raw point-cloud with
trajectories; Fig. 2(c) presents a set of profiles. These profiles in
Fig. 2(c) show the following: 1) curbs are usually vertical to the
road surface, and 2) there is an abrupt increase in curb height.
These two properties provide important clues for identifying
road boundaries.

Once the profiles have been generated, principal points are
sampled from each profile. First, each profile is vertically
partitioned into a set of grids with a fixed width (Sp). Second,
a principal point is selected from each grid by a layering ap-
proach. To this end, all of the points within a grid are first sorted
according to their elevations by a quick sort algorithm, followed
by a layering criterion. Two consecutive points are grouped into
the same layer if and only if their elevation difference lies below
a layering threshold (d). The layering criterion is defined as{

pi−1 ∈ LA ∧ pi ∈ LA, if zpi
− zpi−1

≤ d
pi−1 ∈ LA ∧ pi ∈ LB , otherwise

(1)

where LA and LB are two different layers, pi−1 and pi are
two consecutive points after sorting, and zpi−1

and zpi
are their

corresponding elevations.
Then, the principal points within each grid are determined by

selecting the point with the highest elevation within the lowest
layer.

B. Curb-Line Extraction and Road Surface Segmentation

A curb-line can be approximated by a collection of discrete
curb corner points detected from the principal points within
each profile. In this paper, curb corner points are detected
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Fig. 3. Road surface segmentation. (a) Raw point-cloud shown in elevation mode. (b) Segmented road surfaces (red).

Fig. 4. Point-clouds (a) after road surface segmentation and (b) after ground removal.

based on the following three procedures: 1) elevation gradient
computation; 2) elevation gradient filtering; and 3) curb corner
point selection.

First, from the point where a profile intersects the trajectory,
elevation gradients of the principal points are computed for
each profile. The elevation gradient of principal point i is
defined as follows:

∇i =

⎧⎪⎨
⎪⎩

zpi
− zpi−1

, point i locating on the right side
of the trajectory

zpi
− zpi+1

, point i locating on the left side
of the trajectory.

(2)

Generally, a large elevation gradient indicates a large fluctu-
ation, while a small elevation gradient is possibly caused in
the planar region (e.g., road surface). Thus, an abrupt elevation
gradient change, centered by the trajectory, is likely to be
caused by a curb corner point.

However, objects (e.g., pedestrians and cars) on the road sur-
face, which can also cause abrupt elevation gradient changes,
create problems for the detection of curb corner points. Thus,
we apply a gradient filter with a low threshold (∇L) and a high
threshold (∇H) to the principal points to filter out the points
with small elevation fluctuations, as well as tall objects on the
road surface.

Finally, curb corner points are simply determined by select-
ing the first two points, nearest to and located on opposite
sides of the trajectory, from the remaining principal points.
The extracted curb corner points from all profiles are then
fitted to form curb-lines using some fitting methods, such as
least squares and B-spline. As shown in Fig. 3, based on the
knowledge that the point-clouds between two curb-lines belong
to the road surface, the point-clouds are easily segmented into
road surface and nonroad surface points.

III. LIGHT POLE EXTRACTION

A. Ground Removal

Because of the scan mode of mobile LiDAR systems, the
number of points on the ground, including the road surface,

takes up a great portion of the total number of laser points.
To reduce spatial and computational complexities, it is helpful
to remove the ground points. In Section II, road surface points
have already been eliminated; therefore, we need only to fur-
ther remove the remaining ground points. Considering terrain
fluctuations, we propose a novel voxel-based ground removal
method.

First, the point-clouds are vertically partitioned into a series
of voxels with equal length and width of rv on the XY plane.
Second, within each voxel, the ground points are filtered out
by an elevation filter with a threshold of hv. The voxel-based
elevation filter has the following properties: 1) excellent ability
to process scenes with strong fluctuations and 2) excellent
ability to remove ground points in linear time, i.e., the time
complexity of the voxel-based ground removal method is O(n),
where n is the total number of data points. Fig. 4 shows the
ground removal result, where the colors represent elevation
variations.

B. Euclidean Distance Clustering

After removing the ground, off-ground objects are isolated.
However, the points belonging to a specific object are discrete
and unorganized in the point-cloud. Thus, before extracting
light poles, we use some strategies to organize the discrete
points into clusters that represent individual objects. In this
paper, we introduce a Euclidean distance clustering approach,
which clusters points based on their Euclidean distances to
their neighbors. Theoretically, an unclustered point is grouped
into a specific cluster if and only if its shortest Euclidean
distance to the points within this cluster lies below a predefined
threshold (dc). Using the knowledge that light poles always
have some geometric constraints, such as height, we eliminate
those low-height clusters to reduce computational complexity.
Fig. 5 shows the clustering result using the Euclidean dis-
tance clustering approach, as well as the filtering result using
prior knowledge. In Fig. 5, different colors represent different
clusters.
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Fig. 5. (a) Clustering result using the Euclidean distance clustering approach. (b) Filtering result using prior knowledge.

Fig. 6. (a) Voxel partition model. (b) Illustration of bipartition. (c) Ncut segmentation result.

C. Normalized Cut Segmentation

As shown in Fig. 5(b), some clusters contain more than
one object (see clusters A and B). Thus, we need to segment
these clusters in order to obtain separated objects. To this end,
we introduce a normalized cut (Ncut) segmentation method
[30], [31]. First, as shown in Fig. 6(a), the cluster is divided
into a voxel structure with a voxel spacing of ve. Second,
the nonempty voxels are used to construct a weighted graph
G = {V ,E}, where V takes the nonempty voxels as nodes
and E is formed between every pair of nodes. The similarity
between a pair of nodes (i, j) ∈ V 2 is depicted by the weight
wij which is computed from the features associated with the
voxels as follows:

wij=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

(
−‖pXY

i −pXY
j ‖2

2

σ2
XY

)

· exp
(
−|pZ

i −pZ
j |2

σ2
Z

)
, if

∥∥pXY
i − pXY

j

∥∥
2
≤ dXY

0, otherwise
(3)

where pi = (xi, yi, zi) and pj = (xj , yj , zj) are the centroids
of voxels i and j, respectively. pXY

i = (xi, yi) and pXY
j =

(xj , yj) are the coordinates of the centroids on the XY plane,
and pZi = zi and pZj = zj are the z coordinates of the centroids.
σXY and σZ are the standard deviations. dXY is a threshold
determining the maximal valid horizontal distance between two
voxels. The centroid of voxel i is defined as follows:

pi =
1

Ni

Ni∑
m=1

pim (4)

where Ni denotes the total number of points within voxel i and
pim(m = 1, 2, . . . , Ni) is a point within voxel i.

As shown in Fig. 6(b), Ncut segmentation aims to partition
graph G into two disjoint voxel groups A and B by maximizing

the similarity within each voxel group and minimizing the
similarity between voxel groups. The corresponding cost func-
tion is

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(5)

where cut(A,B) =
∑

u∈A,v∈B wuv is the total sum of
weights between voxel groups A and B, and assoc(A, V ) =∑

u∈A,v∈V wuv represents the sum of the weights of all edges
ending in voxel group A. The minimization of Ncut(A,B) is
achieved by solving the corresponding generalized eigenvalue
problem [30]

(D−W)y = λDy (6)

where W (i, j) = wij and D is a diagonal matrix with D(i, i) =∑
m wim.
Finally, by applying a threshold to the eigenvector associated

with the second smallest eigenvalue, we partition the cluster
into two segments. As shown in Fig. 6(c), the two clusters are
correctly segmented into two separated objects, respectively.

D. Construction of Pairwise 3-D Shape Context

Several content-based 3-D shape retrieval methods have been
proposed in the literature [32]. Some of these methods use
local shape descriptors [33] to model the geometric structure
of a shape. However, these descriptors are not affine-invariant.
In this section, we define a novel pairwise 3-D shape context
(which is affine-invariant and can simultaneously model the
local and global geometric structures in manifold space) to
model the topology of a 3-D object consisting of a set of
discrete points.

Construction of the ROI: Given a clustered object, first, we
sample N feature points from the object using the sampling
method in [34]. Next, for each pair of feature points (A,B),
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Fig. 7. Model of computing shortest radial path.

we construct a region of interest (ROI) for describing the point
distribution between these two points. To this end, first, we
compute a shortest radial path from point A to point B in
manifold space. The computation model is shown in Fig. 7. We
define a series of concentric spheres (b1, b2, . . . , bn) with equal
radial intervals (rs) centered at point A. The shortest radial path
from point A to point B is defined as

PAB = [p0, p1, . . . , pn−1, pn], with A = p0 ∧B = pn (7)

where pi ∈ bi \ bi−1(i = 1, 2, . . . , n− 1) is the nearest point to
pi+1, i.e.,

pi = argminp∈bi\bi−1
‖p− pi+1‖2, i = 1, 2, . . . , n− 1.

(8)

Denote Rpq as the direct Euclidean path from point p to point
q; then, the shortest radial path PAB is redefined recursively as
follows:

PAB =

⎧⎨
⎩

RAB , B ∈ b1
PApn−1

+Rpn−1B , B ∈ bn \ bn−1 ∧ pn−1

∈ bn−1 \ bn−2.
(9)

Next, as shown in Fig. 8(a), we create a scalar field as the
initial region, within which the points’ distances to the shortest
radial path PAB are below a threshold rp. The parameter rp is
the width of the initial region. In practice, in order to adapt the
initial region’s width to the shortest radial path, we select the
width relative to the distance along the shortest radial path and
define the width-to-distance ratio as follows:

θp =
rp
dAB

(10)

where dAB is the length of the shortest radial path PAB .
Then, we create a filtering region for pruning the initial region.
As shown in Fig. 8(b), the filtering region is defined as the
intersection of the spherical region centered at point A and
the spherical region centered at point B. Finally, as shown
in Fig. 8(c), the ROI is constructed by intersecting the initial
region and the filtering region.

Fig. 8. ROI construction and bin partition model. (a) Initial region. (b) Fil-
tering region. (c) Constructed ROI. (d) Bin partition model with equal intervals.

Fig. 9. Directional histogram descriptor. (a) Histogram descriptor for point
pair (A,B). (b) Histogram descriptor for point pair (B,A).

Construction of Histogram Descriptors: As shown in
Fig. 8(d), once the ROI of the point pair (A,B) has been
constructed, we partition the ROI into a set of bins, describing
the local statistical distribution between points A and B, with
equal radial intervals along the shortest radial path PAB . The
interval, denoted by rb, is determined as follows:

rb =
LAB

Kb
(11)

where LAB is the Euclidean distance between points A and
B, and Kb is the bin number. Next, we construct a histogram
descriptor by counting the number of points located within each
bin and normalizing the number by dividing the total number of
points located within the ROI. The histogram descriptor hAB

for point pair (A,B) is defined as follows:

hAB(k) =
|bin(k)|

Kb∑
i=1

|bin(i)|
, k = 1, 2, . . . ,Kb. (12)

Our construction provides a directional histogram descriptor.
As shown in Fig. 9, the histogram descriptor hAB for point pair
(A,B) is different from the histogram descriptor hBA for point
pair (B,A).

Construction of Pairwise 3-D Shape Context: After the his-
togram descriptors between all pairs of feature points have been
constructed, the pairwise 3-D shape context for point p with
respect to pairwise combinations with the remaining feature
points is constructed as follows:

Hp =
[
hp
1, h

p
2, . . . , h

p
N−1

]
∈ RKb×(N−1). (13)
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Fig. 10. (a) Light pole prototype. (b) Measurements of clustered objects. (c) Extracted light poles.

E. Light Pole Extraction

In this section, we describe the light pole extraction algo-
rithm in detail. Given a clustered object Q, we use a prototype P
[Fig. 10(a)] to identify whether this object is a light pole based
on the pairwise 3-D shape contexts of P and Q. The identifica-
tion criterion is based on the following three factors: one-to-one
matching, local dissimilarity, and global dissimilarity.

One-to-One Matching: Consider a point p on prototype P
and a point q on object Q. The cost of matching these two points
is defined using χ2 distance as follows:

C(p, q) = minN−1
i,j=1

1

2

Kb∑
k=1

[
hp
i (k)− hq

j(k)
]2

hp
i (k) + hq

j(k)
. (14)

Then, the cost matrix C ∈ RN×N , whose entry C(i, j) denotes
the cost of matching point i on prototype P and point j on
object Q, for matching P and Q is constructed. Finally, the one-
to-one matching between the feature points on P and the feature
points on Q is given by

MQ(π) = minπ
1

N

N∑
i=1

C (i, π(i)) (15)

where π is a permutation of {1, 2, . . . , N}. This is an instance
of the square assignment (or weighted bipartite matching) prob-
lem, which can be solved in O(N3) time using the Hungarian
method [35]. In this paper, we use a more efficient algorithm
proposed in [36].

Local Dissimilarity: The local dissimilarity between two
matched feature points is measured by point curvature. Given
a point p, its point curvature is defined using the eigenvalues
of the covariance matrix of point p. Thus, we construct a
covariance matrix for point p using its k-nearest neighbors
(p1, p2, . . . , pk) as follows:

Cp =
1

k + 1

k∑
i=0

(pi − p) · (pi − p)T (16)

where p0 = p and p = (1/(k + 1))
∑k

i=0 pi is the centroid of
the k + 1 points. Next, we decompose the covariance matrix
to obtain the eigenvalues λ0, λ1, and λ2(λ0 ≤ λ1 ≤ λ2), and
the associated eigenvectors −→e0 , −→e1 , and −→e2 . Then, the point
curvature of point p is computed as follows:

σp =
λ0

λ0 + λ1 + λ2
. (17)

Finally, the local dissimilarity between prototype P and object
Q is defined by

L(P,Q) =
1

N

N∑
i=1

|σpi
− σqi | , pi ∈ P ∧ qi ∈ Q. (18)

Global Dissimilarity: The global dissimilarity between pro-
totype P and object Q is measured based on the pairwise 3-D
shape contexts of P and Q and is defined by the following
expression [37]:

G(P,Q)=
1

N(N − 1)

N∑
i=1

N−1∑
j=1

minm,n ‖Hpi
(j)−Hqm(n)‖1 .

(19)

The objective function for identifying object Q is defined as
follows:

O(Q) = MQ(π) + L(P,Q) +G(P,Q). (20)

Finally, based on the objective function, the dissimilarity mea-
surements from all clustered objects are thresholded to ex-
tract light poles. Fig. 10(b) shows the measurements of the
clustered objects in Fig. 6(c) and the selected threshold for
extracting light poles; Fig. 10(c) presents the extracted light
poles.

IV. RESULTS AND DISCUSSION

A. Mobile LiDAR Point-Cloud Data Sets

The first mobile LiDAR data were acquired in Xiamen,
China. The survey was carried out on Ring Road South, which
is a two-directional–four-lane road with a median separating
the direction of travel, and covered a total distance of approx-
imately 60 km [Fig. 11(a)]. Due to the data acquisition time
and the urban environment, there were many moving cars and
pedestrians on the road when collecting the mobile LiDAR data
in the daytime. The size of the scanned data, including point-
clouds, images, and trajectories, is about 781 GB after postpro-
cessing. The surveyed area, a typical urban area, is located near
the seaside and covered with dense vegetation, high buildings,
traffic signposts, and light poles on both sides of the road. The
light poles are installed every 30 m on both sides of the road.
On the average, a 1-km-long point-cloud along the trajectory
has a size of about 13 GB but contains only 66 light poles. The
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Fig. 11. (a) Xiamen study area and the scanned point-cloud data. (b) Xiangan study area and the scanned point-cloud data. (c) RIEGL VMX-450 system.

Fig. 12. Illustration of the light poles in the surveyed areas.

second mobile LiDAR data were acquired in Xiangan, China.
This survey was carried out on a two-directional–two-lane road
in the suburbs and covered a total distance of approximately
34 km [Fig. 11(b)]. This area is a typical suburb with low-
height buildings, dense vegetation, and light poles on both
sides of the road. There were few moving cars and pedestrians
on the road when we collected mobile LiDAR data. The size
of the scanned data is about 236 GB after postprocessing.
The light poles in this area are installed every 30 m on both
sides of the road. For decoration purposes, the light poles
are of different shapes and colors [see Fig. 12(a)–(d)]. In
addition, some of the light poles have attached traffic signs
and advertising boards [Fig. 12(e)–(g)], and some are even
hidden in the trees [Fig. 12(h) and (i)]. Therefore, extracting
light poles is a great challenge. In our experiments, we se-
lected several data sets containing complex scenes from the
scanned data to evaluate our proposed algorithm for extracting
light poles.

The mobile LiDAR data were collected by a RIEGL VMX-
450 system [Fig. 11(c)], which is smoothly integrated with the
following: 1) two full-view RIEGL VQ-450 laser scanners;
2) a GNSS/IMU unit; 3) a wheel-mounted distance measure-
ment indicator; and 4) four high-resolution cameras. The VMX-
450 system was mounted on the roof of a caravan moving at
an average speed of 50 km/h. The two VQ-450 laser scanners
were symmetrically configured on the left and right sides
with an “X” pattern. The accuracy of the scanned data is
within 8 mm, with a maximum effective measurement rate of
1.1 million measurements per second and a line scan speed of
up to 400 scans per second.

B. Parameter Selection for Computing Pairwise 3-D
Shape Context

The construction of the pairwise 3-D shape context of an
object depends on the following three parameters: the number
of feature points (N), the width-to-distance ratio of the ROI
(θp), and the number of bins (Kb). Hence, the selection of
these parameters is essential to the ability of the pairwise
3-D shape context to model the geometric structure of an object.
Therefore, we conducted several experiments to test the impacts
of different parameter combinations on the extraction of light
poles and ascertained the parameter combination with the best
performance. As shown in Fig. 13, in our experiments, we
selected a set of positive samples containing light poles with
different topologies and a set of negative samples containing
pole-like objects (nonlight poles) with different topologies.

As shown in Fig. 14, we also calculated the recognition and
false recognition rates using different parameter combinations
for the positive and negative samples, respectively. After ana-
lyzing the test results, in order to balance the recognition and
false recognition rates and obtain a good performance in light
pole recognition, we selected the parameter combination of
N=20, θp=0.3, and Kb=30, which provided a high recog-
nition rate and a low false recognition rate, for the computation
of pairwise 3-D shape context in the following experiments.

C. Shape Correspondence

A variety of methods that use shape descriptors for shape
correspondence have been proposed in the literature [38]. In
this section, we tested the capability of the proposed pairwise
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Fig. 13. (a) Positive samples. (b) Negative samples.

Fig. 14. (a)–(c) Recognition rates for positive samples. (d)–(f) False recognition rates for negative samples. (a) and (d) Testing N with θp = 0.3 and Kb = 20.
(b) and (e) Testing θp with N = 20 and Kb = 20. (c) and (f) Testing Kb with N = 20 and θp = 0.3.
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Fig. 15. Correspondences computed with the pairwise 3-D shape context.

Fig. 16. Correspondences computed with the single-point 3-D shape context.

TABLE I
DESCRIPTION AND GROUND TRUTH OF THE LIGHT POLE DATA SETS

3-D shape context for shape correspondence on point-clouds.
Fig. 15 shows visual examples of correspondences computed
with the pairwise 3-D shape context. Most of the homolo-
gous points are correctly matched between the objects with
topological changes. For comparative experiments, we also
computed correspondences using the single-point 3-D shape
context proposed in [33], as shown by the visual examples
in Fig. 16. Comparing the correspondences in Fig. 15 with
those in Fig. 16, we conclude that the proposed pairwise 3-D
shape context provides more meaningful and correct matches
for objects with missing parts or even different topologies and
performs better than the single-point 3-D shape context.

D. Light Pole Extraction

In our experiments, we, respectively, selected three data sets,
containing street light poles, from the two mobile LiDAR point-
clouds acquired in Xiamen and Xiangan. The description of
these six data sets is detailed in Table I. The first three data
sets were selected from the mobile LiDAR point-cloud acquired
in the urban area in Xiamen, and the last three data sets were
selected from the mobile LiDAR point-cloud acquired in the
suburb in Xiangan. In Table I, “Density” denotes the average
point density of the road; “Lane” denotes the number of lanes
of the road; “Direction” denotes the number of directions of
the road; “Dim” denotes the dimension of the road, where the
value of 2 indicates that there is a median on the road for

TABLE II
PARAMETERS USED IN ROAD SURFACE SEGMENTATION

separating the direction of travel; “Clean” denotes the number
of light poles without any attachments, such as traffic signs and
advertising boards; “Attachment” denotes the number of light
poles with attachments; and “Total” denotes the total number of
light poles in the data set. First, we applied the proposed road
surface segmentation method to these six data sets to segment
road surfaces from the entire point-clouds. The parameters
used in road surface segmentation are listed in Table II. Next,
light poles are extracted using our proposed algorithm. The
parameters used in light pole extraction are listed in Table III.
The light pole extraction results of the six data sets are detailed
in Table IV. Compared with the ground truth, nearly all light
poles, including light poles with and without any attachments,
are correctly extracted. Figs. 17 and 18 show parts of the road
surface segmentation and light pole extraction results from
data set-I and data set-V, respectively. In Fig. 17, a traffic
sign (#1) and a palm tree (#2) are falsely detected because
of their pole-like features. However, a light pole (#3) that is
attached with an advertising board and hidden in a palm tree
is well detected by using the Ncut segmentation method. In
order to quantitatively evaluate the accuracy of the light pole
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TABLE III
PARAMETERS USED IN LIGHT POLE EXTRACTION

TABLE IV
LIGHT POLE EXTRACTION RESULTS AND ACCURACY EVALUATIONS

Fig. 17. Road surface segmentation and light pole extraction results from data set-I.

Fig. 18. Road surface segmentation and light pole extraction results from data set-V.

extraction results, we introduce three indices [39], including
completeness, correctness, and quality. The accuracy evaluation
results are listed in Table IV. On the average, the proposed light
pole extraction algorithm achieves a completeness greater than
99%, a correctness greater than 97%, and a quality greater than
96%. On the whole, the proposed algorithm segments road sur-
faces accurately and provides high performance and accuracy
in extracting light poles from mobile LiDAR point-clouds.

The proposed algorithm was developed using C++ running
on an Intel Core i5 computer. The processing time in each pro-

cessing step and the total processing time for the six data sets
are listed in Table V. As seen from Table V, the time complexity
of road surface segmentation is quite low. A 6-km-long road
(data set-VI) can be segmented within 10.24 s. Moreover, such
a big data set with a size of 24.31 GB and containing 388 light
poles can be processed within about 51 min. Therefore, the pro-
posed algorithm provides a promising solution to road surface
segmentation and street light pole extraction from large-volume
mobile LiDAR point-clouds and achieves high performance and
accuracy and an acceptable time complexity.
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TABLE V
PROCESSING TIME IN EACH PROCESSING STEP

Fig. 19. (a) Recognition rates of different algorithms. (b) False recognition
rates of different algorithms.

E. Comparative Studies

In this section, to evaluate the performance of our proposed
algorithm, we compared it with other existing algorithms,
including the percentile-based algorithm [14], the PCA-based
algorithm [21], the DoPP algorithm [22], and the single-point
3-D shape context [33]. First, we compared our algorithm with
the single-point 3-D shape context and the percentile-based
algorithm. For the single-point 3-D shape context, we replace
the pairwise 3-D shape context in (14) and (19) as

C(p, q) =
1

2

Kb∑
k=1

[hp(k)− hq(k)]
2

hp(k) + hq(k)
(21)

G(P,Q) =
1

N

N∑
i=1

minj
∥∥hpi

− hqj

∥∥
1

(22)

where hi denotes the single-point 3-D shape context of feature
point i. Fig. 20 shows the recognition and false recognition rates
on the positive and negative samples (see Fig. 13), respectively.
As seen from Fig. 19, our algorithm exhibits a higher recogni-
tion rate and a lower false recognition rate and performs better
than the other two algorithms.

Next, we compared our algorithm with the DoPP and PCA-
based algorithms. As seen from the light pole extraction results
shown in Fig. 20, our algorithm extracts light poles completely
and correctly and obtains better performance than the other two
algorithms.

F. Extensive Studies

To further demonstrate the capability of the proposed pair-
wise 3-D shape context in extracting objects with topological
changes, in our experiments, we selected four point-cloud data
sets with different types of light poles. We used the same
light pole prototype [see Fig. 10(a)] to extract light poles

Fig. 20. (a) Raw point-cloud and extracted light poles using (b) our algorithm,
(c) the DoPP algorithm, and (d) the PCA-based algorithm.

with different shapes from the aforementioned four data sets.
The light pole extraction results are presented in Fig. 21. For
each of the data sets, light poles are correctly extracted from
these point-clouds, regardless of topological changes. Then,
we conclude that the proposed pairwise 3-D shape context is
capable of matching light poles with topological changes and
provides acceptable extraction results.

V. CONCLUSION

In this paper, we have presented a novel algorithm to rapidly
segment road surfaces and extract street light poles from large-
volume mobile LiDAR point-clouds. The proposed algorithm
segments the raw point-clouds into road and nonroad surface
points automatically and efficiently. Through profile analysis,
curb corner points are detected and then used to guide the
segmentation of road surfaces. The algorithm further efficiently
and robustly extracts street light poles from the segmented
nonroad surface points. Our algorithm contains four steps:
1) ground removal by a voxel-based elevation filter;
2) Euclidean distance clustering for grouping discrete and un-
organized points into clusters representing individual objects;
3) normalized cut segmentation for further segmenting clusters
containing more than one object; and 4) light pole extraction
based on a novel pairwise 3-D shape context. Our proposed
algorithm has been evaluated by a set of mobile LiDAR
point-clouds in correspondence, road surface segmentation, and
light pole extraction. Compared to the single-point 3-D shape
context, our proposed pairwise 3-D shape context efficiently
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Fig. 21. Extracted light poles with different shapes.

ascertains more meaningful matches and correctly matches
more homologous points. Furthermore, compared to the ex-
isting light pole extraction methods, our proposed algorithm
extracts light poles more correctly and efficiently and achieves
a completeness exceeding 99%, a correctness exceeding 97%,
and a quality exceeding 96%. Experimental results from a
set of mobile LiDAR point-clouds demonstrate the efficiency
and feasibility of our proposed algorithm in segmenting road
surfaces and extracting street light poles.
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