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ABSTRACT 

 

This paper presents a boundary-enhanced supervoxel method  

to solve over-segmentation problems in supervoxel 

generation of Voxel Cloud Connectivity Segmentation 

(VCCS). First, we use different searching methods to obtain 

the neighborhood of each point. Second, three variants of 

neighbor points are clustered by the local k-means clustering 

method on points directly instead of on voxels. Finally, a 

scale metric is used to measure the difference between two 

points that considers underlying 3D spatial structure of the 

points. Our proposed is tested on two publicly available 

benchmark point cloud datasets acquired by mobile laser 

scanning (MLS) and terrestrial laser scanning (TLS) systems, 

respectively. Results of the experiments show that the 

boundary recall approximately 7 and 4 times higher than 

VCCS for the best results, which our proposed methods are 

effective, and the cost time is feasible and effective.  

 

Index Terms—Clustering, 3D point cloud, nearest 

neighbor, over-segmentation, scale metric. 

 

1. INTRODUCTION 

 

Precise processing of large-scale point clouds plays an 

essential role in 3D computer vision. In 2D image processing, 

clustering pixels from images into different regions, called 

superpixels. Points clustering is one of the most significant 

use in point cloud processing like segmentation and 

classification. Over-segmentation methods split point clouds 

into several supervoxels. Similar to superpixels, the use of 

supervoxels in 3D point clouds can greatly reduce the number 

of points and consequence is reducing time for respective 

point cloud processing. Currently, many researchers focus on 

grouping voxels by using methods such as object detection, 

scene segmentation and saliency estimation [4]. 

However, the supervoxel problem can result into the 

over-segmentation problem. Different from images, it is 

difficult to over-segment point clouds due to its large volume 

and underlying data complexity, they are not structured as 

images, and usually point clouds contain various complex 

objects of different shapes. So it is significant to design a 

novel supervoxel method to solve the over-segmentation 

problem.  

Over the past decades, some studies focused on 

supervoxels to solve the over-segmentation problem. The 

authors in [1] first presented the supervoxel method called 

Voxel Cloud Connectivity Segmentation (VCCS) by octree 

based searching and local k-means clustering method [2]. 

And the VCCS method is the advanced algorithm to over-

segment the points. However, the number of points that 

changes with the supervoxel resolutions have a detrimental 

effect on the results of VCCS and cannot preserve the high 

boundary recall value in large outdoor 3D point cloud scene. 

In [3], a boundary-enhanced supervoxel segmentation (BESS) 

method was proposed to solve the over-segmentation 

problem by enhancing boundary information. The BESS can 

detect the outdoor point cloud scene, but it needs ordered 

points in one direction that makes its application limited. In 

[4], another proposed algorithm considered supervoxel 

segmentation as a subset selection problem to preserve the 

boundary better, but it costs too much time. In [5], 

supervoxels were obtained by generating facet to extract the 

road boundary. However, the method in [5] needed to select 

a seed point and lost some boundary information. In order to 

solve the over-segmentation problem better, in this paper, our 

contributions are to use different nearest neighbor search 

methods to enhance the boundary information and modify the 

VCCS performed on points instead of on voxels. 

The rest of the paper is organized as follows. Section 2 

describes our two-step method in detail. Section 3 presents 

and discusses the experimental results. Section 4 concludes 

the paper. 

 

2. METHOD 
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Our goal is to improve the traditional supervoxel method in 

two steps. First, we use three different search methods to 

obtain the neighbors of an interest point. Second, we modify 

the VCCS supervoxel method performed on points rather 

than voxel with a scale metric. 

 

2.1. Nearest neighbor search 

 

Without considering neighbor information of each point, 

traditional VCCS is calculating normal vector of each 

representative point based on the voxels directly. We improve 

the VCCS method by using nearest search methods to 

consider more neighbor information.  

Considering the accuracy of neighbor information has 

an important effect on over-segmentation results. Using 

different search methods can obtain different types of 

neighbor information.  

For a given set of 3D points 𝑃 = {𝑝1 , 𝑝2, ⋯ , 𝑝𝑁} and a 

query point q, we find the nearest neighbor points’ set that is 

closest to the query point q w.r.t. the Euclidean distance: 

q

M

P-M

m

n

P

 
 

Fig. 1 Diagram of the nearest neighbor search 

𝑁𝑁(𝑞, 𝑃) = argmin
𝑝𝑖∈𝑃

𝑑(𝑞, 𝑝𝑖)                (1) 

where the 𝑁𝑁(∙) denotes finding the nearest neighbor point 

operation. 𝑑(∙)  is the Euclidean distance. The nearest 

neighbor search method has three regular ways: k-nearest 

neighbor search (kNN), radius nearest neighbor search (RNN) 

and radius k-nearest neighbor search (RkNN)[6]. The 

principle of nearest neighbor search is shown in Fig.1. 

The kNN search is to obtain the closest k points from the 

query point q. The definition of this search is written as: 

 

𝑘𝑁𝑁(𝑞, 𝑘, 𝑃) = 𝑀                            (2) 

where 𝑀 is a point set. The cardinal of the 𝑀 is k and 𝑀 is 

the subset of 𝑃. At the same time, for arbitrary 𝑚 ∈ 𝑀, 𝑛 ∈
𝑃 − 𝑀, 𝑑(𝑞,𝑚) < 𝑑(𝑞, 𝑛). 

The RNN search is to find all the points located closer 

than the given radius R. The definition of RNN is defined as 

follows: 

𝑅𝑁𝑁(𝑞, 𝑅, 𝑃) = {𝑝 ∈ 𝑃, 𝑑(𝑞, 𝑝) < 𝑅}           (3) 

The RkNN search is mainly a combination of kNN and 

RNN. We define the RkNN search that satisfies the condition: 

𝑅𝑘𝑁𝑁(𝑞, 𝑘, 𝑅, 𝑃) = 𝑀                         (4) 

where |𝑀| ≤ 𝑘,𝑀 ⊆ 𝑃. For ∀ 𝑚 ∈ 𝑀, 𝑛 ∈ 𝑃 − 𝑀, we have 

𝑑(𝑞,𝑚) < 𝑅 and 𝑑(𝑞,𝑚) < 𝑑(𝑞, 𝑛). 

 

(a) 

 

(b) 

 
Fig. 2 Our test benchmark dataset; (a) Untermaederbrunnen station 

from Semantic3D dataset [8], and (b) Cassette GT from IQTM 

dataset [9]. 

 

2.2. Supervoxel over-segmentation algorithm 

 

After we obtain the nearest points for each point by 

aforementioned three search methods, we use PCA method 

[7] to calculate the normal vector of each neighbor point for 

next clustering based on VCCS. 

The VCCS is an advanced over-segmentation algorithm 

that generates supervoxel by using a variant of k-means 

clustering [2]. Different from using the projection and depth 

information directly, the VCCS considered the 3D geometric 

information between two points. In [1], the VCCS method 

first voxelized the 3D points using octree and then partitioned 

the supervoxels evenly. So it is based on voxel directly. In 

order to consider more neighbor information in detail, we 

modify the VCCS so it can perform on points directly, and 

the above three nearest neighbor search methods (VCCS-

kNN, VCCS-RNN and VCCS-RkNN) are used to obtain 

neighbors for further clustering points. 

  

2.3. Metric method 

 

For VCCS-kNN, VCCS-RNN and VCCS-RkNN supervoxel, 

we use the same measure metric as defined in [1, 7]: 

𝐷(𝑝, 𝑞) = 1 − |𝑛𝑝⃗⃗ ⃗⃗ ∙  𝑛𝑞⃗⃗⃗⃗ | + 0.4
‖𝑝−𝑞‖

𝑅
              (5) 

where the 𝑛𝑝⃗⃗ ⃗⃗  and 𝑛𝑞⃗⃗⃗⃗  are the normal vectors of two points p 

and q, respectively. |∙| denotes the inner product operation. 

‖∙‖  denotes the Euclidean distance. R is the resolution of 

supervoxels. The measure metric considers the geometric 

information and location between two 3D points. 

 

3. RESULTS AND DISCUSSION 

 

As shown in Fig. 2, our experiments include two public 

outdoor 3D point cloud benchmark datasets, one is Semantic 

3D (Untermaederbrunnen-station) dataset [8], and the other 
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(a) Ground-truth (b) VCCS (c) VCCS-kNN (d) VCCS-RNN (e) VCCS-RkNN
 

Fig. 3 Visual representation of supervoxel results on Semantic 3D dataset. 

(a) Ground-truth (b) VCCS (c) VCCS-kNN (d) VCCS-RNN (e) VCCS-RkNN
 

Fig. 4 Visual representation of supervoxel results on IQTM dataset. 

Table 1. The information of our tested scenes 

Scene  
Numbers of 

points 

Mean of  

r (cm) 

Untermaederbrunnen_station 1377290 1.98 

Cassette_GT 1747830 2.49 

is IQmulus and TerraMobilita (IQTM) (Cassette-GT) dataset 

[9]. Semantic 3D dataset is a large-scale point cloud 

classification benchmark collected by static terrestrial laser 

scanners. The IQTM dataset is acquired by a mobile laser 

scanning system. It has 12 millions of manually labeled 

points in Paris with 200m street of 15 labeled points.  We 

down-sampled the dataset so that the numbers of points is 

approximately 1 million. Necessary information of our test 

scenes is described in Table 1. 

�̅�  is the average resolution of each scene [10]. It is 

calculated as the average distance between two adjacent 

points. In this paper, we set the parameters empirically, the k 

in kNN and RkNN is 20, and the radius in RNN and RkNN 

is 10�̅� . For three search methods, we use the KD-tree data 

structure to accelerate relevant processing. During the 

experiments, we evaluate the boundary recall and time for 

each scene by our methods. The boundary recall is defined in 

[11, 12, 13] as: 

𝐵𝑅𝑔𝑡𝑏(𝒮) =
∑ 𝕀( min

𝑞∈𝑠𝑣𝑏
‖𝑝−𝑞‖<𝜀)𝑝∈𝑔𝑡𝑏

𝑔𝑡𝑏
                   (6) 

where gtb and svb denote the ground-truth boundaries and 

supervoxel boundaries in the form of binary. I(∙)  is an 

indicator function, which equals to 0 when the dependent 

variable is 0, and equals to 1 in any other conditions [14]. The 

I(∙) ensures that whether the ground-truth boundary point is 

covered by obtained supervoxel boundaries. The threshold ε 

is set to 0.03 empirically [4]. A high boundary recall value 

indicates that the supervoxels follow the boundary of objects 

at the groundtruth labels. Our method achieve the high 

boundary-recall (BR) values and preserve the boundary better 

than the traditional VCCS method. The pictorial presentation 

of the results from our proposed three methods, VCCS and 

ground-truth on Semantic 3D dataset are shown in Fig. 3. 

Meanwhile, visual representation of VCCS, VCCS-kNN, 

VCCS-RNN, VCCS-RkNN and ground-truth are in Fig. 4. 

 

3.1. Boundary recall (BR) 

 

As shown in Fig. 5(a) and (b), the proposed three methods 

have higher boundary recall than modified VCCS in different 

numbers of supervoxel 𝑁  on both Semantic3D and IQTM 

dataset. We can obtain that the proposed three methods can 

achieve a best BR value for all different numbers of 

supervoxel. Hence, our proposed methods can enhance the 

boundary more effective than traditional VCCS method on 

both datasets due to high BR values in the whole range of 𝑁. 

 

  

(a)                                                (b) 

Fig. 5 Evaluation of four supervoxel methods on boundary recall 

metric. (a) Line diagrams for Semantic 3D benchmark dataset with  

the number of supervoxel 𝑁 ∈ [100, 600], (b) Line diagrams for 
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IQTM benchmark with the number of supervoxel 𝑁 ∈ [100,700]. 
 

3.2. Time performance 

 

Fig. 6(a) shows cost time in four methods on Semantic 3D 

dataset. Although times to perform our methods are more 

than the modified VCCS, it is feasible and effective for 

processing a large dataset of 1.3 million points. Fig. 6(b) 

shows the comparison in running time of the four methods on 

IQTM dataset. Since our methods operate the points directly 

to consider more information of scenes, thus the methods are 

slower than modified VCCS. Results are similar for Semantic 

3D dataset. But it is efficient and reasonable to process for 

the reason that the huge number of points.  

  

(a)                                                (b) 

Fig. 6 Evaluation of four supervoxel methods on time metric. (a) 

Line diagrams for Semantic 3D benchmark dataset with the number 

of supervoxel 𝑁 ∈ [100, 600] , (b) Line diagrams for IQTM 

benchmark with the number of supervoxel 𝑁 ∈ [100,700]. 
 

4. CONCLUSION 

 

In this paper, we have presented three variants of supervoxels 

for searching neighbor points based on improved VCCS. 

Different from the traditional method, our proposed methods 

considered three types of nearest neighbor search algorithms. 

The results from two publicly available 3D point cloud 

benchmark datasets demonstrated proposed methods are 

feasible and have high BR values. The BR values of VCCS-

kNN, VCCS-RNN and VCCS-RkNN are around  50%, 45%, 

20%, which is higher than VCCS when the number of 

supervoxels is about 600 on Semantic 3D. And on the IQTM 

dataset, the BR values of our methods are about 4, 3 and 3 

times higher than the VCCS, respectively. We can observe 

that the BR values of VCCS-kNN are higher than those of 

VCCS, VCCS-RNN and VCCS-RkNN. Hence, our methods 

are effective. The reason might be that the scenes higher than 

ground belong to the same classes and kNN search can 

greatly obtain the neighborhood information. We intend to 

optimize the supervoxel methods further in future. 
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