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Shoreline Extraction from RADARSAT-2 Intensity
Imagery Using a Narrow Band Level Set

Segmentation Approach

YUANMING SHU, JONATHAN LI, AND GARY GOMES

Department of Geography and Environmental Management,
Faculty of Environment, University of Waterloo, Waterloo, Ontario, Canada

This paper presents a semi-automated method for shoreline extraction from RADARSAT-
2 intensity imagery. First, a preprocessing is applied to enhance the contrast of the SAR
image. Second, thresholding combined with morphological filtering is employed to seg-
ment the SAR image into the land and the sea. Third, narrow band level set segmentation
is implemented to refine the segmentation result. In the last step, morphological filters
are utilized to eliminate any remaining spurious segments. Boundaries between the land
and the sea are delineated into shorelines based on the segmentation result. Experiment
on RADARSAT-2 intensity images demonstrates that the proposed method is promising.

Keywords Shoreline mapping, RADARSAT-2, level set segmentation, narrow band

1. Introduction

Coastal zones are valuable in terms of fisheries, tourism, habitat, and integrity of coastal
ecosystems. Sea level rise and erosion are expected to accelerate as a result of global warm-
ing, increasing the exposure of coastal zones to storm surges, flooding, and other disasters
(Mcinnes et al. 2004). Shoreline mapping and change detection are critical for studies of
shoreline landward migration, coastal flood forecasting, the potential impact of tsunamis
on safety of navigation, nautical charting, and legal boundary determination (Horritt et al.
2001; Graham et al. 2003; NRC 2004; Polngam et al. 2005; Li et al. 2008; Wang and
Allen 2008). The use of earth observation technology has proved a cost-effective approach
for shoreline mapping and updating compared to traditional ground survey techniques.
The synthetic aperture radar (SAR)-equipped satellite is preferred to the optical one, as it
is independent of sunlight and not affected by clouds. However, it has been traditionally
limited by the lack of high-spatial resolution SAR sensors. This situation has been changed
since 2007, with the new generation of high-resolution SAR imaging satellites, including
1 m X band Italian COSMO-SkyMed, 1 m X band German TerraSAR-X, and 3 m C band
Canadian RADARSAT-2.

RADARSAT-2 was launched on December 14, 2007, and provides all imaging modes
of RADARSAT-1 as well as some new modes that incorporate significant innovations and
improvements (van der Sanden 2004). The capability of RADARSAT-2 to acquire images
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188 Y. Shu et al.

with 3 m spatial resolution in its ultra-fine mode as well as 8 m in fine mode will greatly
improve the accuracy of shoreline mapping. Besides, RADARSAT-2 operates in three
different polarization modes: the selective single polarization (HH or HV or VH or VV),
the selective dual polarization (HH and HV or VV and VH), and the quad polarimetric
(HH, HV, VV, VH), also called fully polarimetric mode. HV polarized imagery has been
recognized to have a larger waterland contrast than HH polarized imagery (van der Sanden
and Ross 2001). The limited effect of wind speed variations on the HV backscatter signal
of water also has been confirmed by the results presented in Ufermann and Romeiser
(1999). Moreover, polarimetric SAR imagery is expected to have stronger discriminate
power between the land and the sea than single polarized SAR imagery (van Zyl 1989;
Yu and Acton 2004). Yeremy et al. (2000) also explored the potential of polarimetric SAR
for shoreline mapping. All of these new properties of RADARSAT-2 make it an excellent
resource for shoreline mapping.

2. Related Work

Extraction of shorelines from SAR imagery is facilitated by the large contrast in the
backscatter signal as received from sea and land areas (van der Sanden and Ross 2001). The
land area usually appears to be light on SAR imagery, while the sea area often appears to be
dark. Compared to other shorelines defined in the literature, such as the tide-datum-based
shoreline or the interpreted high-water line, the shoreline extracted from SAR imagery
is actually the instantaneous land/water interface at the stage of tide when the image is
captured. Interested readers are refereed to Boak and Turner (2004) for the discussion of
differences between various definitions of shorelines.

Extraction of shorelines from SAR imagery can be done manually or automati-
cally. Compared to automated extraction, the manual approach is time-consuming, labor-
intensive, and subjective. Several semi-automated or automated methods for shoreline
mapping using SAR imagery have been proposed during the past few years. One of major
difficulties for this task is the speckle noises on SAR images. Intensity values may show
considerable variability even in the neighborhood of a uniform region (Richards and Jia
2006). To reduce speckle noises, Lee and Jurkevich (1990) first used a sigma filter to
smooth the original SAR image. Then, they applied a Sobel edge detector to generate an
edge map and used a grey-level thresholding to determine the boundaries between the land
and the sea. Lastly, to get closed and connected shorelines, they performed an edge trac-
ing algorithm. As an alternative, Mason and Davenport (1996) used a speckle-sensitive
edge detector, a contrast ratio filter detector combined with adaptive edge thresholding
and an active contour model for shoreline extraction. Niedermeier et al. (2004) used a
more sophisticated technique, wavelet, for edge detection, a blocktracing algorithm to
determine the edge, and an active contour to connect edge segments to form continuous
shorelines. In consideration of stronger discriminate power between the land and the sea
in polarimetric SAR imagery than in a single polarization SAR, Yu and Acton (2004)
developed an automated method for shoreline extraction from polarimetric SAR imagery.
They used speckle reducing anisotropic diffusion (SRAD) to reduce speckle noises and
enhance edges, instantaneous coefficient of variation edge detector for edge detection and
watershed segmentation to extract connected shorelines. In the meantime, Dellepiane et al.
(2004) proposed a method to extract shorelines from interferometric SAR (InSAR) im-
agery based on the fuzzy logic method. Liu and Jezek (2004) proposed a comprehensive
approach for shoreline extraction, which can be applied to both SAR and optical satellite
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Shoreline Extraction from RADARSAT-2 Intensity Imagery 189

images. They used Gaussian filter to reduce noises and anisotropic diffusion operator to
enhance major edges along shorelines and suppress other unimportant edges inside land or
sea areas. After that, they partitioned the input image into homogenous land and sea regions
using locally adaptive thresholding integrated with Canny edge detection and delineated
the boundary pixels into shorelines based on the partition. Wang and Allen (2008) used
multitemporal SAR data to delineate shorelines based on an edge extraction model to study
estuarine shoreline changes in North Carolina (USA).

Though the above methods achieved effective results for shoreline mapping in their
experiments respectively, their robustness is affected by the lack of explicit mathematical
model for “speckle noise” and “edge.” The edge detection operators used in above methods
are sensitive to noises, which detects the gradient within a fixed window around the target
pixel. Their effectiveness depends on filters to suppress noises to an acceptable degree.
However, the use of large filters may blur true boundaries in the meantime. The balance
between reducing noises and keeping true boundaries may be difficult to control in practice
and needs to be tuned carefully in order to achieve optimal results. Also, the threshold
for specifying edges should be chosen carefully. Otherwise, it may generate too many
spurious shorelines that are difficult to be eliminated by postprocessing. The pixel-based
classification and adaptive thresholding methods mentioned above suffer from the same
setbacks as edge-based methods, which are sensitive to noises and dependent on filters.

Instead of filtering out speckle noises, it would be more interesting to model them
through statistical methods. Descombes et al. (1996) introduced Markov Random Fields
(MRFs) for shoreline mapping from ERS-1 SAR imagery, which is one of popular statistical
segmentation models. In the MRFs model, the probability of a pixel belonging to a certain
class depends not only on its own feature (e.g., intensity value) but also on the class labels
of pixels in its neighbors. For example, if the pixels around the target pixel all belong
to a certain class, the target pixel will have a greater chance of belonging to the class.
Therefore, the MRFs segmentation model is robust to noises. However, as pointed out
by Yu and Clausi (2006), traditional MRFs model is isotropic and unable to preserve
filament features. It may fail to work properly in extracting linear feature shorelines. Level
set segmentation (Cremers et al. 2007) is another sophisticated method that is easy to
incorporate statistical information to model speckle noises during segmentation. Huang
et al. (2005) and Karantzalos and Argialas (2008) have successfully used it for oil spill
detection from SAR imagery. However, the large computational burden involved with
traditional level set methods impedes their further applications to shoreline mapping.

The objective of the study is to develop an effective method for shoreline mapping
from RADARSAT-2 intensity imagery. A new method based on narrow band level set
segmentation is proposed in this paper. The paper is organized as follows. Section 2
reviews the existing methods for shoreline extraction from SAR imagery. Section 3 gives
the background which helps to understand the principle of level set segmentation. Section
4 details the proposed shoreline extraction method. Section 5 shows experimental results
applying the proposed method to shoreline extraction from RADARSAT-2 Fine mode
intensity imagery with HV polarization and spatial resolution of 8×8 m. The conclusions
and discussions are given in section 6.

3. Level Set Segmentation

The level set method is a numerical technique for propagating interfaces, which was
introduced by Osher and Sethian (1988). The key idea behind the level set method is
to represent n dimensional curve C at time t as the zero level set of n + 1dimensional
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190 Y. Shu et al.

surface φ,

C = {�x|φ(�x, t) = 0} (1)

and evolve the curve C by solving the partial differential equation (PDE),

∂φ

∂t
= |∇φ|F

φ(�x, 0) = φ0(�x) (2)

where F is the speed in the normal detection. The function φ is usually defined as a signed
distance function because a number of simplifications for curve evolution can be made
thereby (Osher and Fedkiw 2002),

φ(�x, t) = ±d(�x),

d(�x) = min(|�x − �xC |) for all �xC ∈ C (3)

where d is the minimum distance from the point �x to points on the curve at time t. The
positive sign is used when the point is outside the curve and the negative is used when
the point is inside the curve. As illustrated in Figure 1, the two dimensional (2D) curve
C on the bottom row is embedded into a corresponding three dimensional (3D) surface φ

on the top row and represented its zero level set. Compared to the explicit representation
by parameterizing the boundary of the curve (Tryggvason et al. 2001), the use of implicit
function φ brings great benefits for curve evolution. It avoids the problems with instabilities,
deformation of curve elements, and complicated surgery for topological repair of the curve
existing in traditional explicit representation methods (Osher and Fedkiw 2002). Figure
1 illustrates one such advantage using the level set method. In the bottom row, we can
see the curve split into two parts during the evolution. It would be difficult for explicit
parameterization methods to describe such 2D topology change, as one has to have a
surgical procedure to detect such change and then reconstruct parameterization for the
two new curves. However, in the top row, the 3D implicit function φ keeps whole during

Figure 1. Illustration of the level set method.
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Shoreline Extraction from RADARSAT-2 Intensity Imagery 191

the evolution. Therefore, it would be much easier to work with the level set function φ

for curve evolution than with the curve directly. Interested readers would be referred to
Osher and Fedkiw (2002) for the detailed explanation on other advantages of the level set
method. Due to the good properties of the level set function, the level set method has been
widely used in image segmentation towards applications to road and building extraction
(e.g., Karantzalos and Argialas 2009; Karantzalos and Paragios 2009), highway extraction
and vehicle detection (e.g., Niu 2006), and oil spill detection (e.g., Huang et al. 2005;
Karantzalos and Argialas 2008).

In terms of the application of the level set method to image segmentation, the 2D
contours are represented as the zero level set of 3D signed distance function φ and evolve
by the speed function F according to Eq. (2) until they arrive on the true edges of objects
presented in the image. The early speed functions are gradient-based functions (Caselles
et al. 1997; Kichenassamy et al. 1995), which will become zero on the edge points char-
acterized by strong gradients. Therefore, the contours will stop when arriving on desired
edges of objects. However, these functions have been criticized due to their sensitivities to
noises (Chan and Vese 2001). When the image is noisy, contours guided by these functions
are easy to trap in local minimum and unable to arrive on desired edges. In considera-
tion of such disadvantages of gradient-based functions, Chan and Vese (2001) proposed a
statistical region-based energy function based on Mumford-Shah segmentation technique
(Mumford and Shah 1989), which is defined by

E(c1, c2, φ) = µ

∫

�

|∇H (φ(x, y))|dxdy + v

∫

�

H (φ(x, y))dxdy

+ λ1

∫
�

|u0(x, y) − c1|2H (φ(x, y))dxdy +

+ λ2

∫
�

|u0(x, y) − c2|2 (1 − H (φ(x, y)))dxdy (4)

where µ, v, λ1, λ2 are the constants, u0(x, y) is the image intensity at location (x, y),
c1, c2 are the average of image intensities inside and outside the contours, respectively.
The Heaviside function H (φ) = 0 for φ < 0 and H (φ) = 1 for φ ≥ 0. The first two terms,
referred as the prior term, control the smoothness of the contours and inhibit phenomenon of
oversegmentation. The last two terms, referred as the data term, measure the total variances
inside and outside the contours. Finding the optimal result for image segmentation is
equivalent to finding the minimization of the above energy function, which can be achieved
by solving the Euler-Lagrange equation

∂φ

∂t
= −∂E

∂φ

φ(x, y, 0) = φ0(x, y) (5)

where φ0(x, y) denotes the initial state of level set function φ.

4. Proposed Shoreline Extraction Method

In this paper, a new method for shoreline extraction from RADARSAT-2 intensity imagery
is proposed based on narrow band level set segmentation. First, a preprocessing consisting
of Gaussian filtering and histogram adjusting is applied to enhance the contrast of the
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192 Y. Shu et al.

Figure 2. Flowchart of the proposed method.

SAR image. Second, thresholding combined with morphological filtering is employed to
generate a preliminary segmentation result, which partitions the SAR image into land and
sea areas. Third, a narrow band level set segmentation method is implemented to refine
the preliminary segmentation result. In the last step, morphological filters are utilized to
eliminate any remaining spurious segments. Boundaries between the land and the sea are
delineated into shorelines based on the segmentation result. The framework of the proposed
method is demonstrated in Figure 2.

4.1. Preprocessing

A 3×3 Gaussian filter with standard deviation of 0.5 is utilized to smooth the original SAR
image without blurring the edge. Next, a piecewise linear transformation is used to adjust
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Shoreline Extraction from RADARSAT-2 Intensity Imagery 193

the histogram of the original image in order to enhance the contrast between the land and
the sea areas. The bottom 1% of all pixel values are specified as 0, and the top 1% are
specified as 255. The rest of pixels values are stretched within the range from 0 to 255
by a linear transformation. Different from other shoreline extraction methods, the main
purpose of preprocessing used here is not to reduce noises to an acceptable level so that the
later image processing can work properly but rather for the benefit of manual digitization
through visual interpretation, which is discussed in section 5. Extensive experiment shows
that narrow band level set segmentation used in our proposed method is robust to noises
and can achieve almost the same result for shoreline mapping without preprocessing as the
one with preprocessing.

4.2. Preliminary Segmentation

In the level set method, initial contours should be as close as possible to the final seg-
mentation to minimize the time for curve evolution. To achieve this purpose, a preliminary
segmentation is implemented by thresholding in intensity domain, which partitions the SAR
image into land and sea regions. The intensity threshold can be set by users manually or by
automated thresholding methods (e.g., Otsu 1979). Next, morphological filtering including
closing and opening operators is applied to the binary image to remove noises and generate
a more integrated segmentation result (Gonzalez and Woods 2002). Boundaries between
the land and the sea are used as the initial contours for narrow band level set segmentation,
which is discussed in the next section.

4.3. Narrow Band Level Set Segmentation

The narrow band method developed by Adalsteinsson and Sethian (1995) is used here to
reduce the computational burden involved in traditional level set methods. While the implicit
representation of 2D contours into 3D surface brings lots of convenience for curve evolution,
it also introduces large computational burden. For a image with size of m by n, a computation
labour O(n∗m) is required at each iteration in solving Eq. (5) for curve evolution. This will
be time-consuming when applied to shoreline mapping, as the SAR image used is usually
very large. Instead of evolving level set function in the whole image domain, the narrow
band method (see Figure 3) “builds an adaptive mesh around the propagating interface, that

Figure 3. Narrow band method. (a) Implementation in the whole image domain. (b) Implementation
in a band close to the zero level set (adapted from Adalsteinsson and Sethain 1995). The black curve
is the zero level set.
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194 Y. Shu et al.

is, a thin band of neighbouring level sets, and to perform computation only on these grid
points” (Adalsteinsson and Sethian 1995). This is appropriate for shoreline extraction, as
the number of pixels within a certain distance from contours has already been large enough
to obtain good estimations for the average intensity values inside and outside contours as
shown in Eq. (4), in order to drive the contours to the true locations of shorelines. In this
study, a simplified version of the narrow band method is used for shoreline mapping to
further reduce the complexity of programming and increase the computational efficiency.
In the original method, the narrow band is reinitialized when the curve is close to the edge
of the existing band to keep the curve evolution within the band. Such dynamic updating
procedure is useful for applications of the narrow band method in general aspects. However,
it is not that necessary for shoreline mapping here, since the locations of shorelines have
been roughly given by the preliminary segmentation result as discussed in section 4.2.
Therefore, it would be proper to assume that the true locations of shorelines are within
a fixed buffer of the initial contours. Besides, to have narrow band update as the curve
evolution, one needs a surgery to detect when the curve is about to move out of the band.
This will increase computational burden and complex the programming. Moreover, the
re-initialization is time-consuming and reveal a disagreement between the level set theory
and its implementation (Gomes and Faugeras 2000), which should be avoided. Therefore,
we evolve contours in a band with fixed width around the initial contours, even though we
may run the risk of missing some shorelines in the process. In practice, users can sacrifice
computational time by specifying wider band width in exchange of the higher probability
that all shorelines are within the specified band of curve evolution. The detail procedures
of narrow band level set segmentation for shoreline extraction are described as follows:

(1) Initial level set function φ0 using shorelines C obtained in section 4.2 through Eq.
(3). Set the width of narrow band d0, maximum iteration time tn and time interval
�t . Initial t = 0;

(2) Solve Eq. (5) within the narrow band {(x, y)||d(x, y, t)| ≤ d0}to obtain φt+�t from
φt . t = t + �t ;

(3) If t is greater than tn or φ arrives its stationary, go to step 4. Otherwise, go to step
2; and

(4) Obtain shorelines C by finding points {(x, y)|d(x, y, t) = 0}.

4.4. Postprocessing

Morphological filtering including closing and opening operators (Gonzalez and Woods
2002) is applied to the binary image after level set segmentation to remove any remaining
spurious segments generated due to the effect of speckle noises. Though these segments
can be eliminated during the level set evolution without using morphological filters, the
computational time will become longer. Next, bright areas inside the sea that are too small to
be regarded as islands are removed. Dark holes inside the land are filled, which are probably
generated due to the effects of rivers or lakes. In the final step, boundaries between the land
and the sea areas are delineated into shorelines based on the segmentation result.

5. Experimental Results

An experiment was designed to test the performance of the proposed method by using
seven test images. The test data set covers shoreline mapping in different conditions,
such as natural shorelines, man-made shorelines, linear feature shorelines, inhomogeneous
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Shoreline Extraction from RADARSAT-2 Intensity Imagery 195

land areas, and so on. These images were clipped from an original RADARSAT-2 Fine
mode intensity image with HV polarization and spatial resolution of 8 × 8 m, which was
acquired over an area in Vancouver, British Columbia, Canada. The size of each test image
was 1024 × 1024 pixels.

One test image has been selected to demonstrate the results of the proposed method at
each step. Figure 4a shows the test image after preprocessing. As illustrated, the contrast
between the land and the sea is enhanced after preprocessing. Figure 4b shows the result
of preliminary segmentation. The intensity threshold is set as 50 manually. The radius of
morphological opening and closing operators used in this step is set as 3 pixels. The bright
area inside the sea with size less than 20 pixels is removed. Dark holes inside the land are
filled. Figure 4c shows the result of narrow band level set segmentation. The preliminary

Figure 4. Results of the proposed method at each step. (a) Original SAR image after pre-processing.
(b) Preliminary segmentation. (c) Narrow band level set segmentation. (d) Final result after postpro-
cessing.
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196 Y. Shu et al.

Table 1
Intensity threshold (IT) and computational time (CT) for the six test images from (a) to (f)

in Figure 5

Image (a) Image (b) Image (c) Image (d) Image (e) Image (f)

IT 50 50 98 96 70 91
CT (seconds) 26.3 25.4 10.5 18.0 17.3 19.4

segmentation result in Figure 4b is used as initial contours for the level set evolution.
Parameters for narrow band level set segmentation are set as: λ1 = λ2 = 1, µ = 0.05 ∗
255 ∗ 255, v = 0.001 ∗ 255 ∗ 255, according to the experiment presented by Chan and
Vese (2001) when dealing with noisy image. The width of narrow band is set as 50 pixels
empirically. The total number of iterations is 20. As shown in Figure 4c, the speckle noises
within the white circle of Figure 4b disappeared or became smaller during the evolution,
which makes them easier to remove with postprocessing. Figure 4d shows the final result
after postprocessing. The radius of the morphological opening and closing operators used
in this step is 1 pixel. The bright area inside the sea with size less than 16 pixels is removed.
Dark holes inside the land are filled. The gray buffer in Figure 4d represents the layers
within 6 pixels of the manually digitized shorelines. The black lines are the final result
of computer-extracted shorelines. Visual inspection shows that the result of the proposed
method is effective for the test image. The total computational time is 39.6 s on a PC-based
MATLAB platform.

Figure 5 shows the experimental results of the other six test images. We used exactly
the same parameters for these images as the one described in Figure 4, except for the
intensity threshold and the number of iterations of the level set evolution. Table 1 shows
the intensity threshold and computational time for each of the six images. The left column
of Figure 5 shows the original test images after preprocessing. The right column shows the
results of shorelines extraction produced using the proposed method. The gray buffers in
images of the right column are the areas within 6 pixels of the manually digitized shorelines.
The black lines illustrate the computer-extracted shorelines. Visual inspection shows that
the proposed method works well on natural shorelines as shown in Figures 5a and b, man-
made shorelines as shown in Figure 5f, linear feature shorelines as shown in Figure 5d, and
inhomogeneous land as shown in Figure 5e.

Though there are a total of 15 parameters that need to be set in the proposed method
as discussed above, only two parameters need to be tuned in the processing. They are the
intensity threshold for preliminary segmentation and the number of iterations for narrow
band level set segmentation. Figure 6 illustrates an example of the parameter tuning process.
As can be seen from the experimental results, the shoreline extraction result is not that
sensitive to the values of intensity threshold. However, properly choosing the threshold will
short the computational time of level set evolution.

To quantitatively evaluate the proposed method, a buffer zone approach proposed by
Li et al. (2008) is used in this study. The initial idea of the buffer zone approach can be
traced back to Wiedeman et al. (1998). The manual on-screen digitizing shoreline is used
as the standard line for quantitative accuracy assessment. The commission error is defined
by

COM = NEL − NELinMLB

NEL
(6)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 1

7:
37

 0
5 

O
ct

ob
er

 2
01

7 



Shoreline Extraction from RADARSAT-2 Intensity Imagery 197

Figure 5. Extraction results of the other six test images. (Continued)
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198 Y. Shu et al.

Figure 5. (Continued)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 1

7:
37

 0
5 

O
ct

ob
er

 2
01

7 



Shoreline Extraction from RADARSAT-2 Intensity Imagery 199

Figure 6. Parameter tuning. (a) Original SAR image after preprocessing. (b) The intensity threshold
is 40 and the number of iterations is 100. (c) The intensity threshold is 45 and the number of iterations
is 80. (d) The threshold is 55 and the number of iterations is 20.

where NELinMLB is the number of pixels on the computer-extracted line within the buffer of
the manually digitized shoreline and NEL is the number of pixels on the computer-extracted
shoreline. In the work of Li et al. (2008), the omission error was not defined. In this paper,
the omission is defined by

OM = NML − NMLinELB

NML
(7)

where NMLinELB is the number of pixels on the manually digitized line within the buffer of
the computer-extracted shoreline and NML is the number of pixels on the manually digitized
shoreline. The distribution probability of the computer-extracted line on buffer layers for
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Table 2
Commission errors, omission errors and average errors

Max Min Mean Median Standard Deviation

COM 0.1326 0.0020 0.0308 0.0056 0.0513
OM 0.0200 0.0000 0.0048 0.0000 0.0082
AE (pixels) 0.7300 0.1400 0.3700 0.2200 0.2664

the manually digitized line can be calculated as follows

pd(l) = NELinFLBl

NML
(8)

where l = 0, 1, 2, · · · , n, is the index of buffer layers, n is the total number of buffer layers.
NELinFLBl

is the number of pixels on the computer-extracted line within l-th buffer layer.
The average error can be calculated by

AE =
n∑

l=0

l ∗ pd(l) (9)

Table 2 lists the commission, omission and average errors of each test image calculated
by Eqs. (6)–(9). The width of buffer is n = 4 pixels in this evaluation. As shown in Table
2, the average error is less than one pixel with standard deviation of 0.2664. The average
of commission error is about 3% with standard deviation of 0.0513. The mean average of
omission error is 0.48% with standard deviation of 0.0082. The evaluation result shows
that the proposed method is accurate for shoreline extraction.

It would be necessary to further identify the areas where poor result occurred and see
why the proposed method failed to work properly in those areas. Figure 7 illustrates one

Figure 7. Example of poor shoreline extraction. (a) Original SAR image after preprocessing. (b)
Area where the proposed method failed to achieve an effective result.
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such example. The reason for the poor extraction is that the intensity within the circle is
inhomogeneous due the effect of shadow. Some part of the land appears to be dark and
is closer to the appearance of the sea. It indicates edge and texture information should be
further incorporated into level set model to achieve effective results in such areas.

6. Conclusions and Discussions

In this paper, we have implemented a narrow band level set segmentation method to
extract shorelines along the Canadian Pacific coast from RADARSAT-2 Fine mode intensity
imagery with HV polarization and spatial resolution of 8×8 m. A total of seven images were
used to test the proposed method. Visual inspection indicated that the proposed method
worked well. To quantitatively assess the performance of the proposed method, manual
on-screen digitizing shorelines were created and used as the standard lines. The buffer zone
approach was utilized to perform the quantitative assessment. For the overall test dataset,
the average error was less than one pixel. The average commission and omission errors were
3.08% and 0.48%, respectively, as referred to the manual on-screen digitizing shorelines.
It also indicated from the experiment that the use of the preliminary segmentation result
as the initial contours of level set, and the narrow band method for propagating level set,
largely reduced the computational burden and improved extraction efficiency. Compared to
pixel-based methods, region-based method models speckle noise using statistical methods
so that is robust to parameters. During the experiment, only the values of intensity threshold
and the number of iterations need to be tuned to get a good preliminary segmentation result.
Compared to the general isotropic MRF model, the level set segmentation method does
not have local assumption about the relationship between surrounding pixels. Therefore, it
would favor extraction of the linear feature shorelines as well, which has been illustrated
in the experiment. It can also be noticed that the proposed method may be applied to
shoreline mapping and updating using interferometry, polarimetric, or multipolarization
SAR images. Furthermore, the framework of level set segmentation can easily incorporates
edge and texture information (as data term) for extraction (Cremers et al. 2007), which will
help overcome adverse effects of winds and shadows and further increase the accuracy of
shoreline extraction. These issues will be addressed in our future work.
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